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Abstract: In the search for functional organic biomaterials, leather constituted by collagen fibers was
coated with a conducting polymer, polypyrrole. The coating was carried out during the oxidation
of pyrrole in an aqueous solution of poly(N-vinylpyrrolidone) in the presence of five organic dyes:
crystal violet, neutral red, methyl orange, acriflavine, and methylene blue. This technique ensures the
uniform coating of collagen fibers with polypyrrole and incorporation of organic dyes. The surface
morphology was observed with scanning electron microscopy and the transverse profile, reflecting
the penetration of the conducting phase into the leather body with optical microscopy. While the
polypyrrole coating endows leather with electrical conductivity, organic dyes are expected to affect
the polymer morphology and to provide an antibacterial effect. The lowest sheet resistance and
antibacterial activity were obtained with crystal violet. This type of coating was characterized in
more detail. Infrared spectroscopy confirmed the coating of collagen fibers with polypyrrole and dye
incorporation. Mechanical properties were extended to the cyclic bending of the leather at various
angles over 5000 cycles. The relative resistance changes were a few percent, indicating good electrical
stability during repeated mechanical stress.

Keywords: polypyrrole; poly(N-vinylpyrrolidone); conducting leather; sheet resistance; bending
tests; organic dyes

1. Introduction

The use of natural biopolymers in various applications is beneficial because of their
ecological production and waste management. It is of obvious concern to endow compos-
ites with properties often required by functional materials, such as electrical conductivity
or antibacterial performance. Conductivity of organic materials is routinely achieved by
coating suitable substrates with conducting polymers, such as polyaniline or polypyrrole.
Such composites serve as adsorbents in the dye-pollution treatment of water [1], in elec-
tromagnetic interference shielding [2], for corrosion protection of metals [3], as heating
elements [4], in supercapacitor electrodes [5], or as decorative leather finishings [6], etc.
Antibacterial coatings of materials [7–10] are often required for biomedical applications. Si-
multaneous conductivity and antimicrobial properties are welcome in electrical monitoring
or stimulation of biological objects. One of the strategies to produce conducting polymers
with antibacterial properties is outlined below.

Conducting polymers are typically prepared by oxidative polymerization of respective
monomers in aqueous media (Figure 1) [11]. The alternative method, electrochemical
deposition of conducting polymers, can be applied only to conducting substrates, while
the present chemical oxidation of pyrrole is more universal. The reaction is simple, friendly,
and easy to control. After the aqueous monomer and oxidant solutions are mixed, the
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exothermic polymerization proceeds at room temperature in open air; it is completed
in tens of minutes, and the precipitated conducting polymer is separated by filtration.
Virtually any surface of the material immersed in the reaction mixture during the oxidative
polymerization of pyrrole or aniline becomes coated with a thin polypyrrole or polyaniline
overlayer of submicrometer thickness [12,13], even though the polymer film adhesion
may differ in individual cases. In addition to conductivity, these polymers display also
antibacterial activity [6–10].
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Figure 1. Oxidation of pyrrole with iron(III) chloride yields polypyrrole with chloride counter-ions.

Five organic dyes differing in molecular structure have been selected for the present
study (Figure 2) for their antibacterial effect reported in the literature: crystal violet (triph-
enylmethane dye) [14–17], neutral red (phenazine dye) [18,19], methyl orange (azo dye) [20],
acriflavine (acridine dye) [21–23], and methylene blue (thiazine dye) [18,22,24].

Antibacterial activity has also been demonstrated in systems including conducting
polymers, such as polyaniline [25–27] and polypyrrole [7–9,20,23,28]. In this case, however,
such activity may also be caused by residual reactants, low-molecular-weight by-products,
polypyrrole counter-ions (Figure 1), and any potential additives.

Conducting polymers and organic dyes share similarities in their molecular structure [11,29].
They both include the conjugated double bonds system that is responsible for the dyes’
color and for the green coloration of polyaniline and brown of polypyrrole. They contain
aromatic benzene or pyrrole rings. While conducting polymers are polycations, dyes may
be both anionic and cationic. Due to these structural features, conducting polymers and
dyes interact by electrostatic forces, hydrophobic dispersion forces, hydrogen bonding,
and π–π interactions of aromatic moieties. Such interactions manifest themselves by the
adsorption of dyes on conducting polymers, the effect used for dye removal in water
pollution treatment.

In practice, antimicrobial dyes are adsorbed by conducting polymers [29,30] or, prob-
ably more efficiently, added directly to the reaction mixture used for the preparation of
conducting polymers [11,23]. In the latter case, the interaction between the generated
polypyrrole and dyes enhances the conductivity and affects the polymer morphology. The
conversion of globular polypyrrole to polypyrrole nanotubes with improved conductivity
in the presence of methyl orange is the best known example [31]. Polypyrrole is also pre-
ferred to polyaniline in everyday applications due to its reduced sensitivity to pH changes
and good conductivity under physiological conditions [32]. For that reason, the leather
was coated in the present study with polypyrrole in the presence of organic dyes and the
resulting material was tested for conductivity and antibacterial performance.

Leather was selected as a widely exploited biomaterial in footwear production. The
conductivity afforded by polypyrrole coatings can be used to produce materials with anti-
static properties or to detect mechanical stress. The value-added antimicrobial performance
would also be of practical interest.
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and methyl orange.

2. Experimental Methods
2.1. Materials

The commercial flat-lining chrome-plated pigskin leather known as Velur with an
average thickness of 0.8 mm was supplied by the Footwear Research Centre, Tomas Bata
University in Zlin, Czech Republic. Pyrrole, iron(III) chloride hexahydrate, hydrochloric
acid (37%), ethanol (98%), poly(N-vinylpyrrolidone) (PVP; K-90, molecular weight 360,000),
and the various organic dyes were supplied by Sigma Aldrich (Prague, Czech Republic).
The dyes were used as delivered without any correction for the true dye content specified
by the supplier.
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2.2. Polypyrrole Coating

The pigskin chrome-plated leather was coated with polypyrrole produced via the in
situ colloidal dispersion method as previously described with slight modification [6,33,34].
Before the coating process, 100 mL of 0.1 M pyrrole aqueous solution, 4 wt% poly(N-viny-
lpyrrolidone) (PVP), and 0.004 M organic dye were prepared. Then, 100 mL of 0.25 M
iron(III) chloride hexahydrate solution was also prepared separately. Both solutions were
mixed and the final reaction mixture contained 0.05 M pyrrole, 0.125 M iron chloride hex-
ahydrate (III), 2 wt% PVP, and 0.002 M organic dye. Leathers of dimensions 15 × 10 cm2

immersed in PVP solution were quickly transferred to the freshly prepared reaction mix-
ture and incubated for 1 h to allow for oxidative polymerization of pyrrole to proceed.
The presence of PVP prevents the contamination of the leather surface with polypyrrole
precipitate produced outside the leather and a colloidal polypyrrole dispersion is generated
instead. Once the polypyrrole coating was completed, the leathers were removed and
rinsed repeatedly with 0.1 M hydrochloric acid until no colored by-products were released.
The last procedure was repeated by immersion in an ethanol bath, followed by drying
in open air.

2.3. Surface and Bulk Sheet Resistance

The surface and bulk sheet resistances were determined for the polypyrrole-coated
substrates using a linear four-probe method with a Jandel cylindrical probe. Current
probes were connected to a Keithley 230 power supply (Keithley Instruments, Cleveland,
OH, USA), a Keithley 196 multimeter was used as a current source, and potential probes
were connected to a Keithley 181 nanovoltmeter for the voltage-drop measurements. The
current was reduced to keep the dissipated energy below 50 µW. The Jandel probe was
placed at three places within the rectangular inner area that was 13 × (17–35) mm2 in size.
The surface sheet resistance was calculated from the linear part of the I–V characteristics
according to the formula RSR = 4.53 × U/I, assuming that the thickness of the conducting
layer was much smaller than the distance between the probes. Measurements were made
on both sides of the coated leathers in two perpendicular directions at five positions for
each direction, and the average values were recorded. Bulk sheet resistance was also
measured using the standard two-electrode method. Electrodes were painted with colloidal
silver over the edges at opposite sites, and the conductivity over the edge was verified to
ensure contact with the inner part of the materials. The sheet resistance was evaluated
using a Keithley 617 electrometer. Measurements were made with electrode pairs at two
different points and average values were recorded. In general, the bulk resistance is the
parallel combination of inner and surface resistance, and it is not possible to distinguish
contributions unless they differ markedly. Moreover, the electrode geometry is different
in both cases.

2.4. Antibacterial Properties

The bacteria species Staphylococcus aureus CCM 4516 and Klebsiella pneumoniae CCM
4415 strains were obtained from the Czech Republic Centre for Collection of Microorgan-
isms and were used to evaluate the antibacterial activity of the coated leathers. The test
was performed according to the ISO 27447 standard for testing of antimicrobial proper-
ties of materials and products in the leather industry. The test leather materials were cut
into spherical shapes 10 mm in diameter and sterilized. Their antibacterial activity was
subsequently evaluated by the agar disc-diffusion method. Bacterial suspensions of each
bacteria stock with an approximate concentration of 9 × 108 CFU mL−1 were inoculated
onto the surface of prepared agar plates and the leather samples were placed on the surface
followed by incubation for 24 h at 37 ◦C. The antibacterial activity was then determined by
visualization of the agar plates under a (Interscience, Wiesbaden, Germany), to determine
the bacteria growth density. The zone of bacterial resistance of the polypyrrole-coated
leather was then determined according to the ČSN 79 3380 standard.
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2.5. Microscopy

Scanning electron micrographs were taken with a Nova NanoSEM electron microscope
(FEI, Brno, Czech Republic) to evaluate the surface morphology of the non-coated and
coated leathers. Prior to analysis, the leathers were gold sputter coated using a JEOL JFC
1300 Auto Fine coater.

Optical microscopy was used to observe the thickness of coated conductive layers
using diffuse light mode and the digital camera of an optical microscope Leica DVM2500
(Leica Microstems, Mannhein, Germany). The light of an incandescent bulb was focused on
the samples through a condenser lens and the images were visualized at 100× magnification.

2.6. Fourier-Transform Infrared Spectroscopy

FTIR spectra of the leathers were analyzed using a Nicolet 6700 spectrometer (Thermo-
Fisher Scientific, Waltham, MA, USA) equipped with reflective ATR extension GladiATR
(PIKE Technologies, Fitchburg, WI, USA) with a diamond crystal. The spectra were recorded
in the 4000–400 cm–1 range with a deuterated L-alanine-doped triglycine sulfate detector at
a resolution of 4 cm–1, with 64 scans and Happ–Genzel apodization.

2.7. Mechanical Properties

The test was carried out according to the ISO 3376 standard using a tensile Instron
5567 (Instron, Norwood, MA, USA) with a static load cell of 3 kN and a crosshead speed
of 20 mm min−1 at room temperature (≈25 ◦C). Before testing, five test pieces were cut
according to ISO 2419 and their width was measured to the nearest 0.1 mm at three positions
using a Vernier scale. The thickness of each test piece was also measured as specified by
the ISO 2589 protocol at three different positions, and the average value was recorded. The
clamp jaws of the tensile testing apparatus were set at 50 mm and a pre-test was performed
to determine the maximum force. The tensile strength, Young’s modulus, and elongation at
break were recorded.

2.8. Cyclic Bending

The leather samples were repeatedly bent at a defined angle (15◦, 30◦, and 45◦) on a
purpose-made apparatus to test their electromechanical properties [10]. The range of the
bending apparatus was from −60◦ to 60◦ with a resolution of 1◦. The torque of the servo-
motor was 11 kg cm−1, which is, however, counterbalanced by the stiffness of the cantilever.
Therefore, the bending angle is relevant only for measurement. The resistivity values were
continuously acquired using a PC during 5000 cycles (each cycle lasted 20 s; test > 27 h in to-
tal) and from the resistance values in steady state (non-bent ROFF and bent RON) of a relative
resistance of the n-th cycle was calculated as |Rrel(n)| = [(RON(n) − ROFF(n))/ROFF(n)] × 100.

3. Results and Discussion
3.1. Leather Coating with Polypyrrole

The polymerization of pyrrole via oxidation in an aqueous medium to produce
polypyrrole was performed. The leather in contact with the aqueous reaction mixture,
i.e., individual collagen fibers, was coated with a thin submicrometer layer of polypyrrole.
The coating manifests itself to the naked eye as a change in color (Figure 3). In the ab-
sence of any additive, a globular polypyrrole precipitate is formed in the aqueous solution
surrounding the leather. Its particles adhere to the coated surface, and they are easily
mechanically separated after drying and will contaminate any object in contact. This was
prevented by the introduction of a water-soluble polymer, poly(N-vinylpyrrolidone). In its
presence, colloidal polypyrrole dispersion particles [34] of submicrometer sizes stabilized
by PVP outside the leather are produced instead of a polypyrrole precipitate and they are
easily removed during the subsequent rinsing with an acid solution. The thickness of the
coating on the leather threads becomes more smooth and thinner at the same time.
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Figure 3. Front of the original leather (left) and leather coated with polypyrrole in the presence of
PVP and crystal violet dye (right).

The situation becomes more complex when organic dyes are added to the reaction
mixture in order to endow the polypyrrole coating with antibacterial properties. The
water-soluble organic dyes play a dual role. First, they act as ionic surfactants because
they consist of a large hydrophobic moiety and a hydrophilic cationic or anionic group
(Figure 2). Thus, the dye may affect the distribution of reactants in the reaction mixture
and the adhesion of intermediates to the leather surface. The second effect is based on the
observation that they affect both the morphology and conductivity of polypyrrole [11]. For
example, the conversion of globular polypyrrole to polypyrrole nanotubes in the presence
of methyl orange in the reaction mixture has been well documented [31].

3.2. Surface Morphology

Scanning electron micrographs reveal the fibrous collagen structure of the leathers
(Figure 4). The polypyrrole coating of the fibers was thin and smooth, and no contamination
by free polypyrrole precipitate was observed. The front of the leather was macroscopically
smoother than the reverse side as a result of the surface finish. The fibrous character was
clearly visible on both surfaces.

3.3. Optical Microscopy

It is necessary to distinguish between the coating of individual collagen fibers and the
leather body constituted by many fibers. Although the coating of individual collagen fibers
was uniform, the macroscopic distribution of the conducting polymer phase within the
leather body was uneven. The thickness of dark conducting layers composed of collagen
fibers with deposited polypyrrole was determined by the penetration of the reaction
mixture into the leather structure within the time of pyrrole polymerization, which was
approximately 10–20 min. The thickness of the dark conducting phase was determined
by cross-sectional optical imaging (Figure 5). A significant difference between the front
(103 ± 9 µm), and reverse (165 ± 8 µm) sides was observed, which may be attributed to the
polished and rougher surfaces. The front and reverse conducting layers were not completely
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separated, and in some places they were electrically short-cut. In general, the thickness of
polypyrrole deposition was predetermined by the leather hydrophilicity and macroporosity
and consequent penetrability of the reaction mixture into its inner structure. The depth
of penetration could be varied by decreasing or increasing reactant concentrations or
temperature and consequent slowdown or acceleration of the polymerization rate. The
increase in the concentration of PVP associated with the increase in viscosity would decrease
the extent of penetration. The irregularities observed on the surfaces can be explained by
the roughness of the leather (Figure 3), which depends on the leather finishing.
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3.4. Sheet Resistance

Conductivity is the most important parameter in this study. The electrical properties
of polypyrrole deposited on similar materials, such as melamine sponges, and their use as
pressure-sensitive materials has recently been reported [33,34]. The neat leather did not
display any measurable conductivity. After coating with polypyrrole, the surface sheet
resistance of the leather material on both sides was in the range of tens of kΩ/sq (Table 1).
As observed in the literature [34], the deposited polypyrrole overlayer was thinner, i.e., the
content of polypyrrole was lower, and sheet resistance increased accordingly by one order
of magnitude.

Table 1. Sheet and bulk resistances of leather coated with polypyrrole (PPy) in the presence of PVP
and organic dyes.

Coating Conditions

Sheet Resistance (kΩ/sq)
Bulk Resistance

kΩ
Front Reverse

Horizontal Vertical Horizontal Vertical

PPy (No PVP) 7.0 ± 0.8 5.1 ± 0.2 n/a
PPy + PVP 302 ± 20 48 ± 12 n/a

PPy + PVP + crystal violet 0.89 ± 0.50 1.1 ± 0.1 3.4 ± 0.5 0.68 ± 0.55 5.2 ± 0.4
PPy + PVP + neutral red 540 ± 50 470 ± 130 320 ± 70 300 ± 50 60 ± 10

PPy + PVP + methyl orange 3800 ± 2200 3700 ± 700 >104 >104 3000 ± 100
PPy + PVP + acriflavine >105 >105 >105 >105 >105

PPy + PVP + methylene blue >105 >105 >105 >105 >105

The introduction of organic dyes altered the course of pyrrole formation and depo-
sition in an unpredictable manner. While crystal violet dramatically improved electrical
conduction and reduced sheet resistance to units of kΩ/sq, neutral reed and methyl or-
ange performed less efficiently and the presence of acriflavine and methylene blue led
to non-conducting surfaces (Table 1). It has earlier been established that the morphology
and conductivity of polypyrrole is affected by the presence of organic dyes in the reaction
mixture [11]. It is thus likely that the deposition of polypyrrole will be also influenced in a
similar way, which still needs to be investigated. The resistance varied somewhat when
measured in horizontal versus vertical directions within one order of magnitude due to the
anisotropy and orientation of the leather during processing (Figure 3).

When measurable sheet resistance was found, transverse bulk resistance could also be
determined (Table 1). As mentioned above, the front and reverse polypyrrole layers were
not perfectly separated (Figure 5) and the occasional short-cuts due to the reaction mixture
leaks were responsible for the occurrence of non-zero bulk resistance.

It should be noted that the introductory test of the polypyrrole coating was performed
along with other pigskin leathers, the results differed substantially, and the obvious reasons
for this could not be identified. The results obtained with the leather used in the present
study were the best.

3.5. Antibacterial Activity

In recent years, antibacterial performance of materials modified with conducting
polymers, viz. polypyrrole, has been a subject of scientific interest due to their efficacy in
reducing the growth of different bacteria strains [8,9]. Polypyrrole alone has often been
reported to display antimicrobial activity [7,23,28–38].

The results of the agar disk-diffusion method [39] applied to bacteria did not show an
inhibition zone for the leathers coated with polypyrrole, except for the sample prepared
in the presence of crystal violet with an inhibition zone of 4.3 ± 1.3 mm (Figure 6). This
method reflects, however, the antibacterial activity of the water-soluble compounds leached
from the tested sample. Polypyrrole is insoluble in water, and any positive antibacterial
response in this method can be associated only with the residual reactants and by-products
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left from the synthesis, counter ions released from polypyrrole due to neutral media [36],
and any loosely adsorbed additives [38]. The antibacterial activity reported in the literature
for polypyrrole has been interpreted as an electrostatic interaction between this polycation
and the negatively charged wall of the bacterial cell [8]. The physical adsorption of bacteria
at the polypyrrole surface is followed by the penetration of counter ions that stimulate cell
apoptosis. For that reason, the surface morphology is also of importance [38]. The ability of
polypyrrole to promote the photocatalytic generation of active oxygen species [29] could
also be considered as a supporting mechanism for antibacterial performance.
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(e) methyl orange, (f) acriflavine, and (g) methylene blue in the testing of the antibacterial effect on
bacterial strains of Staphylococcus aureus (upper part) and Klebsiella pneumoniae (lower part).

The zone of bacterial resistance of the polypyrrole-coated leather was then determined
(Table 2). If bacteria do not grow on the surface of a leather test specimen, it means
that the material has a sufficient antibacterial effect. A leather for which the bacterial
resistance, i.e., the surface without any bacterial growth, is between 75 and 100%, exhibits
a positive antibacterial effect. Values between 60 and 75% indicate that the antibacterial
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effect is moderate, and less than 60% indicates that there is no antibacterial effect [40]. The
antibacterial effect in terms of the zone of resistance was found for all polypyrrole-coated
leathers (Table 2), except for leather coated in the presence of methyl orange, which showed
resistance below 60%. Methyl orange is not a dye with typical antibacterial activity but it
has a special role in the chemistry of polypyrrole, as it guides the formation of polypyrrole
nanotubes [11,31]. For that reason, it was included into the present study. In general, the
resistance against S. aureus was more significant compared to K. pneumonia. This result can
be attributed to the cell wall of the Gram-positive bacteria S. aureus that contains a thicker
layer of peptidoglycans, which is simpler than the Gram-negative wall of K. pneumonia,
possessing an additional outer membrane with lipopolysaccharides. This may prevent the
interaction of bacteria with the polypyrrole coating present on the surface of collagen fibers
in the leather [7,41].

Table 2. Zone of bacterial resistance without any bacterial growth (%) on leather coated with
polypyrrole in the presence of poly(N-vinylpyrrolidone) and organic dyes.

Coating Conditions Staphylococcus Aureus Klebsiella Pneumoniae

PPy only, no PVP 100 100
PPy + PVP 100 100

PPy + PVP+ crystal violet 100 60–75
PPy + PVP+ neutral red 100 100

PPy + PVP + methyl orange <60 <60
PPy + PVP + acriflavine 100 100

PPy + PVP + methylene blue 100 100

The results suggest that polypyrrole alone is able to prevent bacterial growth and
the incorporation of organic dyes may only have a supporting role. Because polypyrrole
deposition in the presence of crystal violet performed the best with respect to electrical
properties, more detailed characterization only for this case is reported below.

3.6. FTIR Spectra

The coating of collagen fibers with polypyrrole was studied with ATR FTIR spec-
troscopy. In the infrared spectra of the front and reverse sides of the leather coated with
polypyrrole (spectra L + PPy in Figure 7), we detected bands at 1732 cm–1 (C=O stretching
vibrations), 1657/1632 cm–1 (Amide I), 1547 cm–1 (Amide II), 1238, 1169, and 1030 cm–1,
which belong to the polypeptide chains of the collagen structure of the leather (spectra L
in Figure 7) [10]. In addition, we also detect bands of polypyrrole with maxima partially
overlying the leather bands located at 1542 cm–1 (C–C stretching vibrations in the pyrrole
ring), 1447 cm–1 (C–N stretching vibrations in the ring), 1284 cm–1 (C–H or C–N in-plane
deformation modes), 1163 cm–1 (breathing vibrations of the pyrrole rings), 1030 cm–1 (C–H
and N–H in-plane deformation vibrations), and 965 and 885 cm–1 (C–H out-of-plane de-
formation vibrations of the ring) [25]. The observation of both collagen and polypyrrole
in the spectra means that the conducting coating is thinner than the penetration depth of
a few micrometers of infrared radiation. When crystal violet was present in the reaction
mixture, we also detected small peaks at 1583 and 1360 cm–1 that could be associated with
the presence of this dye (spectrum L + PPy + CV in Figure 7).

3.7. Mechanical Properties

Mechanical properties of leather represented by the stress–strain dependences are
important for practical applications. A load force of 44 N was required to tear the original
leather (Table 3). After coating with polypyrrole, the break load force needed for tearing
decreased by approximately 30%. The elongation at break was significantly increased as a
result of oxidation and/or hydrolytic changes of the collagen fibers by iron(III) chloride.
This may have increased the flexibility of the coated leather. The Young’s modulus reflects
the stress–strain ratio. After polypyrrole coating, this modulus decreased by approximately
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40%. This again indicated that the polypyrrole coating introduced structural changes in the
surface morphology of the collagen fibers.
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Table 3. Mechanical properties of the original leather and the leather coated with polypyrrole in the
presence of poly(N-vinylpyrrolidone) and crystal violet.

Leather Tensile Strength
(MPa)

Elongation at Break
(%)

Break Load Force
(N)

Young’s Modulus
(MPa)

Original 15.4 ± 0.9 33.5 ± 1.1 43.8 ± 2.7 39.3 ± 1.0
Polypyrrole-coated 9.0 ± 2.3 50.4 ± 4.7 30.7 ± 7.8 23.7 ± 2.1

3.8. Cyclic Bending Tests

It is well-known from previous experiments on the synthesis of polypyrrole in the
presence of dyes that addition of an auxiliary dye to the in situ polymerization solution
may force polypyrrole to create nanostructured morphology and hence to increase its
conductivity. However, the excessive amount of dye or residuals of the dye has a neg-
ative effect, decreasing overall polypyrrole conductivity [42]. For leathers coated with
polypyrrole synthesized in the presence of PVP and various dyes, all samples exhibited
higher horizontal sheet resistance (see Table 1) due to the lower conductivity of polypyrrole,
compared to the leather sample coated with polypyrrole only. The only exception was the
leather sample with polypyrrole deposited in the presence of PVP and crystal violet, whose
resistance was lower. Hence, cyclic bending tests were performed, namely, on the sample
denoted as PPy + PVP + CV.

The cyclical bending of the leather PPy + PVP + CV led to several interesting observa-
tions (Figure 8). First, electrical resistance of all samples was stabilized during the starting
ca. 2.5 h of cyclic bending. This phenomenon is probably connected with non-reversible
mechanical changes in the structure of the leather (leather softening), which leads to partial
interruption of conducting pathways. As a result, the higher the angle of bending, the
more intensive is the softening, and the electrical resistance after 2.5 h settled at a new,
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higher level. This phenomenon was observed on both sides, i.e., on the finished front and
non-finished reverse side. Second, there was an observable difference in the magnitude
of electrical resistance between the finished and non-finished sides. The non-finished side
had ca. 2–3-fold higher electrical resistance compared to the finished side. Again, this is
consistent with the results of the sheet resistance measurements (Table 1). Third, after the
initial leather softening, the electrical resistance of the bent leather was relatively stable
even after 5000 cycles (>27 h of bending) in the case of the finished side of the leather
samples. Fourth, there was a difference in behavior of the non-finished side of the leather
after initial softening. The electrical resistance of the non-finished side of the leather fluc-
tuated wildly with mechanical stress, which was easily observable based on the relative
resistances calculated for each cycle. The reason for this behavior is probably the structure
of unfinished leather that is not flat, but rather “furry”, and composed of thin loose fibers.
Hence, the structure of the non-finished side adds randomness to the mechanical and
resulting electrical behavior. Still, the long-term resistivity of the non-finished side was
relatively stable.
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Figure 8. Cyclic bending of the leathers coated by polypyrrole synthesized in presence of PVP and
crystal violet. Time dependence of resistance measured during 5000 cycles on finished (left) and
non-finished, i.e., reverse, (right) sides at angles 15◦ (top), 30◦ (middle), and 45◦ (bottom). Original
position (blue), bent sample (red), and relative resistances (green).

4. Conclusions

The leather was made conductive by the deposition of polypyrrole. The dispersion
mode of pyrrole polymerization in the presence of poly(N-vinylpyrrolidone) provided
a submicrometer, smooth coating of collagen fibers constituting the surface layer of the
leather structure of ca. 100 µm thickness. The introduction of organic dyes as additives
was expected to affect the surface morphology, conductivity and antibacterial performance
of coatings. The sheet resistivity after polypyrrole coating in kΩ/sq increased by two
orders of magnitude when the reaction mixture contained crystal violet. Other organic dyes
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(neutral red and methyl orange), on the contrary, increased sheet resistance or, in the case
of acriflavine and methylene blue, resulted in virtually non-conducting surfaces. The dyes
used in the study are known for their antimicrobial activities. The observation of materials
exposed to bacterial strains indicates that they are resistant to the contamination of their
surfaces by growing bacterial colonies.

The leather modified with polypyrrole in the presence of crystal violet was thus the
best conducting and was investigated in more detail. FTIR spectra reveal the presence of
the dye in the polypyrrole coating of the collagen fibers. At the same time, such leather
displayed an antibacterial behavior that is welcome in the production of special functional
footwear. The mechanical properties suggest that some softening of the leather occurred,
probably due to hydrolytic changes in the collagen fibers caused by the acidic reaction
mixture used for the deposition of polypyrrole. The sheet resistance changed within a few
percent after 5000 cycles of bending at various angles.
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and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv.
2016, 6, 88382–88391. [CrossRef]
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