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Abstract: The eligibility of applying the Owens–Wendt approach to determining the free surface
energy of liquid-repellent aluminum surfaces, with micro- and nanotextures formed by a femtosecond
laser, was considered. This approach has been shown to be applicable using two essential parameters
that can be derived from the graphs. The first is related to the fraction of the contact area between
the liquid and the solid surface in the Cassie state. The second is related to the degree of intrinsic
polarity of the surface material or the applied organic modifier. The presented interpretation was
used to compare the liquid repellency of the obtained textures. A microtexture with a period of
60 µm and a groove width of 45 µm has been shown to be the most liquid repellent. Among the
modifiers, 1H,1H,2H,2H-perfluoroctyltriethoxysilane was the most effective, and stearic acid was
only slightly inferior, but promising in terms of cost and environmental friendliness. It was shown
that spontaneous hydrophobization provided a contact angle with water up to 159◦, but the stability
of such textures was inferior to the considered modifiers.

Keywords: functional materials; superhydrophobic surface; laser micro-texturing; nanostructures;
liquid-repellent coatings; alkoxysilanes; surface energy; contact angle; Owens–Wendt approach

1. Introduction

Texturing is an effective way to achieve liquid-repellent surfaces bioinspired by lotus
leaves, reeds, and rose petals [1]. A high throughput of metal surface micro-texturing is
provided by femtosecond laser ablation [2,3]. It also allows the formation of nanotextures,
including highly ordered laser-induced periodic surface structures (LIPSS). The hierar-
chical surface structure makes it possible to realize a stable Cassie wetting state, when a
liquid drop contacts with the protrusions of the texture, and trapped air is located in its
depressions [4,5]. This provides a surface contact angle above 150◦, which is defined as
a superhydrophobic state [6]. An important factor in this case is the intrinsic hydropho-
bicity (non-polarity) of the surface, given that metals are polar surfaces, and their oxides
are predominantly hydrophilic materials [7]. Numerous studies have been devoted to
methods of hydrophobization of textured surfaces, such as treatment in solution, chemical
vapor deposition, as well as the phenomenon of spontaneous hydrophobization, leading
to an increase in the surface contact angle above 160◦ after texturing [8]. Hypotheses
explain this phenomenon by adsorption from the atmosphere and binding on the surface
of hydrocarbons, as well as carbon dioxide [9].

The effectiveness of both induced and spontaneous methods is often assessed by the
contact angle with water, as well as by indicators such as contact angle hysteresis and
rolling angles [10,11]. In some publications, the surface energy of hydrophobic textured
surfaces is also characterized by the Zisman and Owens–Wendt methods, which are more
comprehensive tools for describing the stability of wetting states [12–14]. The first method
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is based on the “one-component” description of the surface energy, i.e., it is well suited
for surfaces without a polar interaction component; the second considers its possibility,
so the two-component method is more informative and, at the same time, difficult to
use [15–17]. In this paper, the second method, which is widely used to determine the
surface energy of polymers, as well as other medium-polarized materials, was considered.
Its use in characterizing chemically modified surfaces is justified by the distance effect of
the manifestation of a surface force field. For example, in references [18,19], the dependence
of the contact angle of the steel surface contaminated with hydrocarbon on the thickness
of such a layer is described. In this case, the surface polarity decreases with an increase
in the amount of adsorbate. The application of the method is complicated by the fact that,
on textured surfaces, where probe liquid drops are in the Cassie state, a transition to the
Wenzel state occurs at a certain value of surface tension [20,21]. That is, the fraction of the
contact surface with the probe liquid drop changes, which means that the graphical solution
of the system of equations loses its meaning. Nevertheless, the method is potentially a
source of valuable information, both in determining the stability limits of the Cassie state,
and, consequently, the quality of the liquid-repellant structure and the characterization of
this state [22]. This necessitates its use in a number of works as an additional method for
characterizing the surface energy.

The purpose of this work was to obtain and interpret the regularities that determine
the shape of the Owens–Wendt plots for aluminum surfaces textured with a femtosecond
laser, and to determine the surface features to which the method is sensitive. The alu-
minum alloy of the 7500 series was chosen as a substrate for obtaining textures due to
its versatility and widespread use in engineering [23]. Obtaining highly effective liquid-
repellent textures on its surface by processing with a femtosecond laser would make it
possible to impart valuable properties such as low adhesion to ice, increased corrosion
resistance, etc. Moreover, laser surface treatment is a solution to one of the fundamental
problems of creating superhydrophobic coatings: the limited scalability of highly ordered
structures [24,25]. It is known that the textures obtained by this method are highly repeat-
able, and water-repellent properties can be specified by the geometry of the cells [26]. The
second essential factor in ensuring superhydrophobicity is the intrinsic hydrophobicity
of the material surface layer [27]. There is a wide range of water repellents for aluminum
substrates, which can be conditionally divided into groups of hydrocarbon compounds,
organosilicon and fluorinated modifiers [28,29]. A feature of the first group is its low cost
and environmental friendliness; the second and third groups have high efficiency [30].
In this work, spontaneous hydrophobization was also investigated. Thus, in addition to
studying the capabilities of the Owens–Wendt method, a comparison of the effect of the
structure on the aluminum surface processed with a femtosecond laser, as well as the
composition of the modifying layers on hydrophobicity, was carried out.

2. Materials and Methods
2.1. Sample Texture Formation

In this study, both micro- and nanotextures were formed using a femtosecond laser (“Car-
bide”, Light Conversion, Vilnius, Lithuania) on a polished surface of samples 20 × 20 mm2 in
size and 2 mm thick, made of 7500 aluminum alloy. The average laser power reached 6 W at
a wavelength of 1030 nm and a repetition rate of 60 kHz with a pulse width of ~360 fs. Both
micro- and nanotextures were formed at a sample speed of 60 mm/s using X-Y linear stages
(Aerotech, Inc., Pittsburgh, PA, USA). During the formation of the nanotexture, the laser
beam was focused on the surface of the sample with a spot diameter of ~80 µm (at 1/e2

level) and a pulse energy of ~46 µJ, which corresponded to an energy density of ~0.9 J/cm2.
The laser spots overlapped on the sample by ~60% with continuous scanning and a step
between adjacent passes of 30 µm. To engrave microtextures, the laser beam was sharply
focused into a spot with a diameter of ~5 µm (at 1/e2 level), and the laser pulse energy
varied from ~21 µJ to ~35 µJ, which corresponded to an energy density from ~107 J/cm2

to ~178 J/cm2. The microtexture for sample “M” was in the form of pyramids, and for
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samples “B”, “C”, and “E”, it was in the form of linear grooves. The void-shaped texture
was not used due to low efficiency [31]. A blank degreased aluminum plate was used as
a reference surface. The laser processing parameters were optimized to achieve the best
performance and minimum sample contamination under the limitations of the power and
energy of the laser source. A more detailed description and layout of laser processing was
given in [32].

After texturing, the samples were stored in room conditions in a container (polypropy-
lene box with a volume of 3 L) to protect them from contamination with airborne dust. The
samples were stored for 2 months at atmospheric pressure and room temperature (22 ◦C).

2.2. Chemical Surface Treatment

The following modifiers (“Alfa Aesar”, Thermo Fisher, Kandel, Germany) have
been used to reduce the surface energy of laser textured surfaces: 1H,1H,2H,2H-per-
fluoroctyltriethoxysilane (POTS) (CAS 51851-37-7); Octyltrimethoxysilane (OCTEO) (CAS
3069-40-7); Stearic acid (CAS 57-11-4); and Squalane (CAS 111-01-3). This choice of modi-
fiers is justified by the fact that POTS is one of the most common agents and is the most
effective [33,34], while OCTEO is an analogue and fluorine-free replacement for POTS,
which makes this option more environmentally friendly for use [35]. Before treatment, the
samples were repeatedly rinsed with isopropyl alcohol and dried in an oven at 80 ◦C for
15 min. For treatment with POTS/OCTEO, the samples were immersed in 1 wt.% solution
of isopropyl alcohol for 30 min at room temperature and dried in an oven at 130 ◦C for
30 min [36]. For treatment with stearic acid/squalane, the samples were immersed in
0.5 wt.% isopropyl alcohol solution of stearic acid and 0.5 wt.% xylene solution of squalane
for 30 min at room temperature and dried in a desiccator at 65 ◦C for 30 min.

2.3. Surface Characterization

The surface topography of the obtained samples was studied using a “MIRA3 LMU”
scanning electron microscope (Tescan, s.r.o., Brno, Czech Republic) and a “MarSurf PS 10”
tactile profilometer (Mahr GmbH, Goettingen, Germany). Determination of the contact
angle was performed using the sessile drop technique. An optical microscope and an
H5D digital camera (Delta Optical, Shanghai, China) with the “ScopeTek View” software
(version 1.0.0.1, ScopeTek Optics Electronics, Hangzhou, China) were used to obtain photos
of liquid droplets. Measurements were taken at least at 5 different locations on the sample
surface. The measurements were carried out by applying drops of probe fluid with a
volume of 5 ± 0.5 µL, which were carefully applied to the surface with a micropipette
under room conditions (temperature 22 ◦C and relative humidity ~50%). Samples were
dried for 5 min at 60 ◦C in an oven before applying new sample fluid. In the case of linear
textures, the contact angle was measured in the longitudinal direction of the microgrooves.
Water–ethanol mixtures were used as probe liquids when plotting the Owens–Wendt
graph to achieve greater measurement resolution compared to particular liquids. The
surface tension values of the water–ethanol probe liquids were measured individually with
decomposition performed by paraffin calibration. The surface tension of probe liquids was
calculated using the dependencies from [37]. The elemental composition of the surface was
determined using an X-ray energy dispersive spectrometer (EDS) (“INCA X-ACT”, Oxford
Instruments, Abingdon, UK).

2.4. Owens–Wendt Method

The Owens–Wendt method is based on the free surface energy Equation (1) [17]:

σSL = σS + σL − 2
(√

σD
S σD

L +
√

σP
S σP

L

)
(1)

where σSL is the surface energy at the solid–liquid interface; σS is the surface energy at
the solid–air interface; σL is the surface tension of the liquid; and the indices D and P
correspond to the dispersed and polar components of the surface energy. Its practical
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modification (2) is reduced to the straight-line equation. This provides the possibility of the
graphical solution of the system of equations and approximation of experimental data.

σL(1 + cosθ)

2
√

σD
L

=

√
σP

S

√
σP

L√
σD

L

+
√

σD
S (2)

The graphical method in this case consists of plotting the dependence σL(1 + cosθ)/

2
√

σD
L = f

(√
σP

L /
√

σD
L

)
and its approximation by a straight line. The slope of this line

allows the calculating of
√

σP
S and the intersection with the ordinate axis indicates

√
σD

S .

3. Results and Discussion
3.1. Owens–Wendt Plot on Micro- and Nanoscale Textures

To assess the effect of surface texture on the results obtained by the Owens–Wendt
method, two levels of textures were used: micro and nano. The pattern of the microtextured
sample (Figure 1a) was formed by square pillars. The period of this texture was 45 µm with
a pillar width of 30 µm. The nanotextured sample (Figure 1b) was formed by a disordered
structure of intergrown 150–200 nm crystals. The obtained samples were treated with
octyltrimethylsilane to reduce the surface energy.
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Figure 1. Sample surfaces examined under a scanning electron microscope (SEM, 20 kV, SE detector)
after laser processing: (a) with microtexture and (b) with nanotexture.

The Owens–Wendt plots for both textured surfaces (Figure 2) cannot be approximated
by a straight line, as is possible in accordance with the classical approach. However, for a
flat surface with the same treatment, it was determined that the dispersed component of
the surface energy σD

S is 18.0 mN/m, and the polar one σP
S is 2.4 mN/m, which correlates

with previous measurement results [38].
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referred to as “plateau” in the range
√

σP
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√

σD
L above 0.6, corresponds to the wetting

plateau, when the contact angle for the nanostructure is maintained in the range from 155◦

to 160◦, and for the microstructure from 140◦ to 145◦. The second is at
√

σP
L /
√

σD
L below

0.6, which probably corresponds to the transition between the Cassie and Wenzel wetting
states, which is typically followed by a decrease in the surface water contact angle [39].

The “plateau” wetting state may be described by the Cassie-Baxter Equation (3), which
takes into account the dependence of the contact angles on the fractional composition of
the contact surface:

cosθapp = f1cosθ1 + f2cosθ2 (3)

where cosθapp is the contact angle of a two-phase heterogenous surface, f1 and cosθ1 are
the surface fraction and contact angle of the first phase, and f2 and cosθ2 are the surface
fraction and contact angle of the second phase (air). If θ2 was considered to be 360◦, then
cosθ2 = 1.

In the transition state, the distribution of the fractions of the contact area of the droplet
with air and the modified surface changes. That is, for such surfaces, when using the
sessile drop technique for each probe liquid, the unique surface contact angle is measured
with its values f 1 and f 2 from the Cassie equation. Since the fractional composition of the
composite surface (the ratio between f 1 and f 2) differs for each probe liquid, especially
during the wetting transition, each point of the graph corresponds to its own pair of polar
and dispersion components. Hence, the classical Owens-Wendt graphical approximation
loses its meaning for textured samples, where a wetting transition can be observed.

However, if we assume that, in the plateau region, the contact angle of the probe
liquid with the substrate remains constant at a given measurement accuracy, then the use of
graphical approximation can still be justified. Furthermore, given that the studied surfaces
have a negligible polar component, i.e., σP

TS→ 0, it is possible to determine the value of
the dispersion component of the composite surface energy (textural irregularities and air
pockets) σD

TS in Equation (4) of the considered surfaces (Table 1):

σL
(
1 + cosθapp

)
2
√

σD
L

=
√

σD
TS (4)
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Table 1. Characteristic parameters of micro- and nanotextures.

Sample σD
TS σD

S σD
TS/σD

S , % Critical σP
L

M + OCTEO 1.00 18.0 5.56 9.96
N + OCTEO 0.17 18.0 0.94 9.96

The values of σD
TS, determined in this way, are significantly lower than the intrinsic

disperse component of the material σD
S . This can be explained by the fact that a significant

part of the droplet’s contact with the surface falls on air, the surface tension of which is
assumed to be zero [40,41]. The ratio σD

TS/σD
S can thus be used as a measure of the reduction

in interfacial contact and is inherently related to the ratio of the parameters of the Cassie
equation f 2/(f 2 + f 1).

The second informative parameter of the graph is the coordinate of the beginning of
the wetting transition. In the work, it is characterized by the value of the polar component
of the surface tension of the probe liquid σP

L where the plateau ends.
The σD

TS/σD
S parameter is sensitive to texture geometry. For example, when passing

from a microstructure to a nanostructure in Figure 2, it decreases by almost five times,
which can be explained by a decrease in the fraction of the liquid–material interfacial
contact f 1.

The value of σP
L is related to the minimum surface tension at the beginning of the

wetting transition, which can be determined, for example, by the Zisman method, as was
shown in [32].

3.2. Owens–Wendt Plots as a Tool for Comparing the Water Repellency of Microtextures

When comparing liquid-repellent textures of different levels of organization, a more
subtle analysis of their quality within the level is of particular interest. Below, unidirectional
microtextures with varying period and width of the grooves have been considered (Table 2).
The geometry of the obtained structures was confirmed by profilometry (Figure 3).

Table 2. Sample texture parameters.

Sample Microtexture

B period 45 µm groove width 20 µm
C period 57 µm groove width 20 µm
E period 60 µm groove width 45 µm

The surface of the laser-processed samples was formed by two levels of rough-
ness, whereby the main microrelief (Figure 4a) was supplemented by a submicron level
(Figure 4b) at the tops of the protrusions and in the depressions. The appearance of a finer
texture on the metal surface is a common artifact in femtosecond laser processing [42]. In
this case, the second level of texture forms the edge on the microprotrusions. A characteris-
tic feature of the sample in Figure 4 is the small width of the protrusions (15 µm), which
causes the edges to merge.

To compare the water repellency of these textures, stearic acid was used as a hydropho-
bizer in all samples. Its Owens–Wendt plot shows that the total surface energy on a flat
surface is 33.7 mN/m. In this case, the polar component is 8.4 mN/m, and the dispersion
component is 25.3 mN/m. This is partially consistent with the order of values from [43,44].

The appearance of the graph for textured surfaces turned out to be quite sensitive to
the geometry of the microtexture (Figure 5). When passing from samples “B” and “C”,
with a groove width of 20 µm, to sample “E”, with a groove of 45 µm, a “plateau” fell,
corresponding to an increase in the contact angles. It should be noted that the parameter
f 2 in the Cassie equation for sample “E”, provided that it is considered exclusively as a
microtexture, is 0.75, and for “B” and “C” it is 0.44 and 0.35, respectively.
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Figure 4. Periodic textures on samples examined under a scanning electron microscope (SEM, 10 kV,
SE detector): (a) demonstrating a microrelief and (b) showing the submicron level.

The value of the parameter σD
TS/σD

S (Table 3), however, does not strictly correlate with
the above values of f2. It should be taken into account that these values of f2 were calculated
based on the geometric model of the microtexture sample. An error in such calculations
can be introduced by the nanotexture along the edges of the grooves, and the fraction of
the surface occupied by it increases when passing from sample “B” to sample “E”.
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Table 3. Characteristic wetting parameters of stearic acid treated linear microtextures.

Sample (Figure) σD
TS σD

S σD
TS/σD

S , % Critical σP
L

B + Stearic acid (Figure 5) 1.82 25.3 7.19 9.3
C + Stearic acid (Figure 5) 1.16 25.3 4.58 9.3
E + Stearic acid (Figure 5) 0.24 25.3 0.94 9.3

The polar component of the critical surface tension of textures σP
L remains constant

at the level of 9.3 mN/m regardless of the change in texture geometry. This fact indicates
the main influence of the material’s intrinsic surface energy on the position of the wetting
transition point. The next section of the paper is devoted to verifying this conclusion.

3.3. Characterization of the Effectiveness of Hydrophobic Agents in the Formation of
Liquid-Repellent Properties of Textured Surfaces

The stability of the liquid repellency effect is largely determined by the nonpolarity of
the chemical layer of the modifier on the textured surface [45–47]. To evaluate this effect
on the appearance of the Owens–Wendt graph, the most efficient structure from those
considered in Section 3.2 was selected (sample “E”).

Besides the selected hydrophobizers, the surface energy of the textured samples was
also evaluated after exposure in the laboratory for 2 months, which led to spontaneous
hydrophobization at a water contact angle of 159◦. The increased carbon content over the
entire surface (Figure 6 and Table 4) confirmed the absorption of hydrocarbons from the
atmosphere. At the same time, it is noticeably greater on the surface of the protrusions
(areas 2 and 4). This surface is also characterized by almost five times the oxygen content
compared to the depressions (areas 1 and 3).

Table 4. Elemental composition (wt.%) of the surface in the scanning area according to the analysis of
energy dispersive spectroscopy (EDS).

Area C O Mg Al

1 11.40 8.04 3.41 77.15
2 13.32 38.90 6.04 41.74
3 10.12 6.58 3.22 80.08
4 14.93 28.27 4.52 52.28
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Figure 6. Texture scan areas on sample “E” using EDS analysis.

As seen in Figure 7, the sample surface after spontaneous hydrophobization has the
highest value of σP

L (Table 5), which indicates its low resistance to the wetting transition,
that occurs even with a slight decrease in the surface tension of the probe liquid. Its plateau
is narrow, and it was assumed that it is reached at a point corresponding to water as a
probe liquid.

Table 5. Characteristic wetting parameters of linear microtextures.

Sample (Figure) σD
TS σD

S σD
TS/σD

S , % Critical σP
L

E + 2 months (Figure 7a) 0.58 22.7 2.56 30.6
E + Stearic acid (Figure 7b) 0.24 25.3 0.94 9.3

E + Squalane (Figure 7c) 5.61 24.4 22.9 11.0
E + POTS (Figure 7d) 0.11 21.0 0.52 8.0

On the contrary, samples with the same texture after chemical modification retain their
liquid-repellent properties in a much wider range of surface tensions. Moreover, the treated
samples can be ranked in order of widening the plateau: squalane—stearic acid—POTS,
which can clearly be seen from a comparison of the respective values of σP

L (Table 5).
The parameter σD

TS/σD
S is sensitive both to the geometry of the texture and to the

polarity of the hydrophobizer layer. Its high anomaly value is observed in the case of
squalane. A possible reason for the latter is the accumulation of an excess of this modifier
in the depressions of the texture, which significantly reduces its roughness.

To test this assumption, stearic acid, which proved to be an effective modifier in a thin
layer, was applied to sample “E” from solutions with increasing concentration, assuming
a corresponding increase in the thickness of the modifier layer. The lowest value of the
parameter σD

TS/σD
S of 0.94 is achieved at a solution concentration of 0.5 wt.% (Figure 8) and

increases with increasing concentration. This can be explained by the fact that, at lower
concentrations (less than 0.5 wt.%), the modifier may not be sufficient to completely screen
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the surface while, at higher concentrations, it smoothed out the texture relief, demonstrating
the same effect as with the case of squalane.
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Thus, it can be concluded that the considered parameter σD
TS/σD

S depends, to a greater
extent, on the geometric features of the surface than on its polarity. This parameter, as
follows from Equation (4), is derived from the value of the contact angle and the value of
the dispersed component of the surface energy of the modifier layer.

The position of σP
L is much more sensitive to the type of hydrophobic agent: surfaces

treated with POTS and OCTEO turned out to be the most stable from this point of view.
Stearic acid showed unexpectedly good stability along with silane modifiers. A surface
treated with squalane showed reduced resistance to wetting by non-polar liquids. The
spontaneous hydrophobized surface demonstrated the worst stability. This is consistent
with the results of references [48,49], where the low resistance of such surfaces to envi-
ronmental factors was confirmed, in particular, due to the rather small thickness of the
modifier layer.
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4. Conclusions

It has been shown that the Owens–Wendt method can be used to estimate the liquid-
repellency of textured surfaces by mainly applying two significant parameters. The first one
is σD

TS/σD
S , related to the area fraction of the liquid–solid interface in the Cassie state. The

efficiency of the liquid-repellent texture increases as this parameter decreases. The second
parameter is the minimum value of the polar component of the surface tension for the
probe liquid σP

L , when the transition from the Cassie state to the Wenzel state begins. This
parameter is most sensitive to the type of texture modifier, and it decreases as efficiency
increases. The most efficient microtexture with a period of 60 µm, and a groove width of
45 µm, has been experimentally demonstrated. In this case, the formation of an artifact
edge on the protrusion area increases the water repellency. POTS turned out to be the
most effective liquid-repellent modifier, although stearic acid, promising in terms of cost
and environmental friendliness, was only slightly inferior to it. Although spontaneous
hydrophobization ensured the surface water contact angle up to 159◦, the low stability of
such textures compared to the studied modifiers hinders their practical application.
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