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Abstract: In order to improve the wear properties of FeCoCrNi high entropy alloy (HEA), laser
cladding was applied to fabricate FeCoCrNiAlx HEA coatings with different Al additions. The
Al-modified coatings exhibited excellent metallurgical bonding interfaces with the substrates. The
microstructure of FeCoCrNiAl0.5 coating was the same as of the FeCoCrNi coating: face-centered
cubic (FCC). However, the microstructure of FeCoCrNiAl was different: body-centered cubic (BCC)
with more Al atoms distributed inside the grains. As the Al content in the coating was increased, the
hardness increased as well from 202 to 546 HV0.2, while CoF and wear rate decreased from 0.62 to
0.1 and from 8.55 × 10−7 to 8.24 × 10−9 mm3/(Nm), respectively. The wear mechanisms changed
from the mixture of abrasive, adhesive, and oxidative wear patterns to the mixture of abrasive and
oxidative patterns. Such a change indicates that the Al addition indeed improved the wear resistance
of FeCoCrNiAlx HEA coatings. Our results expand knowledge on HEA coating applications as
wear-resistant materials in various applied industrial fields.

Keywords: laser cladding; FeCoCrNiAlx; high entropy alloy coating; wear properties

1. Introduction

In 2004, J.W. Yeh et al. [1] and Cantor et al. [2] described a concept of high-entropy
alloys (HEAs), which contain five or more principal elements with contents in the 5–35 at%
range. Other trace elements could be present as well but at levels below 5 at%. The
unique properties of HEAs (such as high entropy, lattice distortion, hysteretic diffusion,
and “cocktail” effects) make them superior (in terms of strength, toughness, wear, and
corrosion resistances) to traditional alloys [3–5].

Studies of Al-containing HEAs revealed that Al levels significantly affect the mi-
crostructure and mechanical properties of the resulting material [6]. In some cases, Al’s
addition to Fe-based HEAs promoted the formation of the body-centered cubic (BCC)
phase [7–10]. Sharma et al. [7,8] analysis of AlxFeCoCrNi HEAs revealed that Al addition
activated the diffusive transformations from molten to crystalline phases (at lower Al addi-
tion levels) or from molten to amorphous transitions (at higher Al contents). Ogura et al. [9]
demonstrated (using first principles electronic structure calculations) that an increase in
the Al contents in HEA alloys reduces the energy difference between the FCC and BCC
phases. Feng et al. [10] experimentally demonstrated that when Al was added (up to 5%)
to FeCoCrNi, a material with improved plastic deformation was obtained.

Coatings fabricated by laser metal deposition (also known as laser cladding) exhibit
high density and good metallurgical bonding with the matrix, which made laser cladding
a very popular method in industrial applications [11–13]. The wear properties of HEA
coatings prepared by laser cladding could be further improved by adding ceramic particles
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(e.g., TiC [14], NbC [15], WC [16]), which act as reinforcing ex-situ phases. The addition
of these trace phases also changes other HEA properties such as phase transition, grain
refinement, etc. For example, Cai et al. [14] analyzed FeCrNiCoMn+xTiC HEA coatings
prepared by laser cladding and discovered that TiC particles promote the formation of low-
angle grain boundaries while inhibiting the high-angle grain boundaries. The increase in
TiC content reduces the grain size and increases the dislocation density, while their pinning
effect improves the overall coating strength. Li et al. [15] fabricated AlCoCrFeNi+xNbC
HEA coating by laser cladding. The addition of the NbC particles forced the FCC→ BCC
transition. Additionally, the presence of the NbC particles at the grain boundaries provided
a strong pinning effect, which also contributed to the grain growth inhibition, hindered
dislocation slip, and plastic deformation, which all, in turn, significantly improved the
hardness and wear resistance of the AlCoCrFeNi coating.

Laser metal deposition offers great flexibility in coating fabrication, which makes
it very easy to manufacture coatings with various compositions and contents. In fact,
this was achieved with great success for the HEA-based coatings, which demonstrated
excellent performance and unique properties [17–20]. The popularity of laser cladding in
the manufacturing of advanced coatings gained a lot of interest from the scientific and
engineering communities. Thus, a lot of data is accumulated on different aspects related
to coatings’ properties obtained by laser metal deposition. For example, grain refinement
and phase transformations of high-entropy CoCrFeNi-HEA-based coatings typically occur
when after adding Al, Mo, Nb, Cu, B, or Si. As a result, the strength and hardness as well as
deformation and wear resistances of the modified CoCrFeNi coatings are better than those
of their original counterparts. Specifically, FCC-structured CoCrFeNiSix HEA coatings
became BCC-based when Si was added [17]. Increased A1 content in the single-FCC phase
FeCoCrNiCuAlx HEA coating caused it to become single-BCC phase material [18]. Liu
et al. [19,20] reported that adding traces of W and Nb into FeCoCrNi enhances its wear
resistance at high temperatures.

Various post-heat treatment methods are used to improve FeCoCrNi HEA proper-
ties [21]. However, such methods might become expensive if used on a large scale. Thus,
the alloying element addition to tune the microstructure and wear/corrosion resistances of
FeCoCrNi HEA coatings without the need for involved post-treatment techniques would
be an efficient low-cost alternative [22,23]. Therefore, our work focuses on the analysis of
the properties (microstructure and wear resistance) of FeCoCrNiAlx (x = 0, 0.5 and 1) HEA
coating obtained by laser cladding. Our results point to a feasible way to improve and
tune the wear properties of the laser cladding HEA coatings by regulating the contents
of elements. With such improved properties, HEA coatings can expand their industrial
applications as anti-abrasion materials on products such as bearings, gears, screws, etc.

2. Experimental Details
2.1. Materials and Laser-Cladding Equipment

Pieces of 45# steel (ϕ50 mm × 10 mm) acted as substrates. Each plate was polished
with 200–3000 grit SiC papers in sequence, followed by ultrasonic cleaning in anhydrous
ethanol. The raw materials were FeCoCrNiAlx (x = 0, 0.5, 1) HEA powders with 200 mesh
average particle sizes. Al content was confirmed experimentally (see Figure 1a,b). The
coatings were deposited using a coaxial powder-feeding laser cladding device, equipped
with a 4 KW continuous fiber laser with ≤2 mm spot diameter. The laser cladding process
and FeCoCrNiAl HEA coating are schematically shown in Figure 1c,d, respectively. The
tracks for the single-pass experiments were fabricated to be 30 mm long. They were then
cut into several sections for further analyses. The samples prepared during the coating
experiments were 30 mm long and ~12 mm wide (achieved in 12 passes with the 1200 W
laser power, 8 mm/s scanning speed, 40% overlap ratio, and −10 mm off-focus distance).
All details and parameters of the laser cladding are summarized in Table 1.
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Figure 1. (a,b) Morphology of FeCoCrNiAl HEA powder, (c) schematic diagram of laser cladding
process, (d) FeCoCrNiAl HEA coating.

Table 1. Laser cladding process parameters for FeCoCrNiAl HEA coatings.

Laser
Power/W

Scanning
Speed/(mm/s)

Overlap
Ratio/%

Off-
Focus/mm

Powder
Feeding

Speed/(g/s)

Protected Air
Flow/(L/min)

1200 8 40 −10 7 15

2.2. Sample Characterization

The samples were cut perpendicular to the scanning direction, after which the cut
surfaces were ground with 100–2500 grit SiC papers sequentially followed by polishing with
1 µm diamond paper and etching in HCl:HNO3 mixture (3:1) for ~30 s. The formed phases
were characterized by X-ray diffraction (XRD) performed using Bruker D8-ADVANCE
instrument equipped with Cu-Kα radiation and operated at 40 kV and 40 mA. The spectra
were recorded at 0.02◦ step size and 2◦/min scanning speed. The microhardness was
measured using a Vickers hardness tester (WILSON VH1102, Lake Bluff, IL, USA). The
data were collected at 100 µm intervals starting from the surface down to the substrate at
200 g load and 15 s applied load time. Data for each point was collected three times. The
average was reported as a final value. Wear tests were performed on an Pin-disk friction
wear tester (SFT-2M, Changzhou, China) using a 5 mm diameter GCr15 steel ball at 10 N
load, 400 r/min rotation speed, and 30 min testing time. Before wearing, the coatings were
milled with a flat grinding machine and then ground with SiC papers with 1000 grit. The
microstructures of pristine and worn surfaces were analyzed using a confocal laser scanning
microscope (Lecia TCS SP2/AOBS, Solms, Germany) and scanning electron microscope
(Hitachi SU5000, Tokyo, Japan).
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3. Results and Discussions
3.1. Macro/Micro Characteristics of the Cladding Tracks

The surfaces of the cladding tracks of the FeCoCrNiAlx (x = 0, 0.5, and 1) were smooth
with minimum unmelted powder particles (see Figure 2). No spatter generated during
cladding was observed as well. The dimensions of cladding tracks (with the width L and
height h1), molten pool depth h2, and dilution rate η = h2

h1+h2
are summarized in Table 2.

With the increase of Al content, the height and width of the cladding track gradually
decreased because Al reflects the laser beam, which reduces the energy absorbed by the
melt pool. This, in turn, leads to pore and crack formation in the coatings [24], in which the
powder particles might remain if not removed by the protective gas flow. Additionally, the
dilution rate of the cladding tracks increased aggravates this tendency very likely because
of the lower (relative to other elements in the coating) melting and vaporizing points of
Al. During the cladding process, Al atoms evaporate easier under the laser beam, which
forces the liquid-phase flow in the molten pool as well as its stirring by the high-pressure
steam. These factors enhance the Marangoni convection in the molten pool, which leads to
a decreased height of the cladding track, and an increased dilution rate [6,9].
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Figure 2. 3D morphologies of FeCoCrNiAlx single cladding tracks with different Al contents.
(a) morphologies of tracks, (b–d) the reconstructed 3D morphologies of tracks with different
Al contents.

Table 2. Geometry dimension sizes and dilution rate of FeCoCrNiAlx single cladding tracks.

Items x = 0 x = 0.5 x = 1

L/µm 2830 2540 2210
h1/µm 1139.7 784.7 560.5
h2/µm 332 314 290

η/% 22.5 28.6 33.1

Cross-line EDS of the FeCoCrNiAl coating cross-section starting from the surface to
the substrate showed no cracks or holes (see the SEM image in Figure 3a), which indicates



Coatings 2023, 13, 426 5 of 12

excellent metallurgical bonding of the coating to the substrate. Fe, Co, Ni, Cr, and Al
elements were distributed homogeneously within the coatings (see Figure 3b), which
confirms very minimum atom segregation or aggregation. The Fe content in the coating
zone was the highest out of all other elements because Fe in the substrate was melted during
laser cladding and became incorporated into the coating. Fe content in the bonding zone
increased almost linearly, while the content of other elements decreased, which indicates
sufficient diffusion of the elements between the coating and substrate and ensures excellent
metallurgical bonding between the coating and substrate.
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3.2. Phase and Microstructure of the FeCoCrNiAlx Coatings

XRD of the FeCoCrNiAlx HEA coatings revealed that FeCoCrNi and FeCoCrNiAl0.5
coatings only contain FCC phase (see Figure 4) judging by prevailing (111), (200), (220),
(311), and (222) diffraction peaks. At the same time, the FeCoCrNiAl phase contained
only BCC solid solution phase, which contains diffraction peaks (110), (200), (211), and
(220). Al atoms dissolve in the matrix, forming solid solutions and expanding the lattice.
At small contents, these changes are not affecting the underlying matrix structure [25].
However, at certain threshold contents, Al presence in the host matrix causes enough lattice
distortion to cause FCC→ BCC phase transition. By comparing the PDF cards, it can be
found that the BCC phase has the substitutional solid solution as AlNi, whereas the FCC
phase has Al as an interstitial solid solution. The phase transformations of solid solutions
in the FeCoCrNiAlx HEA occur due to the high entropy nature of the alloy. Compatibility
between components with high mixing entropy increases, which, in turn, prevents the
formation of intermetallic compounds in the HEAs. Thus, the formation of simple solid
solutions is more energetically favorable [26,27].

The microstructure of the FeCoCrNi coating was mainly composed of columnar grains
(see Figure 5a,b). The microstructure of the FeCoCrNiAl0.5 contained columnar and cellular
grains with obvious boundaries. These differences were attributed to the direction of the
heat losses dominating during the coating deposition. The direction of the grain growth
during solidification is typically opposite to the heat flow current. Thus, solute atoms will
gather in front of the solid-liquid interface, which will change the solidification equilibrium
temperature. When the actual temperature at the front edge of the solid-liquid interface is
lower than the equilibrium temperature, component supercooling occurs at the solid-liquid
interface, and cellular grains form. The laser cladding possesses a significantly higher
solidification rate than the casting process. Thus, quasi-directional solidification conditions
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at the solid-liquid interface occur easier, which is conducive to the formation of columnar
grains perpendicular to the quasi-directional solidification direction [28,29].
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The microstructure of FeCoCrNiAl coating mainly consisted of equiaxed grains ac-
cording to the SEM, shown in Figure 5c,d. Corrosion pits were also observed on the
surface of the coating because we used very aggressive corrosion media to remove the
cladding layer of the HEAs. EDS point analysis at grain boundaries (point A) and interiors
(point B) showed lower Al contents at the grain boundaries than in the grain interiors (see
Figure 5e,f). Thus, Al mainly accumulated in the grain interiors, which agrees with the
literature data [30,31]. This phenomenon could be explained by the lattice distortion during
the HEA solidification that occurred due to the presence of large Al atoms. As a result,
atomic diffusion in the molten pool was inhibited. This is also known as a HEA hysteresis
diffusion effect [32]. Combining these observations with the XRD results, we conclude
that the BCC-structured FeCoCrNiAl coating formed as a result of Al-containing metal
compounds inside the grains.

3.3. Microhardness of FeCoCrNiAlx HEA Coatings

The average microhardness of the FeCoCrNi coatings was only 202HV0.2 (see Figure 6),
which is even lower than that of the underlying substrate (210HV0.2). As the Al content in
the coating increased to 1, the microhardness increased substantially to 546 HV0.2. Thus,
by adding Al, we significantly improved the mechanical properties of this HEA. This
phenomenon could be explained by the large size of Al atoms: when they occupy the
lattice dot positions, the crystal lattice becomes distorted, which makes it more difficult
for the material to deform. As a result, a stronger solid-solution-based matrix becomes
harder [9]. Additionally, our microscopical analysis of the FeCoCrNiAl coatings revealed
many fine equiaxed 5–10 µm grains (see Figure 5c,d), which is also a contributing factor to
the enhanced hardness. Thus, the incorporation of Al into the FeCoCrNi matrix improves
its hardness by (1) inducing FCC→ BCC phase transition, (2) distorting the lattices, and
(3) fine-grained strengthening.
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We distinguished three zones with varying hardness (from the top surface of the
coating to the substrate): coating zone, bonding zone, and substrate. The hardness in the
coating zone is relatively stable throughout the whole sample size. The hardness in the
bonding zone decreases substantially due to the dilution of the initially hard coating by
the substrate atoms. Additionally, we observed that the hardness in the bonding zone of
the FeCoCrNiAl coating decreased more than in the bonding zone of the FeCoCrNiAl0.5
coating (with less Al). This phenomenon can be explained by the induced (by Al presence)
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Marangoni convection in the molten pool, which, in turn, facilitates the atom exchange at
the interface.

3.4. Wear Properties of FeCoCrNiAlx HEA Coatings

The coefficient of friction (COF) curve of FeCoCrNi HEA coating exhibited periodic
fluctuation (see Figure 7) very likely because due to the low hardness of this coating,
large abrasive debris and adhesions were continuously generated and removed repeatedly
during the wear process (as illustrated in the Figure 8a). This caused a varying contact
between the grinding ball and the worn surface, which, in turn, translated into fluctuating
COF curve. At the same time, the COF curves of the coatings containing Al were stable.
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Values of worn width, depth, and wear rate obtained during the COF tests for the
FeCoCrNiAl coating were much lower than for the FeCoCrNi and FeCoCrNiAl0.5 coatings
(see Table 3). This phenomenon could be explained by smaller grains and higher hardness
of the FeCoCrNiAl coating. These properties ensure that FeCoCrNiAl coating is more
resistant to plastic deformations during the wear process, which in turn, translates into
high wear resistance [33].

Table 3. Frictional wear performances of coatings with different Al contents.

Sample COF Worn Width/µm Worn Depth/µm Wear Rate/mm3/(Nm)

Substrate 0.32 1674 168 6.79 × 10−8

FeCoCrNi 0.62 1795 197 8.55 × 10−7

FeCoCrNiAl0.5 0.4 1732 186 6.53 × 10−7

FeCoCrNiAl 0.1 1422 92 8.24 × 10−9

Figure 8 displays the SEM images of worn surfaces and element distribution of the
coatings after wear testings, and Figure 9 shows the reconstructed 3D morphologies of the
worn surfaces of the substrates and the corresponding FeCoCrNiAlx HEA coatings. The
worn surface of FeCoCrNiAl looks the smoothest. SEM revealed large amounts of adhesion
and debris on the worn surface of the FeCoCrNi coating (see Figure 8), corroborating the
result above. Additionally, shallow grooves parallel to the sliding direction were also
observed on the worn surface of the FeCoCrNi coating, which is typical for adhesive wear
and abrasive wear patterns. Such patterns form because some metal pieces were removed
from the softer parts of the coatings during the sliding of the ball against the coating.
The adhesions form when a material is pushed by the ball and its residues move on the
coating surface, leaving these parallel grooves [34]. When some adhesions remain stuck
on the worn surface, and the rest are torn off, a “ridge”-fractured morphology forms [35].
Adhesions were rarely observed in Al-containing FeCoCrNiAlx HEA coatings. However,
the grooves were deeper. Small pits were also found in the FeCoCrNiAl HEA coating (see
insert in Figure 8c), which confirms the abrasive nature of the wear process.
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EDS showed that O content in the debris was high at points A and B (see Figure 8d–f)
very likely because of the formation of friction oxides due to the reaction between the
debris and oxygen during the wear tests [36,37]. Thus, the wear mechanisms of FeCoCrNi
and FeCoCrNiAl0.5 coatings also include oxidation wear. The strength of the FeCoCrNiAl
coating was sufficiently high to resist plastic deformation. Thus, abrasive debris was rarely
observed. However, fine pits were observed on the flat worn surface together with deep
plow grooves, running parallel to the sliding direction. The worn surface of the FeCoCrNiAl
coating contained the expected amount of oxygen according to the elemental EDS mapping
of point C (Figure 8f). Thus, the wear mechanism of the FeCoCrNiAl coating included both
abrasive and oxidative wear. These results again confirm that Al incorporation into the
FeCoCrNi HEA coatings is very beneficial in improving its wear properties.

4. Conclusions

This work reports the laser cladding of FeCoCrNiAlx HEA coatings with different
Al contents. The microstructure and wear behaviors of these coatings were thoroughly
characterized, and the following conclusions were achieved.

1. Laser cladding can fabricate high-quality FeCoCrNiAlx HEA coatings with different
Al contents. The dilution rate of cladding tracks increased from 22.5% to 33.1% as
the Al content x increased from 0 to 1. The coatings exhibited minimum pores and
excellent bonding to the substrate.

2. At Al content x in the FeCoCrNiAlx HEA coating equal to one, the structure of initially
FCC-structured FeCoCrNi and FeCoCrNiAl0.5 HEA coatings transitioned to single
BCC-structure while the grain size decreased. The hardness for this coating (relative
to Al-free one) increased from 202 to 546 HV0.2, CoF decreased from 0.62 to 0.1, and
wear rate decreased from 8.55 × 10−7 to 8.24 × 10−9 mm3/(Nm).

3. The wear mechanism of FeCoCrNi coating, determined by analyzing the wear surfaces
by SEM, includes abrasive, adhesive, and oxidative wear. The wear mechanisms of
the FeCoCrNiAl0.5 and FeCoCrNiAl coatings include only abrasive and oxidative
wear. Thus, adding Al into FeCoCrNi significantly improves its wear properties.
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