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Abstract: In order to reveal the relationship between residual stress in Si layers of SiC/SiC composites
and the different parameters used in their preparation, the residual stress of the coating surface was
tested using X-ray sin2ψ technology and laser Raman spectroscopy. Then, the Raman shift–stress
coefficient (P) and the Raman shift with free stress (ω0) were calculated as −201.41 MPa/cm−1

and 520.591 cm−1 via linear fitting with the least squares method. The results showed that all the
as-sprayed Si coatings exhibited tensile stress on the surface, ranging from 53.5 to 65.9 MPa. The
parameters of the spraying distance and second gas (H2) flow rate were considered to be the most
important for controlling the residual stress on the coating surface. Additionally, the surface tensile
stress of the Si layers could be eliminated and even changed into compressive stress by annealing
above 800 ◦C. Furthermore, the residual stress distribution in the cross-section of the Si layers was
evaluated using laser Raman spectroscopy. Additionally, the particle characteristics, such as in-flight
velocity and temperature, were investigated using a diagnostic system. The results of this research
contribute to increasing the understanding and control of residual stress in APS Si bond layers.

Keywords: SiC/SiC composites (SiC-CMCs); Si layer; atmospheric plasma spraying (APS); residual
stress; Raman spectroscopy; environmental barrier coatings (EBCs)

1. Introduction

New approaches are required to achieve the next breakthrough in jet engines, and
those based on the use of ceramic matrix composite (CMC) materials are the most promising
to reach this goal [1]. SiC/SiC composites (SiC-CMCs) are favored as advanced structural
materials for use in hot compartments of gas turbine engines because of their low densities
and properties with excellent high-temperature resistance [2–5].

However, SiC-CMCs have the drawback of being rapidly eroded in combustion
environments, forming volatile Si(OH)4 as a result of gas streams mixing with water vapor
byproducts, as indicated by Equations (1) and (2), which cause linear dimension reduction
and mechanical degradation [6]. Padture et al. [7] reported a recession rate of approximately
1 µm/h for SiC-CMCs under the normal gas turbine operating conditions of commercial
engines, and this significantly restricts their potential application in the field of aero engines.

SiC + 1.5O2(g) = SiO2 + CO(g) (1)

SiO2 + 2H2O(g) = Si(OH)4(g) (2)

Environmental barrier coatings (EBCs) have been developed to protect SiC-CMCs
from water vapor degradation and thus ensure the reliability of CMC components in
gas turbine operating environments [8–12]. In addition to water vapor stability, the key
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characteristics of durable EBCs are low EBC stress, EBC/substrate chemical compatibility,
and adherence [13].

Generally, the coatings can be prepared using several processes, such as spark plasma
sintering [14] and thermal spraying [15]. Plasma spraying has emerged as one of the
potential routes to deposit thick coating layers on the structure material [16]. At present,
silicon coatings prepared with atmospheric plasma spraying (APS) are the most extensively
applied as bond layers of EBCs. Cracks are one of the most important forms of failure of
thermal spray coatings, and this phenomenon is closely related to residual stress [17]; hence,
a clear understanding of residual stress in APS Si layers is of obvious value in preventing
crack failure. Generally, the stress of coatings on SiC-CMC substrates includes three parts
and can be expressed as follows [13]:

σAPS Si layer = σt + σa + σg (3)

where σt represents the thermal mismatch stress, σa is the aging stress, and σg is the growth
stress. σt is calculated using Equation (4).

σt = (αSi − αSiC)·∆T· ESi
1 − vSi

(4)

where αSi and αSiC are the coefficients of thermal expansion (CTE) for the silicon and the
SiC-CMC substrate, respectively, and ESi and vSi represent Young’s modulus and Poisson’s
ratio, respectively, of the Si coating.

σa represents the stress caused by changes in the Si coating’s physical, mechanical,
and chemical properties during thermal exposure. Growth stress is the stress produced
during the spraying process, which is close to the key plasma spraying processes, including
those based on plasma power, plasma gases, etc. Generally, the thermal mismatch stress
is determined by the choice of coating material. Most studies on the residual stress of
EBC coatings have focused on the evolution of aging stress within a high-temperature
environment [18,19]. However, the influence of this process on the residual stress in Si
layers remains unclear.

Because the thickness of the APS Si layer is usually less than 100 µm, the quantifi-
cation of stress in the cross-sections of the Si layers is another matter worthy of research.
Laser Raman spectroscopy [20–25] is the method most commonly used for residual stress
measurements of thin coatings. The stress can be calculated via Raman spectroscopy based
on Equation (5) [23]:

σ = P·∆ω = P·(ω − ω0) (5)

where P is the Raman shift–stress coefficient, and ω0 is the Raman shift with free stress.
This equation shows that a positive Raman shift indicates compressive stress, while a
negative shift indicates tensile stress.

A number of researchers have investigated residual stress from the Raman testing of Si
materials and Si films [20,21,26–28]. A Raman shift–stress coefficient P of −250 MPa/cm−1

has been reported for polysilicon [27]. However, the P of Si prepared using low-pressure
chemical vapor deposition (LPCVD) was found to be −264 MPa/cm−1 in [20], and it was
concluded in [29] that the P of porous Si film prepared using electrochemical etching
rapidly decreased as porosity increased; indeed, the coefficient of 60% porosity porous
silicon materials was one order of magnitude lower. In addition, the ω0 has typically been
reported to be approximately 520.5 cm−1, rather than constant. Therefore, the Raman
shift–stress coefficient and the Raman shift with free stress of silicon may vary with the
preparation process. As far as we know, the P and ω0 values for APS Si coatings have not
been determined until now.

In this study, Si layers on SiC-CMCs were prepared using APS technology and dif-
ferent parameters, with annealing at various temperatures. The residual stress was tested
and calculated using an X-ray stress tester coupled with laser Raman spectroscopy to
measure the residual stress in the Si layer surface and cross-section to reveal the influence
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of spraying and annealing parameters on residual stress. To provide supporting evidence,
the microstructure and phase were also studied using SEM and XRD. By such means, we
sought to characterize the residual stress of APS Si coatings and propose strategies for the
greater control of this stress in the future.

2. Materials and Methods
2.1. Coating Preparation

SiC fiber-reinforced SiC composites (BIAM, Beijing, China) were used as the substrate.
The silicon layer was coated on rectangular plates for the test. Before depositing the Si
layer, SiC-CMC specimens were polished with SiC paper, followed by slight sandblasting
with 100-mesh Al2O3 under 0.10 MPa.

Commercially available Si (99.9% purity) powder was employed. The typical mor-
phology and phase of the Si feedstock can be seen in Figure 1, which shows that the Si
particles were cubic in structure and irregularly proportioned, with particle sizes ranging
from 45 to 150 µm.
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Figure 1. Surface morphology (a) and XRD (b) of the Si powder.

Si layers were deposited on the SiC-CMC surface using the Multicoat© air plasma
spraying system (Oerlikon-Metco. Co., Pfäffikon, Switzerland). The thicknesses of the Si
layers were about 70~100 µm. Some sprayed Si layers were then heat-treated in a muffle
furnace (DOTRUST, Beijing, China).

2.2. Inflight Particle Measurement

During the spraying process, the inflight temperatures and velocities of the Si par-
ticles in the plasma jet were monitored with an online particle diagnostic sensor (DPV-
eVOLUTION, Tecnar, Saint-Bruno-de-Montarville, QC, Canada).

This system is based on a special CCD camera (Tecnar, Saint-Bruno-de-Montarville,
QC, Canada) controlled by a computer and processing software and enables measuring the
velocities and temperatures of inflight particles, as described in [30,31]. As the measurement
volume is relatively small (<1 mm3), the data can be collected for local particles and
analyzed statistically. With the automatic motion device, it can also measure the matrix
data in a plane. For the matrix measurements, the gun was positioned at a fixed location,
and the CCD camera was moved in the plane perpendicular to the gun axis at spray
distances of 80 mm, 100 mm, and 120 mm. In this study, the 5 × 5 points measurement grid,
with a step of 4 mm, was 16 × 16 mm2, and up to 5000 inflight particles were measured per
point.
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2.3. Analysis Methods

A PROTO LXRD X-ray diffractometer (PROTO, Taylor, MI, USA) was used to measure
the stresses on the surface regions of the Si layers without considering information for the
cross-section regions. The principle is widely known as the sin2ψ method, which is also
based on measuring peak shifts in the XRD pattern recorded at different ψ angles [32], as
indicated by Equation (6):

σ = K· ∂2θ

∂sin2ψ
(6)

where K is the stress constant; σ > 0 represents the tensile stress, while σ < 0 represents the
compressive stress.

In this study, the target material, tube voltage, and tube current were Mn Kα, 30 kV,
and 25 mA, respectively. Generally, K was calculated using Equation (7); thus:

K = − E
2(1 + v)

· π

180
·cotθ0 (7)

where E and v, respectively, represent Young’s modulus and Poisson’s ratio of the silicon,
and θ0 is the Bragg angle with free stress.

In order to accurately evaluate the residual stress of the silicon layer, testing was
carried out on the surfaces and polished cross-sections of the coating samples under
different conditions using a Raman microscope (Horiba LabRAM HR, Tokyo, Japan) with
excitation at 633 nm (HeNe Laser), and spectra with 600 grating in the range of 50 to
1000 cm−1 were collected. To avoid measurement errors caused by rising temperatures [33]
and to obtain a good signal-to-noise ratio and peak intensity, the laser power was set to a
level below 25% of its maximum value. Measurements were then taken at a single point
5 times at intervals of 5 s.

The microstructures of the specimens were characterized using scanning electron
microscopy (FEG-SEM, Zeiss Ultra 55, Oberkochen, Germany).

The phase analysis of the coatings was achieved using X-ray diffraction (XRD, Smart
Lab, Rigaku, Tokyo, Japan) at 10–90◦ with Cu Kα radiation (λ = 0.15406 nm). The step
length and scanning rate were 0.02◦ and 8◦/min, respectively.

3. Results and Discussion
3.1. Coating Microstructure and Phase of As-Sprayed Si Layer

In this study, coatings of nine groups were first deposited using the APS process, with
the detailed parameters listed in Table 1. The current, primary gas (Ar), second gas (H2),
and spraying distance were individually adjusted, with a basic parameter of P0.

Table 1. Summary of the operating deposition parameters.

Parameter Items Current,
A

Primary Gas (Ar),
nlpm

Second Gas (H2),
nlpm Feed Rate, g/min Spraying Distance,

mm

PA-1 330 35 6 25 100
PB-1 380 25 6 25 100
PC-1 380 35 4 25 100
PD-1 380 35 6 25 80

P0 380 35 6 25 100
PD-2 380 35 6 25 120
PC-2 380 35 8 25 100
PB-2 380 45 6 25 100
PA-2 430 35 6 25 100

The as-sprayed Si layers exhibited similar surface morphologies, and typical SEM
images prepared using P0 are shown in Figure 2. All coatings presented rough surfaces,
which is characteristic of plasma-sprayed layers. Many submicronic ball-like particles were
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also present on the coating surface, as previously described in [34]. According to the EDS
analysis results presented in Table 2, the atomic oxygen content of a typical surface area
(A) was (4.96 ± 15.83)%. However, the oxygen content of a microparticle (B) was about
(8.40 ± 12.82)%, increasing by a factor of more than 1.7.

Coatings 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 

PB-2 380 45 6 25 100 
PA-2 430 35 6 25 100 

The as-sprayed Si layers exhibited similar surface morphologies, and typical SEM 
images prepared using P0 are shown in Figure 2. All coatings presented rough surfaces, 
which is characteristic of plasma-sprayed layers. Many submicronic ball-like particles 
were also present on the coating surface, as previously described in [34]. According to the 
EDS analysis results presented in Table 2, the atomic oxygen content of a typical surface 
area (A) was (4.96 ± 15.83)%. However, the oxygen content of a microparticle (B) was about 
(8.40 ± 12.82)%, increasing by a factor of more than 1.7. 

 
Figure 2. (a) Typical surface image of the layer and (b) at a higher magnification (A: normal area; 
B: submicronic ball-like particles). 

Table 2. Oxygen content determined using EDS for the two positions (A and B) indicated in Figure 
2. 

Position At% of Oxygen At% of Silicon 
A 4.96 ± 15.83 95.04 ± 1.31 
B 8.40 ± 12.82 91.60 ± 1.39 

In this study, the APS process was used, wherein Si powders were heated to a molten 
or partially molten state using plasma. The molten droplets were accelerated for imping-
ing on the substrate at high velocities, where they solidified to form the coating [30]. Fig-
ure 3a presents a schematic diagram for Si layer deposition. The flow rate, velocity, and 
temperature of the inflight Si particles were statistically measured in a 16 mm × 16 mm 
rectangular plane (5 × 5 matrix points, with steps of 4 mm), as shown in Figure 3b–d. For 
the testing plane, the spraying distance was 100 mm. Other parameters are listed in Table 
1. As can be seen in the flow rate contour map in Figure 3b, the Si particles were mainly 
distributed in an elliptically shaped area with a 45° rotation, with increased concentration 
close to the center. This can be explained by the form of powder feeding. The map in Fig-
ure 3c shows that the Si particles in a circle with a 5 mm radius around the center could 
be accelerated to a speed of 210~243 m/s. 

Figure 3d shows that the temperatures of the Si particles in most areas were between 
1943 and 2158 °C. Particles at the highest temperatures (above 2266 °C) can be distinctly 
observed in two corners of the figure, rather than at the center. Figure 3e presents a multi-
contour map with several threshold values to illustrate the surface morphology of the Si 
layer. In the plasma spraying process, Si particles with lower speeds and higher tempera-
tures were more readily oxidized than faster-moving particles at lower temperatures. 
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submicronic ball-like particles).

Table 2. Oxygen content determined using EDS for the two positions (A and B) indicated in Figure 2.

Position At% of Oxygen At% of Silicon

A 4.96 ± 15.83 95.04 ± 1.31
B 8.40 ± 12.82 91.60 ± 1.39

In this study, the APS process was used, wherein Si powders were heated to a molten
or partially molten state using plasma. The molten droplets were accelerated for impinging
on the substrate at high velocities, where they solidified to form the coating [30]. Figure 3a
presents a schematic diagram for Si layer deposition. The flow rate, velocity, and tempera-
ture of the inflight Si particles were statistically measured in a 16 mm × 16 mm rectangular
plane (5 × 5 matrix points, with steps of 4 mm), as shown in Figure 3b–d. For the testing
plane, the spraying distance was 100 mm. Other parameters are listed in Table 1. As can be
seen in the flow rate contour map in Figure 3b, the Si particles were mainly distributed in
an elliptically shaped area with a 45◦ rotation, with increased concentration close to the
center. This can be explained by the form of powder feeding. The map in Figure 3c shows
that the Si particles in a circle with a 5 mm radius around the center could be accelerated to
a speed of 210~243 m/s.

Figure 3d shows that the temperatures of the Si particles in most areas were between
1943 and 2158 ◦C. Particles at the highest temperatures (above 2266 ◦C) can be distinctly
observed in two corners of the figure, rather than at the center. Figure 3e presents a multi-
contour map with several threshold values to illustrate the surface morphology of the Si
layer. In the plasma spraying process, Si particles with lower speeds and higher tempera-
tures were more readily oxidized than faster-moving particles at lower temperatures. Based
on the results presented in Figure 3b–e, it is reasonable to conclude that most particles in
Zone A represented the part of the coating where there was less oxidation. Contrarily, a few
tiny particles in Zone B were heated to a higher temperature, and these tended to create
more heavily oxidized particles, as illustrated in Figure 2b.
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(e) Multi-contour map with several threshold values.

In addition, XRD was used to test the phase composition of the Si layers, and Figure 4
shows the typical pattern of the coating prepared using the parameter of P0. We found that
all the deposited coatings were cubic polysilicon, and that there was no phase transforma-
tion in the different parameters studied in this work. The peaks of silica were not clear in
the coatings. Considering the EDS results, there was only slight oxidation of the Si layer,
which is mostly amorphous.
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3.2. The Influence of Spraying and Annealing Parameters on the Residual Surface Stress

Because APS Si layers are polysilicon films, the values of E = 160 GPa and v = 0.22
were adopted in this study, following the study in [35]. In addition, the (422) plane with a
standard interplanar spacing of 1.1086 nm was selected due to its relatively strong intensity
and higher 2θ. According to the Mn Kα (λ = 0.210314 nm), θ0 = 71.5348◦ for the (422) plane.
Finally, K was calculated to be −382 MPa, according to Equation (7). In this study, seven
couples of sin2ψ–2θ were detected for all samples, and the ψ angles included −1.54◦, 4.40◦,
13.66◦, 18.46◦, 23.27◦, 32.52◦, and 38.47◦. XRD surface stress measurement data for the basic
parameter P0 are shown in Figure 5. The data were linearly fitted using the least squares
method, and the stress was calculated to be 63.8 ± 14.6 MPa. When the residual stress is
tensile for thermal-sprayed coatings, there is a stress perpendicular to the coating interface
whose direction is away from the substrate; therefore, coating adhesion is poor. Once the
tensile stress exceeds the interface bonding, the coating peels off. For this reason, it is
necessary to reduce the tensile stress or adjust the compressive stress through parameter
adjustment or after treatment.
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Table 3 lists the calculated residual stress values for nine groups of coatings. Across all
the investigated spraying parameters, the residual stresses on the surface of the Si bond
layer ranged from 53.5 to 65.9 MPa, and all coatings exhibited tensile stress.

Table 3. Calculated residual stresses for nine groups of coatings.

Parameter Items Residual Stress/MPa

PA-1 53.9 ± 6.7
PB-1 55.8 ± 12.8
PC-1 53.5 ± 12.1
PD-1 65.9 ± 18.9

P0 63.8 ± 14.6
PD-2 61.4 ± 12.0
PC-2 65.7 ± 16.9
PB-2 61.6 ± 14.4
PA-2 59.9 ± 14.2

Figure 6 shows the influence of the spraying parameters on residual stress on the Si
bond layer surfaces. The residual stress increased when the current rose from 330 to 380 A
but, thereafter, decreased slightly when the current rose further to 430 A. The influence
of the primary gas (Ar) on residual stress was similar to that of the current, reaching a
maximum value at 35 nlpm. The effects of the second gas (H2) and spraying distance
produced monotonous changes in residual stress. The stress value increased significantly
when the hydrogen flow rate rose from 4 to 6 nlpm and increased, but more slowly, when
the rate rose further from 6 to 8 nlpm. In contrast to the hydrogen flow rate, the spraying
distance produced an opposite effect such that the residual stress decreased as the spraying
distance increased.
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Additionally, the reasons for the relatively large errors seen in this experiment were
two-fold. Firstly, the sample was tested as-sprayed, with certain anisotropy, which affected
the 2θ measured at different ψ angles. Secondly, the X-ray could penetrate to a depth of
approximately 10 µm, and there was a stress gradient in the depth direction of the coating.
In this part, the correlation study between surface stress and spraying parameter was
simplified without considering the information on the depth and anisotropy.

When the plasma spraying parameters were adjusted, there were significant changes
in the speeds and temperatures of the Si particles deposited on the CMC surface. The
effects of changing the particle temperatures and velocities on the residual stress and other
mechanical properties of the plasma-sprayed Al2O3 coating were studied in [36], where it
was found that an increase in the particle temperature mainly led to a rise in the tensile
stress. In our study, the temperatures and velocities of Si particles in the plasma flame were
also measured and counted during plasma spraying to contribute to understanding the
coating stress’s nature.

Figure 7 shows the temperature and velocity distributions of Si particles at different
spraying distances. The results showed that the Si particles near the center of the flame
were effectively accelerated, reaching 250 m/s when the spraying distance was 80 mm.
When the spraying distance was increased to 100–120 mm, the particle velocity decreased
slightly to approximately 225–250 m/s. Figure 7 also shows that, in contrast to the particle
velocity distribution, the particles with the highest temperature were not distributed in the
center of the flame. This finding could be explained by the fact that most of the particles
were concentrated at the center, but the average heat received by every single particle
was relatively low, resulting in temperatures ranging from 2000–2250 ◦C. As the spraying
distance increased, the temperature of most particles in the central area gradually decreased,
reaching around 1750–2250 ◦C when the spraying distance was 120 mm. According to the
results shown in Figures 6d and 7, we concluded that the decrease in residual tensile stress
in the coating was a result of the reduced temperature of the Si particles.

Figure 8 shows the influence of spraying parameters on the temperature and velocity
of Si particles. With increases in current and primary gases (Ar), the velocities and tem-
peratures of the particles exhibited monotonic increasing trends. When the current was
increased from 330 to 430 A, the particle temperature and speed also increased from 2037
to 2057 ◦C and from 221 to 250 m/s, respectively. When the primary gas (Ar) flow rate rose
from 25 to 45 NLPM, the particle temperature and speed increased from 2037 to 2062 ◦C and
from 186 to 250 m/s, respectively. The particle temperature was positively correlated with
the flow rate of the second gas (H2), increasing from 2038 to 2083 ◦C when the flow rate
rose from 4 to 8 NLPM, but with only slight changes in the particle velocity (233–240 m/s).
Finally, the particle velocity and temperature exhibited a decreasing trend with increased
spraying distance, so when the distance rose from 80 to 120 mm, the temperature decreased
from 2079 to 1981 ◦C, and the speed fell from 250 to 232 m/s.

Combining the variations in residual stress, temperature, and velocity with the differ-
ent parameters shown in Figures 6 and 8, we found that the residual stress of the coating
exhibited a greater correlation with the particle temperature within the range of the investi-
gated parameters. In short, there was high residual tensile stress when the temperature
rose, a result similar to that reported in [36]. An analysis of the data presented in Figure 8
indicated that the temperatures of Si particles were more sensitive to the parameters of
spraying distance and flow rate of the second gas (H2). In contrast, the speeds of Si particles
were more sensitive to the primary gas (Ar) flow rate. In other words, the parameters of
spraying distance and the second gas (H2) flow rate could significantly affect the tempera-
tures of Si particles but had little effect on particle velocity. Therefore, the spraying distance
and the second gas (H2) flow rate could be considered the most important parameters for
controlling residual stress on the coating surface.

The annealing process can be effectively optimized to eliminate the residual stress of the
components. Zhang et al. [26] investigated the effects of regular furnace annealing on the
residual stress of LPCVD polysilicon thin film. The results showed that after annealing at
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temperatures varying from 600 to 1100 ◦C, the film stress decreased gradually with increasing
temperature. Additionally, the compressive stress varied very little with annealing time from
30 to 120 min. In this study, several prepared Si layers were heat-treated under an atmospheric
environment, with the parameters shown in Table 4. The residual surface stresses of the
resulting coatings were also evaluated using the sin2ψmethod.
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Table 4. Summary of the annealing parameters of the Si layer.

Annealing Temperature/◦C Annealing Time/h

500 1, 5
800 1, 5
1100 1, 5
1200 1, 5
1250 1, 5
1300 1, 5

Figure 9 shows the variations in the residual surface stress with different annealing
temperatures and times. It can be seen that when the sample was annealed at 500 ◦C for
1 h and 5 h, the stress was slightly reduced from 68.9 MPa to 65.8 and 60.3 MPa. When
the annealing temperature reached 800 ◦C, the coating stress level decreased rapidly to
66.5 MPa and changed from tensile to compressive at −4.1 MPa after 5 h. When the
annealing temperature increased to 1100 ◦C, the residual stress on the Si layer surface
transformed from a tensile stress of 56.2 MPa into a compressive stress of −45.2 MPa after
1 h, then stabilized over time. The same phenomenon was also observed for the annealing
temperature of 1200–1300 ◦C. Hence, we concluded that for the Si coating sprayed on the
SiC-CMCs, annealing can be carried out above 800 ◦C to eliminate tensile stress and thus
promote the bonding of the coating with the substrate.
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Figure 10 shows the XRD measurements of the as-sprayed and annealed silicon coat-
ings. The results indicated that the deposited layers were cubic polysilicon, and no phase
change occurred during the annealing process at a temperature up to 1300 ◦C. It can be seen
that the intensity of the (400), (331), and (422) diffraction peaks increased significantly after
annealing, compared to those of the as-sprayed Si layers. The enhancement in diffraction
peaks may contribute to the changes in residual stress.
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3.3. Quantification and Distribution of Cross-Section Residual Stress

Six typical coatings were selected to test the residual surface stress via a combination
of X-ray diffraction and Raman spectroscopy, as shown in Table 5. Figure 11 shows the
residual stress–Raman shift results, with linear fitting according to the least squares method.
Using Equation (5), the Raman shift–stress coefficient (P) and the Raman shift with free
stress (ω0) were calculated as −201.41 MPa/cm−1 and 520.591 cm−1, respectively. The
residual stress in the APS Si layer cross-section was then calculated using Equation (8):

σAPS Si layer = −201.41·(ω − 520.591) (8)

Table 5. Measurements of residual stress and Raman shift in typical coatings.

Condition Residual Stress/MPa Raman Shift/cm−1

P0 63.8 ± 14.6 520.28 ± 0.16
PC-1 53.5 ± 12.1 520.27 ± 0.61
PD-1 65.9 ± 18.9 520.39 ± 0.81

800 ◦C-1 h 14.42 ± 10.0 520.41 ± 0.14
1100 ◦C-1 h −45.21 ± 14.9 520.80 ± 0.19
1250 ◦C-1 h −28.09 ± 8.2 520.72 ± 0.31
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Figure 12 shows cross-sectional BSE-SEM images of the as-sprayed silicon layer. Using
the APS process, a uniform and complete silicon coating on the SiC-CMCs was obtained,
with some randomly distributed pores. No apparent defects at the coating/substrate
interface were observed. The Raman test and stress calculation, as well as the determination
of the coating thickness (shown in Figure 12) of the as-sprayed and heat-treated coatings,
were carried out in this study according to Equation (8), and the results are shown in
Figure 13.
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The surface of the as-sprayed Si layer exhibited residual tensile stress. However, the
residual stress changed into compressive stress at a depth of 10–20 µm and then stabilized
along the coating thickness. Compressive stress of 64 MPa appeared near the interface of
the silicon layer and SiC-CMCs. This value was slightly higher than the residual stress of
the silicon layer reported in [37].

Additionally, residual stress distribution was evaluated in the cross-section of the Si
layer annealed at 1100 and 1250 ◦C, as shown in Figure 13. The surface and interior of the
coating both exhibited compressive stress after heat treatment, with the stress values lowest
near the coating surface. Compared with the as-sprayed layer, the compressive stress in the
coating increased more considerably, but there was no obvious difference between 1100
and 1250 ◦C. Furthermore, the high-temperature treatment reduced the stress difference
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between the surface and the interior of the APS silicon layers, resulting in uniform residual
stress throughout the coating area.

4. Conclusions

In this paper, Si layers were prepared on SiC-CMCs using APS technology and different
parameters. The residual stress was tested and calculated by using X-ray sin2ψ technology
coupled with laser Raman spectroscopy, and the microstructure and phase were also
evaluated. The following conclusions were obtained:

(1) The as-sprayed Si coatings prepared in this work exhibited tensile surface stress,
ranging from 53.5 to 65.9 MPa. The spraying distance and the second gas (H2) flow
rate could be considered the most important parameters for controlling residual stress
on the coating surface.

(2) When the annealing temperature reached 800 ◦C, the surface tensile stress of the
as-sprayed Si coating level rapidly decreased and transformed into compressive stress
after 5 hrs. This phenomenon occurred more quickly when the annealing temperature
was higher than 1100 ◦C.

(3) Using a combination of X-ray diffraction and Raman spectroscopy, the Raman shift–
stress coefficient (P) and the Raman shift with free stress (ω0) were calculated as
−201.41 MPa/cm−1 and 520.591 cm−1, respectively, for the APS Si layer.

(4) Based on the calculated P and ω0 values, the residual stress distribution in the cross-
section of the Si layers was analyzed. Compared with the as-sprayed Si layer, the
surface and interior of the coating both showed compressive stress after heat treatment
at 1100 and 1250 ◦C.

Although some results were obtained, this study was preliminary, and more work
needs to be carried out to achieve the control of residual stress accurately for APS Si
coatings.
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