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Abstract: High-emissivity coatings constitute an essential component of reusable thermal protection
systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating
is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of
great scientific significance for the development and performance enhancement of the coating.
Microstructures and phase compositions of the samples before and after the sintering process were
determined using SEM, XRD, and EDS. The sintering temperature, inserting temperature, and heating
rate were systematically investigated. The results show that the effects of the sintering temperature,
inserting temperature, and heating rate on the coating occur in decreasing order. The optimum
condition for coating sintering in this study is an insertion temperature of 1100 ◦C, a heating rate of
10 ◦C/min, and a sintering temperature of 1200 ◦C, and a crack-free and containing SiB4 borosilicate
glass coating was successfully prepared.

Keywords: sintering behavior; high-emissivity coating; reaction-cured glass coating; SiB4

1. Introduction

Reusable hypersonic vehicles re-enter the atmosphere multiple times at flight speeds
of over Mach 5, resulting in a hostile aerodynamic heating environment on the fuselage
surface [1–3]. Thermal protection systems (TPS) and materials are imperative to safeguard
the vehicle’s internal structures and electronic equipment from extreme heating on external
surfaces. Fibrous ceramic insulators, also known as rigid insulative tiles, are considered to
be one of the main components of the current large-area TPS due to their high-temperature
capacity (up to 1500 ◦C), low thermal conductivity (0.06–0.42 W/(m·K)), and low density
(0.14–0.40 g/cm3) [4–6]. The top surface and four sides of each insulator usually need to
be covered with a high-emissivity coating, which could reduce the surface temperature
by radiating heat toward the surrounding environment [7–10]. Therefore, high-emissivity
coatings with reliable performance are an indispensable and critical part of TPS [11].

With the continuous increase in the applied temperature of ceramic insulators, the
development of high-emissivity coatings has also undergone three main stages in terms
of composition. The reaction-cured glass coating (RCG), developed by the NASA Ames
Research Center, is a single-phase glass coating with borosilicate glass as the main com-
ponent supplemented with a small amount of SiB4 [12]. SiB4 is considered a processing
aid and emittance agent. After that, a new generation of toughened uni-piece fibrous
insulation coating (TUFI) was developed on the basis of RCG for mechanical property
requirements [11,13]. Compared with the past coatings, the composition and structure
of TUFI have changed. The introduction of MoSi2 allowed the coating to radiate heat
efficiently in a wider range of wavelengths at a higher temperature (~1500 ◦C), and the
gradient structure endows greater thermo shock resistance and higher impact resistance to
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the coating. In the same vein, a newly developed high-efficiency tantalum-based ceramic
(HETC) composite structure was developed by adding TaSi2 to achieve better extreme
high-temperature capacity (~1650 ◦C) and radiation performance than TUFI [14]. The
major components of the HETC coating are borosilicate glass, TaSi2, MoSi2, and SiB4 or
SiB6, and the three additives are responsible for the coating’s emittance and self-healing
at different temperatures. To summarize, the high-emissivity coating primarily consists
of a ceramic glass coating, and in order to achieve efficient insulation in a full tempera-
ture range and wide wavelengths, emittance agents with excellent thermo-resistant prop-
erties were gradually introduced to the coating. It is worth mentioning that the RCG
coating is the basis for subsequent coatings. The study of its sintering behavior is of
great scientific significance for the development and performance enhancement of high-
emissivity coatings. In addition, because of the practical achievements of HETC, many
researchers have conducted studies related to high-emissivity coatings. A series of glass-
based coatings with varied components for thermal protection systems were designed and
developed, including the MoSi2-borosilicate glass coating [7,8,15], MoSi2-ZrO2-borosilicate
glass coating [16], MoSi2-SiB4-borosilicate glass coating [11–13], MoSi2-BaO-Al2O3-SiO2
coating [9], MoSi2-aluminoborosilicate glass coating [10], WSi2-Si-SiO2 glass coating [17],
TaSi2-MoSi2-Al2O3-borosilicate glass coating [18], WSi2-MoSi2-Si-SiB6-borosilicate glass
coating [19], etc. These high-emissivity coatings all exhibit excellent temperature resistance
and radiation capabilities.

In previous articles, the focus was more on the effects of different additives on the
coating. There have been, however, very few researchers who have paid attention to
the influence of sintering parameters on the coating. In this paper, the process factors,
sintering temperature, inserting temperature, and heating rate, were investigated. The
microstructure and phase composition of the coating after sintering were characterized.
The optimal sintering conditions for RCG coating were obtained.

2. Materials and Methods
2.1. Preparation of RCG Coatings

Silica fibrous insulators fabricated from chopped silica fibers were adopted to be
substrates (roughly 50 mm × 50 mm × 20 mm) in this study. The insulator was self-made,
and the preparation process was described in reference [5]. The coating was prepared
using the spraying method and sintered in air. The borosilicate glass (BSG) granules
(200 mesh), made of 5 wt.% boron oxide and 95 wt.% silica, and high-purity SiB4 (1–5 µm)
for coating preparation were self-made [20]. A ball-milling process that further pulverized
and mixed the ceramic powders was applied to prepare the spraying slurry. The two kinds
of ceramic powders and ethanol were added to a nylon jar in succession and ball-milled
via a planetary mill machine at a rotation speed of 300 rpm for 24 h. Typically, the mass
ratio of glass granules, SiB4, ethanol, and zirconia balls is 1:0.05:0.8:1.8. Figure 1 illustrates
the overall preparation process for the RCG coating on the silica fibrous insulator. The gun
pressure was approximately 4 atm during the spraying process. After spraying, the coated
samples were dried at 80 ◦C for 24 h. Sintering process factors including the sintering
temperature, inserting temperature, heating rate, holding time, and removing temperature
have a significant impact on the morphology, microstructure, and properties of RCG coating.
The holding time at the sintering temperature was set at 0.5 h. After that, the samples
were allowed to cool down naturally to 800 ◦C and were removed from the muffle furnace
quickly. Except for the two fixed factors, the rest will be studied and discussed below, and
specific parameters can also be found in Table 1.
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Figure 1. Schematic diagram of RCG coating preparation process.

Table 1. Sintering condition parameters.

Sintering Conditions Parameters

Sintering temperature/◦C 1050; 1100; 1150; 1200
Inserting temperature/◦C 30; 500; 700; 900; 1100; 1150

Heating rate/◦C/min 3; 10
Holding time at sintering temperature/h 0.5

2.2. Characterization

The surface morphology and microstructure of coating samples were characterized
by scanning electron microscopy (SEM) with Merlin Compact CARL ZEISS (Oberkochen,
Germany) equipment operated at 20 kV. The elements distribution of the coating samples
was obtained by an energy dispersive spectrometer (EDS, Merlin Compact, CARL ZEISS,
Oberkochen, Germany). An X-ray diffractometer (X’pert PANalytical, Almelo, The Nether-
land) was used to identify the phase compositions of the coating samples with Cu-Kα

radiation at 1.54 Å, 40 kV, and 40 mA. X-ray photoelectron spectroscopy (XPS) spectra
of samples before and after sintering coating were obtained using an ESCALAB-250XI
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with monochromatic Al-Kα

as the X-ray source (1486.6 eV).

3. Results
3.1. Sintering Temperature

The sintering temperature is a crucial control factor for the preparation of glass coating,
affecting the micromorphology and performance of RCG. In regard to passive thermal
protection systems, RCG coatings must be integrated and dense. This is because they
can provide improved protection for porous substrates against airflow erosion during
prolonged exposure to high temperatures and high velocities. On the other hand, a high-
emissivity coating such as RCG differs from an oxidation protective coating. The RCG
coating needs to emit the heat of the fuselage through the radiative agent (SiB4). In the event
that defects lead to excessive thermal oxidation of SiB4, this will inevitably weaken the
coating’s radiative ability. In order to obtain the desired coating, after drying, the samples
were sintered at different temperatures from 1050 to 1200 ◦C. The samples were inserted
into the furnace at 30 ◦C and ramped up to the predetermined sintering temperature at a
heating rate of 10 ◦C/min.
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Figure 2 compares the surface micromorphology of RCG coatings sintered at varied
temperatures, and the insets are macrophotographs of the corresponding coatings. Looking
at the insets in Figure 2a–d, it is apparent that the color of samples gradually deepens as
the sintering temperature increases. Samples sintered at 1150 and 1200 ◦C are darker black
(in Figure 2c,d), whereas the coating sintered at 1050 ◦C is near transparent (in Figure 2a).
In fact, the off-white color is a fibrous insulation substrate. The degree of thermal oxidation
of SiB4 is the dominant factor in the color transition of coatings. It is well accepted that
the more oxidized SiB4 is, the more transparent the coating color will be, and the higher
the temperature, the faster the oxidation reaction. However, the most intriguing finding
is that the higher the sintering temperature, the darker the RCG coating color. In order
to determine causality, the microscopic morphology of the samples sintered at different
temperatures was further compared. What stands out in Figure 2 is the significant change
in the micromorphology of coating surfaces at varying temperatures. It can be found
that as the sintering temperature increases, the coating transforms from a rough surface
with a large number of deep crater-like pores to a dense surface with a small number of
pores. Overall, the surface of the coating samples is composed of continuous and dense
regions and isolated microporous regions. A small number of fibrous cristobalite crystallites
also can be found in Figure 2c, which originate from the substrate and were introduced
during sample preparation. Based on the above analysis, it can be seen that the most likely
reason for the darkening of the coating is that the dense coating surface protects the inner
SiB4 particles from oxidation. The specific thermal oxidative reaction of SiB4 is shown in
Reactions (1) and (2). During the heating stage, the oxidation of SiB4 takes place according
to Reaction (1), and the oxidative products, SiO2 and B2O3, form a new BSG phase due to
their good compatibility following Reaction (2). The BSG can seal the pores and creaks,
which is the stem of the self-healing ability of the RCG coating in small cracks. Further, the
color of coatings at low sintering temperatures may be related to the viscosity of BSG.
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Figure 2. Surface micromorphology of as-prepared RCG coatings samples with different sintering
temperatures: (a) 1050 ◦C; (b) 1100 ◦C; (c) 1150 ◦C; (d) 1200 ◦C; the insets show macroscopic photos
of the samples. Sintering parameters: Heating rate: 10◦C/min, inserting temperature: 30 ◦C, holding
time: 1 h, and cooling down with the furnace.

SiB4(s) + O2(g) = SiO2(s) + B2O3(s) (1)

SiO2(s) + B2O3(s) = SiO2(s)·B2O3(s) (2)
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The sintering temperature directly affects the viscosity of the borosilicate glass phase,
which is the main phase of the RCG coating. The empirical relationship for the viscosity of
BSG with its boron content and temperature, reported by Yan et al. [21], is described as:

log η = 3.11 − 19.2 exp(−24x) +
1.68 × 104

T
+

4.56 × 104 exp(−22x)
T

(3)

where η is the viscosity, x is the boron content by weight fraction and is limited to 0 < x < 0.4,
and T is the temperature. Figure 3 displays the plot of BSG’s viscosity as a function of
temperature. As can be seen in Figure 3, the viscosity of BSG decreases with increasing
boron content, especially at a boron content below 10 wt.%. Furthermore, it is apparent
from Figure 3 that viscosity decreases with increasing temperature. Given the recipe for
the RCG coating in this study, it can be calculated that the mass fraction of boron is less
than 10%, which means that the coating has a relatively high viscosity and is difficult
to spread unless the sintering temperature is high enough. Therefore, at a low sintering
temperature, the formed BSG may be too viscous to close the pores around the SiB4 particles,
resulting in the particles being continuously oxidized to appear transparent. According to
our previous research [22], the temperature of the initial oxidation of SiB4 is approximately
650 ◦C, and the temperature of secondary thermal oxidation, due to the volatilization of
B2O3, is approximately 1150 ◦C. Hence, in order to account for the structural and functional
requirements of RCG coatings, 1200 ◦C is the optimal temperature for sintering.
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3.2. Inserting Temperature

On the basis of the above analysis, it is clear that SiB4 will inevitably be oxidized during
the RCG sintering process, and the oxidation reaction is beneficial for coating sintering.
However, improper inserting temperatures can cause the excessive oxidation of SiB4, which
is detrimental to RCG’s emissive properties. Figure 4 shows the surface micromorphology
of coatings inserted at different temperatures, and the insets are macrophotographs of
the corresponding coatings. The coatings were sintered at 1200 ◦C with a heating rate of
10 ◦C/min.
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Macrophotographs of the coatings show a deeper black, indicating that the functional
additive added in a small amount was still present. From the insets of Figure 4b,c,f, it
can be seen that cracks appear on the coating surface, which may have been attributed to
the excessively fast heating rate. Comparing the microscopic morphology of samples at
different insertion temperatures, all of the coatings present a glassy, dense, and integral
state, except for the sample inserted at 700 ◦C with microcracks. Furthermore, fibrous
cristobalite (PDF-#39-1425) crystallites are also found in Figure 4d. Meanwhile, in order
to determine the remaining SiB4 in the coating, XRD patterns of the coating at varying
insertion temperatures are displayed in Figure 5. These coatings are composed of an
amorphous BSG phase alongside a small amount of crystalline silica, and the presence of
SiB4 (PDF-#35-0777) can still be detected in samples inserted at 900 ◦C and above. The
absence of SiB4 in samples below 700 ◦C might be associated with thermal oxidation. Trace
fibrous crystalline silica may form during sintering as a result of the crystallization of
amorphous phases, such as the coating itself or fibers of the substrate. In general, therefore,
the inserting temperature of the RCG coating for sintering is preferably 900 ◦C or above.
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3.3. Heating Rate

The heating rate plays a significant role in determining the functionality and densi-
fication of RCG coatings. At the same inserting temperature, a lower heating rate takes
longer to reach the intended temperature. In other words, the SiB4 particle needs to un-
dergo a longer oxidation duration before a protective layer is formed on its surface. Based
on the above considerations, comparison experiments were implemented. The samples
were inserted at 900, 1100, and 1150 ◦C, respectively. They were heated up to 1200 ◦C at
3 ◦C/min and then held for 0.5 h, as shown in Figure 6. Figure 6a shows that for the sample
inserted at 900 ◦C, a large number of micropores with a pore size of 5~30 µm appear on the
undulating coating surface. Micropores are still visible in the 1150 ◦C sample (Figure 6c).
However, the samples inserted at the same temperature but heated at 10 ◦C/min exhibit a
typical dense morphology with hardly any micropores in Figure 4d,f. There is no doubt
that the heating rate is the main reason for this difference. The SiB4 particles undergo longer
thermal oxidation at a lower heating rate, accompanied by severe volatilization of B2O3.
According to Figure 3, the reduction of the boron element at low levels causes a significant
increase in the viscosity of RCG coating. This means that the volatilization of boron oxide
in turn leads to a surge in the local viscosity of the coating. Additionally, the increased
viscosity also results in the liquid BSG failing to seal the pores between the particles in
time to form effective protection for the internal functional additive. To investigate the
phase compositions of surfaces, the XRD patterns of the coatings, sintered at 1200 ◦C with
a heating rate of 3 ◦C/min, are shown in Figure 7. The main phase of the sample inserted
at 900 ◦C is dominated by amorphous BSG, while the intensity of SiB4 diffraction peaks
disappears. This confirms that the sample did undergo a more severe thermal oxidation
process than the sample in Figure 4d, to the extent that SiB4 was not detected. It is therefore
obvious that a relatively higher heating rate of, for example, 10 ◦C/min is more favorable
for the sintering of the RCG coating.
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Figure 6. Surface micromorphology of coatings inserted at varied temperatures: (a) 900 ◦C;
(b) 1100 ◦C; (c) 1150 ◦C. Sintering parameters: Heating rate: 3 ◦C/min, sintering temperature:
1200 ◦C, holding time: 0.5 h, and cooling down with the furnace.
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3.4. Comprehensive Characterization

In previous work, the effects of sintering temperature, inserting temperature, and
heating rate on the RCG coating have been systematically determined. For the application
requirements of thermal protection systems, the prepared RCG must be structurally and
functionally stable. Accordingly, the RCG coating was prepared with a sintering tempera-
ture of 1200 ◦C, an inserting temperature of 1100 ◦C, and a heating rate of 10 ◦C/min, and
the surface micromorphology and the distribution of different elements were analyzed, as
shown in Figure 8. Figure 8a–c show the surface and cross-sectional microscopic morphol-
ogy of the as-prepared RCG coating, respectively. It can be seen that the coating surface
is smooth, dense, and lacks micropores or cracks, which is similar to the morphological
characteristics of the reported coating [23,24]. After sintering, SiB4 particles can still be
observed from the red arrows in Figure 8a. In addition, the cross-section view shows that
the thickness of the coating is ~200 µm and the internal state is dense, which indicates
that the functional additive particles have been surrounded by the BSG phase. The bond
between the coating and the substrate is also intact and well compacted. The EDS analysis
of the dark continuous phase at spot 1 (Figure 8b) indicates that the main elements are Si, O,
and a small amount of B, suggesting that it is a mixture of SiO2 and B2O3. Figure 8d–f show
the surface distribution of O, B, and Si elements, where the content of B is significantly
lower than the others. This is consistent with Figure 8b, indicating that element B is still
detectable due to its low volatilization during the sintering process.
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Figure 8. (a) Surface SEM image of the as-prepared coating; (b) the EDS analysis of spot 1;
(c) cross-section SEM images of the coating; (d–f) the EDS mappings of the coating surface. Sin-
tering parameters: Inserting temperature: 1100 ◦C, heat rate: 10 ◦C/min, sintering temperature:
1200 ◦C, holding time: 0.5 h, and cooling down with the furnace.

The chemical state of the coating before and after sintering is further investigated
by XPS, which can directly measure the chemical composition or species of elements in
the sample. Figure 9a presents the wide-scan XPS spectra of the coating before and after
sintering. The C1s carbon peak is entirely superficial, which exists in the atmosphere and
does not react with the surface elements. The predominant O1s peak, medium Si2p peak,
and weak B1s peak can be seen in both lines, which confirms that the chemical composition
of the coating has not changed. Figure 9b exhibits that the B1s spectra peak shows low
symmetry, indicating that boron exists in multiple species on the as-prepared coating. The
biggest peak of the B1s spectrum located at 193.1 eV binding energy corresponds to B2O3,
which is similar to the reported value of 193.5 eV. The second chemical state of boron is
centered at 188.3 eV, which is consistent with the previous value of 188.4 eV for SiB4 [25].
The Si2p spectra are asymmetric and contain more match noise. It can be identified that
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the peak located at 102.2 eV and 103.5 eV binding energies are attributed to SiB4 and SiO2,
respectively [26]. The characterization results show that the coating prepared according to
the above conditions meets the thermal protective requirements.
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4. Conclusions

1. The sintering temperature has the most significant effect on the microscopic mor-
phology and structure of RCG coating. Too high a temperature will lead to excessive
thermal oxidation of SiB4 and seriously damage the thermal radiation performance of
the coating. In contrast, too low a sintering temperature will result in a coating that is
too viscous to spread smoothly. The most suitable sintering temperature is 1200 ◦C,
and the resulting coating surface is smooth and dense.

2. The influence of the inserting temperature on the RCG coating is less pronounced.
The SEM morphology and XRD patterns of the coatings inserted at 900 ◦C and
above show that a relatively higher insertion temperature is more conducive to RCG
coating sintering. The high insertion temperature ensures the integrity of the coating
composition.

3. The heating rate has less influence on the RCG coating. Overall, the relatively faster
heating is beneficial for the maintenance of coating functionality and the flatness of
the RCG coating surface.

4. The surface of the coating prepared by inserting it at 1100 ◦C and increasing it to
1200 ◦C at 10 ◦C/min is smooth and dense. SiB4 is well preserved by the protection of
borosilicate glass, and the volatilization of the boron is not significant, which indicates
that suitable conditions are key to preparing a structurally stable thermal protective
coating with excellent performance.
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