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Abstract: The DLC film was prepared on a nitrile rubber (NBR) elastomer by DC magnetron sputter-
ing (DC-MS), and the sp3 ratio of the DLC film was adjusted by changing the negative bias voltage
applied to the substrate. The microstructure, composition, and tribological properties of the DLC
films deposited on NBR substrates were systematically investigated. The results reveal that the DLC
film on the NBR surface can protect the NBR and reduce the surface roughness of the NBR. While the
bias voltage ranges from 0 V to −150 V, the content of sp3 increases with an increase in the negative
bias voltage. The viscoelasticity and roughness of the NBR substrate will greatly affect the DLC film’s
adhesion strength and tribological behavior.
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1. Introduction

Most working conditions of rubber sealing products are in a dynamic sliding state.
Cutting down the friction coefficient of rubber can effectively reduce friction and decrease
the wear of rubber products, thus prolonging their service life [1,2].

At present, lubrication and coatings are usually used for rubber sealing products to
reduce the friction between the sealing ring and the workpiece [3,4]. Lubricating oil, or
lubricant, is mainly used for lubrication. Although convenient, lubricating mediums will
cause failure due to degradation during use and lead to the problem of environmental
pollution [5]. Thus, low-wear and pollution-free non-lubricating seal coatings have been
widely emphasized and studied [6,7].

Diamond-like carbon (DLC) film is a kind of amorphous carbon film with good gas
and liquid barrier effects, high wear resistance, favorable chemical stability, and a low
friction coefficient [8–11]. DLC can be deposited on various types of matrix materials, such
as alloys, stainless steel, glass, etc., and can provide corking mechanical protection [12–14].
However, there are few studies that apply it to the rubber field, and this is mainly due to
the large difference in hardness between DLC and nitrile rubber (NBR) [15]. The hardness
of DLC films is mostly 15–60 GPa, putting it in the category of hard films [16,17]. However,
the Shore A hardness of NBR elastomers is generally about 70 [18,19]. The hardness of
NBR, which belongs to flexible materials, is much lower than that of DLC. When subjected
to external force, comparing the deformations produced by DLC and NBR is difficult,
resulting in coating invalidation. Liu et al. [20] evaluated the corresponding hardness
values by preparing a thin film on a silicon wafer substrate, identical to the surface of the
NBR, as a reference. The variation trend of DLC on the surface of NBR was determined
by the variation trend of the hardness value of DLC on the surface of the silicon wafer.
However, this method still cannot fundamentally solve the deformation mismatch problem.
Although Bai et al. [12] adopted the same method to judge the hardness of DLC films on the
NBR surface, they further proposed that the roughness, adhesion strength, bearing capacity

Coatings 2023, 13, 468. https://doi.org/10.3390/coatings13020468 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13020468
https://doi.org/10.3390/coatings13020468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings13020468
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13020468?type=check_update&version=1


Coatings 2023, 13, 468 2 of 12

of DLC, and graphitization lubrication also affect the tribological behavior. Xu et al. [21]
determined the adhesion strength of the DLC films by examining crack propagation and
incision morphologies via the bending and X-cutting of the sample, but it is impossible to
quantitatively analyze the adhesion strength of the coating.

In this paper, the series of DLC films deposited on the NBR elastomer surface was
synthesized by changing the bias voltage of the substrate (the bias voltages in this paper
are all negative bias voltages, and the increase in the bias voltage means that the magnitude
of the absolute value is increasing: hereinafter referred to as bias voltage). The tribological
behavior of the NBR coated with DLC coatings under different bias voltages was studied.
The purpose is to study the protective effect of DLC coatings on NBR.

2. Materials and Methods
2.1. Preparation of DLC Films

The NBR (30 mm × 30 mm × 6 mm) was cleaned with ethanol and boiling water in
turn for 10 min so that the residual grease and impurities on the NBR could be removed [22].
After the cleaning step was cycled 4 times, a vacuum oven was used to dry the NBR at
100 ◦C for 2 h. It should be noted that during the ethanol cleaning process, the ethanol
changed from colorless to yellow. With the increase in cleaning times, the yellow color
gradually became lighter until it disappeared, as shown in Figure 1. This is due to the
extraction of additives, antioxidants, oligomers, and other components in NBR [23].
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At the beginning of the preparation, the initial pressure was controlled at 2 Pa and 
four pulse bias voltages (duty cycle of 75% and the frequency of 40 kHz) of 0 V, −50 V, 
−100 V, and −150 V, named sample-0, sample-50, sample-100, and sample-150, respec-
tively, were used to synthesize series DLC films on the NBR. During the entire process, 
the direct current (DC) sputtering power was maintained at 100 W, and the deposition 
time of each DLC film was 10 min. 
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Figure 1. Cleaning of NBR with ethanol: 1st, 2nd, 3rd, and 4th (left to right).

While the NBR substrates were placed in a chamber before the preparation of the
DLC film on the NBR, the NBR substrate was further cleaned by Ar+ sputtering to remove
surface impurities and oxide layers [24]. Under the pressure of 1.5 Pa and the power of
50 W, the graphite target was sputtered and cleaned by magnetron sputtering technology.
It is worth noting that while cleaning the target, the sample shutter should be closed to
prevent the sputtered graphite oxide layer from contaminating the cleaned NBR substrate.

At the beginning of the preparation, the initial pressure was controlled at 2 Pa and
four pulse bias voltages (duty cycle of 75% and the frequency of 40 kHz) of 0 V, −50 V,
−100 V, and −150 V, named sample-0, sample-50, sample-100, and sample-150, respectively,
were used to synthesize series DLC films on the NBR. During the entire process, the direct
current (DC) sputtering power was maintained at 100 W, and the deposition time of each
DLC film was 10 min.

2.2. Material Characterization

A scanning electron microscope (SEM) and an atomic force microscope (AFM) were
used to observe the surface morphology of DLC-coated NBR and uncoated NBR elastomer
substrates. The bonding structure and composition of the DLC films were analyzed by
Raman spectroscopy (514 nm) and X-ray photoelectron spectroscopy (XPS, monochromatic
Al Kα radiation). The adhesion of the coatings was tested by a nano-scratching tester, auto-
matically and continuously loaded in the range of 2–100 mN within 1.5 mm, and the scratch
speed was 0.02 mm/s. The coefficient of friction (COF) was measured by a reciprocating
friction tester with a 2 mN load and 10 mm friction trace length. The friction speed and the
numbers of reciprocating friction were set to 1 mm/s and 40 times, respectively.
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3. Results and Discussion
3.1. Surface Topography

Figure 2 shows SEM pictures of the as-prepared samples. It can be seen in Figure 2
that the surface of NBR has both convex and concave structures, and this is because the
NBR substrate itself has more additive particles and surface damage, which is due to the
injection molding process of NBR and the additive ZnO particles [21–23]. The subsequent
XPS analysis can confirm this. However, after being covered with a layer of DLC coating,
the surface of the NBR is relatively flat compared with the uncoated NBR surface. Since
the DLC film did not fill the ravines well, even when the surface of NBR was coated with
DLC film, a large number of voids and bulk particles were still observed on the surface
of NBR in Figure 2a–d. Additionally, the surface of sample-100 is rougher than that of the
other samples.
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Figure 2. SEM image of DLC-coated NBR deposited under different bias voltages ((a) 0 V, (b) −50 V,
(c) −100 V, and (d) −150 V) and uncoated NBR (e,f).

Figure 3a–e show the AFM images and 3D morphology of NBR and DLC films
prepared on the NBR substrates, as well as the change curve of surface roughness (Figure 3f).
During the AFM test, a mechanical probe was used to scan the surface of the sample, and
the collected surface profile information is presented in a photo with a different color.
Generally, all samples indicate a roughness of no less than 350 nm for Sa and 500 nm for Sq.
The reason is, on the one hand, the surface of NBR itself is uneven, as shown in Figure 3e,
and the defects on the surface of the NBR substrate cannot be filled effectively as the DLC
film is not thick enough. On the other hand, the roughness is due to the island-like growths
of the DLC film on the rubber surface. However, the roughness curve shows that the
roughness of the NBR decreased after coating the DLC film onto the NBR substrate, which
was also supported by the SEM photos. In addition, the roughness of sample-0 is higher
than that of the other samples. In a word, the roughness of the samples demonstrates
a downward trend, and the surface becomes smoother, which may be due to the better
diffusion and growth effect of carbon ions on the rubber substrate surface under certain
incident energy. Moreover, in the case of thinner films, the surface defects of the NBR
substrate also have a greater impact on the surface roughness of the samples [25].
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3.2. Structure and Composition

Figure 4 shows the Raman spectra of the DLC-coated NBR samples. For single-crystal
graphite, there is a single Raman peak around 1580 cm−1, which is generated by the central
vibration mode of the E2g region allowed by the crystalline graphite optics. It is a symbol of
the existence of sp2 C-C hybrid bonds, and it is called the G peak [16,26,27]. For diamond,
the characteristic Raman peak is located at 1322 cm−1, which is derived from the T2g

symmetrical vibration mode, and it is a sign of the existence of sp3 C-C hybrid bonds.
When the long-range order is broken, a peak will appear around 1360 cm−1, which is
caused by the dissipation of the Brillouin zone boundary phonon, which becomes the D
peak [28–30]. The appearance of the D peak expresses the disorder of the sp2 hybrid bond
angle, which is a sign that the sp2 hybrid carbon is composed of a graphite ring. In Figure 4,
an obvious peak can be seen in all samples. In addition, a new peak appeared around
1415 cm−1, which was caused by the aromatic substituents in NBR [4]. In the process of
sputtering, the temperature in the vacuum chamber was basically at room temperature in
the beginning and no more than 120 ◦C during the entire sputtering process, which was
much lower than the temperature (295 ◦C) when NBR began to degrade [31]. However,
when carbon plasma bombards the surface of NBR, the polymer chain may be randomly
broken to produce a large number of active groups, and these active groups react with each
other or overflow the surface to react with carbon, forming complex cross-linked structures.
It is also possible for carbon to react with an unpaired sp2 bond in NBR to form a six-fold
ring that minimizes the internal energy [32,33]. Generally speaking, the Raman spectrum
of the DLC film will take on an asymmetric broad peak at around 1500 cm−1 [34].
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To obtain more explicit information on the carbon-bonding structure in the DLC films
coated on the NBR, Gaussian fitting is used to obtain the deconvoluted Raman spectra
after subtracting the baseline operation from the obtained Raman spectra. The broad peaks
exhibit sub-peak fitting, and the three peaks can be obtained as shown in Figure 5.
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Figure 5. Under different bias voltages ((a) 0 V, (b) −50 V, (c) −100 V, (d) −150 V), the Raman curves
of each sample were fitted by peaks to obtain the curves and their respective ID/IG.

By calculating the value of ID/IG from the peak area of the D peak and the G peak,
the fraction of the sp3 hybrid is estimated qualitatively [20,35]. In general, when the ratio
becomes smaller, the content of sp3 hybrid bonds increases [36]. As observed in Figure 5,
when the bias voltage increases from 0 V to −150 V, ID/IG gradually decreases. Combined
with the subsurface injection model, it can be seen that when the energy of the C+ incident is
low, it mainly consumes energy by colliding with collective atoms, which cannot penetrate
the surface and adheres to the surface of the coating. When the incident energy increases
within a certain range, C+ can penetrate the surface layer, stay in the subsurface layer, and
become interstitial atoms, increasing local density and compressive stress. Under the action
of compressive stress, the atomic groups in the DLC tend to generate a stable phase for the
sp3 hybrid bond.

Figure 6 was obtained by further calculating the fraction of each sub-peak area in light
of the Gaussian fitting peak. It can be observed in Figure 6 that the proportion of aromatic
substituents in sample-100 (at −100 V) is relatively high, which may be due to the rough
surface and the uneven coverage of the DLC film, and makes it sensitive to a 514 nm Raman
excitation wavelength.

Figure 7 provides the full XPS spectra of NBR substrates and the DLC films deposited
under different bias voltages. From Figure 7, we can observe that there is an obvious C
1s peak near 284.6 eV and an O 1s peak near 531.9 eV for all samples [37]. In the range of
300–500 eV, there are some small peaks, and they are Ca 2p and N 1s, which are located
around 347 eV and 399 eV, respectively. In addition, the peaks in the range of 960–1030 eV
are the KLL Auger shift peaks of carbon [38]. The counts of C 1s peaks are 175,369, 169,311,
238,883, 267,171 and 107,182, corresponding to sample-0, sample-50, sample-100, sample-
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150 and the NBR elastomer substrate, respectively, which also proves that they have a
carbon film on the surface.
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An in-depth analysis of the C 1s fine spectrum was carried out, and the bonding mode
of C atoms was judged by the electronic bonding state [39,40]. Using the Gauss-Lorentzian
function to perform the peak fitting of C 1s, four peaks can be obtained (seen in Figure 8a).
The four peaks represent the four binding states of C atoms, which are the C-C sp2 bond,
C-C sp3 bond, C-O bond, and O-C=O bond, corresponding to 284.6 ± 0.2 eV, 285.3 ± 0.2 eV,
286.8 ± 0.2 eV, and 288.6 ± 0.2 eV [41,42], respectively. Here, oxygen atoms mainly originate
from the adsorption on the film surface, as shown in Figure 8a. Figure 8b was obtained
by calculating the four peaks’ areas for each sample. It should be noted that the content of
C-C sp3 bonds gradually increased from 52.60% to 57.23% with the increase in bias voltage,
which is consistent with the changing trend of ID/IG.
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In addition, the fine spectrum of NBR rubber was also fitted and analyzed, including
elements such as C, N, O, Zn, Ca, Si, etc., as signified in Figure 9. In the C 1s fine spectrum,
the peak at 284.8 eV is mainly from the C-C long chain in NBR, and 286.8 eV and 288.6 eV
correspond to the C-O bond and the O-C=O bond, respectively [43]. Combined with the
O 1s spectrum, these oxygen elements are also mainly derived from NBR rubber surface
adsorption, and a part of O exists in CaCO3 and ZnO. Combining N 1s and Si 2p, it can be
seen that these two elements mainly exist in the form of Si3N4. CaCO3, ZnO, and Si3N4
are combined with NBR rubber in the form of fillers to optimize the microstructure of
the rubber.
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3.3. Tribology and Mechanical Properties

The DLC film deposited on the surface of NBR rubber is mainly used in the field of
sealing rings. In such a dynamic working environment, the wear resistance of the material
should be evaluated [44]. Figure 10 shows the friction curve of the surface-coated DLC film
and the uncoated NBR rubber. As observed in Figure 10, the DLC-coated NBR exhibits
a lower coefficient of friction (CoF) compared to the NBR elastomer substrate. During
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the ball-on-disc test, the CoF of uncoated NBR rubber was always kept at approximately
0.74. Except for the DLC-coated NBR rubber, the CoF maintained a gap of 0.02~0.15 with
that of uncoated NBR rubber. Notably, sample-0 and sample-150 project the lowest CoF.
Additionally, sample-0’s content of sp2 hybrid bond is high inside the DLC film based on
the result of ID/IG from the Raman spectra. When the friction pair is in relative motion, the
DLC film is prone to graphitization and adheres to the friction contact surface, forming a
graphite lubrication layer [45]. The sp3 content in the DLC film of sample-50 increases, and
hard particles are produced in the friction process, leading to an increase in CoF. When the
bias voltage reaches −150 V, the sp3 content inside the coating is the highest according to its
lowest value of ID/IG, thus embodying relatively better wear resistance. At the same time, it
was found that the friction curve of sample-150 is the most gentle. It can be inferred that the
adhesive strength is good, and no abrasive wear occurs. This assumption can be supported
by subsequent scratch experiments. It can be inferred that sample-0 and sample-150 may
have the best tribological properties and can play a role in protecting rubber.
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The nanoscratch test was used to investigate the film–substrate adhesion. Generally
speaking, the adhesive strength of the film can be judged by the acoustic signal generated
during scratching. However, due to the thinner DLC coating in this experiment and a
larger difference in hardness between the DLC film and the NBR’s high elasticity, no
obvious acoustic signals were generated in our scratch tests for all samples, which means
the critical load cannot be well determined [46]. Given the above, we can use the load at
the first mutation of the friction force (Lc) to reflect the adhesion strength between the film
and substrate. In the scratch test, a normal loading load (Fz) is applied to the micro-tip
needle, causing it to start scratching the surface of the film, and linear loading gradually
approached 100 mN. In performing this step, the magnitude of the force of friction (Fx)
perpendicular to the direction of the needle’s motion is obtained. It can be observed in
Figure 11 that the overall increase in Fx is accompanied by an uninterrupted mutation. This
is because the viscoelasticity of the NBR elastomer substrate is much higher than that of the
DLC-coated NBR elastomer. After calibration, it was found that the Lc of the sample and
the changing trend of surface roughness took on an inverse relationship relative to each
other, as shown in Figure 12. This is because surface defects may have a certain effect on
the friction force when the needle is drawn across the surface of the sample. At the same
time, the adhesion strength between the DLC film and NBR of sample-100 and sample-150
also confirmed the assumption in the friction experiment mentioned above.
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4. Conclusions

In a nutshell, a series of DLC films were prepared on NBR elastomer substrates with
different bias voltages by DC-MS. It was found that with the increase in bias voltage, the
ID/IG of DLC film gradually decreased from 0.521 to 0.486, and the sp3 content increased
from 52.60% to 57.23%, which indicates that the internal structure of DLC films can be
adjusted by the bias voltage during the deposition of MS. For both the lowest or highest
content of sp3 hybrid bond, the DLC film on the surface of NBR elastomer exhibits a low
CoF. In the meantime, the adhesion strength of sample-150 with the highest sp3 hybrid
bond is relatively high, reaching more than 20 mN. In addition, the adhesion strength of
the film is inversely proportional to the roughness, which may be caused by the surface
defects of the elastomer. The roughness and viscoelasticity of the NBR elastomer substrate
have a great influence on the mechanical properties of DLC films, which should be further
studied in the future.
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