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Abstract: This work focuses on the evolution of the morphology and structure of La2NiO4 (namely,
LNO) coatings deposited by reactive magnetron sputtering (RMS) with subsequent annealing pro-
cesses. The LNO coatings start to crystallize at 600 ◦C, and the LNO with K2NiF4 structure was
formed at 700 ◦C. A small amount of La3Ni2O7 appeared in the La2NiO4 coatings at 1100 ◦C. Inter-
estingly, the LNO coatings realize the transformation from dense to different porous morphologies
due to the annealing process. The LNO coating with abundant pores was formed after annealing
treatment at 1000 ◦C for 2 h. This porous morphology can be stably maintained after short-term
thermal stability experiments at 750 ◦C for 120 h. The electrochemical impedance spectroscopy (EIS)
measurement of the LNO/YSZ/LNO symmetrical half-cells shows that the LNO cathode coating
after annealing at 1000 ◦C for 2 h exhibits lower polarization resistance (Rpol) and activation energy.

Keywords: reactive magnetron sputtering; annealing; morphological evolution; electrochemical
impedance spectroscopy; IT-SOFC

1. Introduction

As an energy conversion device, the solid oxide fuel cell (SOFC) can directly convert
chemical energy into electrical energy. However, the SOFC working in the high tempera-
ture range of 800–1000 ◦C causes high cost in materials and challenges in compatibility [1].
The last generation of solid oxide fuel cells operating at intermediate temperatures (IT,
500–750 ◦C) can alleviate these drawbacks and increase the cell lifetime [2]. However,
the low operating temperature leads to the catalytic activity for the oxygen reduction
reaction (ORR), which in turn degrades the cell performance. To address this issue, con-
siderable efforts have been devoted to developing novel materials with enhanced ORR
performance [3–5]. Some materials such as La1-xSrxCo1-yFeyO3-δ (LSCF), La0.6Sr0.4CoO3-δ
(LSC), La0.8Sr0.2MnO3 (LSM), Sm0.5Sr0.5CoO3-δ (SSC), or Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)
have been proposed as the cathode [6–8]. Unfortunately, these cathode materials were still
not perfect for practical applications, mainly due to insufficient ORR activity or stability,
and/or incompatibility with other cell components (electrolyte or interconnectors). On the
other hand, in attempts to find new materials that can be used as cathodes for IT-SOFC, a
class of perovskite-type materials with K2NiF4 structure has received more attention due to
their mixed ionic and electronic conductivity (MIEC) [9]. La2NiO4 is a typical K2NiF4-type
material that exhibits excellent performance on surface oxygen exchange and chemical
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stability from room temperature up to 1300 ◦C [10,11]. In addition, the thermal expansion
coefficient of La2NiO4 (13.0 × 10−6 K−1) is close to that of the commonly used electrolyte
yttria stabilized zirconia (YSZ, 11.6 × 10−6 K−1) and ferritic steel interconnect materials
(11.0–12.5 × 10−6 K−1) [12,13]. The application of La2NiO4 to half cells and single cells
with different electrolytes has been studied and has shown interesting results. The Rp of
La2NiO4 in a symmetrical cell configuration are 5.2 Ω·cm2 [14] and 2.2 Ω·cm2 [15] at 600 ◦C
in air, which is much lower than 72.54 Ω·cm2 for La0.8Sr0.2MnO3 (LSM) [16].

Physical vapor deposition techniques are widely used to deposit dense electrolyte
layers [17] or barrier layers [18] in the field of SOFC. Recently, cathode coatings deposited
by this technique have also gained attention [19,20]. Previous work in our laboratory
has demonstrated that Ln2NiO4 (Ln = La, Pr, Nd) coatings as the cathode on the half-cell
and/or single cell can be successfully synthesized by RMS with promising results [10,20,21].
However, the morphology evolution of the coatings deposited by magnetron sputtering
deserves further investigation in order to obtain suitable porous structures. This is helpful
to further promote the application of magnetron sputtering in SOFC cathode preparation.

This work focuses mainly on the exploration of the synthesis of a porous LNO cath-
ode by RMS. The evolution of the morphology and structure of the LNO coating was
investigated as a function of the annealing treatment temperature. The electrochemical
performance of LNO cathodes with different morphologies was evaluated by measuring
the electrochemical impedance spectroscopy of LNO/YSZ/LNO symmetric cells. The link
between the electrochemical performance and morphology of LNO cathodes deposited by
magnetron sputtering is demonstrated. This work can provide a reliable reference for the
synthesis of porous SOFC cathode layers by magnetron sputtering.

2. Experimental Procedure
2.1. Deposition Device

The DC reactive magnetron sputtering technique was used to synthesize La2NiO4
material by using metallic La and Ni targets with a purity of 99.9% (φ145 × 6 mm) in a
mixture atmosphere of argon and oxygen. A 90 L sputtering chamber vacuumed by a
turbo molecular pump allowing less than 10−5 Pa as the base vacuum was used. The argon
and oxygen flow rates were controlled by using Brooks flowmeters, and the total pressure
measurement was performed via an MKS Baratron gauge. The substrates were positioned
on a substrate holder at the draw distance of 70 mm parallel to the sources and rotated to
ensure a homogenous deposition. The targets mounted on the unbalanced magnetron were
powered through pulsed DC generators allowing the power discharge control. Alumina
ceramic and yttria stabilized zirconia (YSZ) pellets as well as glass slides were used as
substrate supporting coating to measure various properties such as structure, conductivity,
chemical composition, electrical properties, and optical transmittance. All substrates were
cleaned with alcohol and soap, and then rinsed with water and dried prior to deposition.

2.2. Characterization

The morphology and composition of the coatings were characterized by scanning
electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) via a JEOL
JSM 5800 LV. The pore size distribution of the coating was obtained from the SEM results by
using Nano Measurer 1.2. The structure of the coatings was determined by X-ray diffraction
(XRD, BRUKER D8) with Co-Kα1+α2 at 35 kV and 40 mA. The diffraction patterns were
collected at room temperature in the angle range of 20◦ ≤ 2θ ≤ 90◦ with a scan step of
0.019◦. The thickness of the coatings was measured using an Altysurf profilometer allowing
an accuracy of about 20 nm. A UV-visible-NIR Shimadzu VU-3600 spectrophotometer
controlled by UV probe 2.33 software was used to measure the optical transmittance of the
coatings deposited on the glass substrate.

The four-point probe method was used to measure the electrical conductivity of the
coatings deposited on alumina substrates by using Agilent 3458 A with four Pt aligned
electrodes. The two outer probes act as current-carrying electrodes (I1, I2), while the two
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inner ones are used to measure the voltages (E1, E2). The LNO/YSZ/LNO symmetric
cells were used for EIS experiments through a Solartron 1260 impedance/gain-phase
analyzer equipped with a furnace (Pekly, Thions Gardais, France) allowing temperatures
from room temperature to 1000 ◦C under ambient air. One side of the symmetrical cell
is in contact with a platinum plate, and the other side is placed with a platinum grid to
ensure electrical contact. The EIS measurements were performed in the frequency range
of 1 MHz–1 Hz with an amplitude voltage of 0.2 V under ambient air in the temperature
range of 700–900 ◦C. The impedance spectra data were fitted by Z-View 3.5 software to
extract impedance information.

3. Results and Discussion
3.1. Deposition of La–Ni–O Coatings

A transition of deposition mode (metallic mode ↔ oxide mode) occurs with the
oxygen flow rate during the reactive deposition of oxide coatings by magnetron sputtering.
Depending on the reactivity of the metal–metalloid system, the sputtering mode as a
function of oxygen flow rate can be unstable, with the presence of a hysteresis loop.
Figure 1 shows the discharge voltages of La and Ni targets as a function of oxygen flow
rate under the applied discharge currents of 2.5 A and 0.5 A, respectively. Both curves
present a hysteresis loop. For the lanthanum metallic target (Figure 1a), the target operates
in the metallic mode up to an oxygen flow rate of 9 sccm, with a rather high deposition
rate and a partial oxidation of the coating. A further increase in oxygen flow rate yields the
drop of target voltage, which corresponds to the full target oxidation. Deposition in the
so-called oxide mode with a sharp decrease in the deposition rate yields a fully oxidized
coating. While decreasing oxygen flow rate, the target still operates in the oxide mode.
When the oxygen flow rate continues to decrease between 2.0 and 2.5 sccm, the deposition
mode returns to the metal mode. Likewise, a similar curve is observed on the Ni metallic
target (Figure 1b) with a narrow unstable domain of the Ni–O system. With increasing
oxygen flow rate, the metallic-to-oxide sputtering mode transition occurs between the
oxygen flow rate of 1.5 and 2, while the opposite oxide-to-metallic transition appears
between the oxygen flow rate of 1.5 and 2 by decreasing the oxygen flow rate from the
oxide mode. Figure 2 shows the SEM cross-sections, deposition rate, and transmittance of
three La–Ni–O coatings deposited under a rather high pressure of 2.4 Pa using an argon
flow rate of 200 sccm. Oxygen flow rates were chosen in the metallic mode (oxygen flow
rate of 1 sccm) and in the oxide mode (oxygen flow rate of 12 sccm) for both La and Ti
targets. A third coating was deposited in the intermediate domain (oxygen flow rate of
6 sccm) of the hysteresis loop for the La target with a setpoint maintained in the oxide
mode. From Figure 2a, the coating deposited under the metallic mode (oxygen flow rate
of 1 sccm) presents a rather high deposition rate of 39.26 nm/min. As expected, the
coating presents a metallic aspect with a strong light absorption (Figure 2d). The coating
deposited under the oxide mode (oxygen flow rate of 12 sccm) presents a strong drop of
the deposition rate (around 2.9 nm/min) conformal to the full oxidation of both La and
Ni targets (Figure 2c). Its transmittance is weak at the wavelength up to about 600 nm
and progressively increases with the wavelength to reach about 70% in the near-infrared
domain at a 2500 nm wavelength (Figure 2d). The coating deposited under the oxygen
flow rate of 6 sccm presents characteristics close to that of the coating deposited under
the oxygen flow rate of 12 sccm: It has a higher deposition rate of around 6.3 nm/min
(Figure 2b) and transmittance comparable to coatings deposited at the oxygen flow rate of
12 sccm (Figure 2d).

3.2. The Structure and Morphology Evolution of the La–Ni–O Coatings with the La/Ni Atomic
Ratio of 2.04

Based on the above analysis, the La2NiO4 coatings were deposited in the intermediate
domain, and the deposition parameters that allow a coating with a La/Ni atomic ratio
of 2.04 are shown in Table 1. The coatings were deposited by co-sputtering of La and Ni
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metallic targets under the mixed Ar/O2 of 200/6 sccm. Previous work in our laboratory
has shown that La2NiO4 coatings can be successfully synthesized by controlling the La/Ni
atomic ratio close to 2 followed by suitable annealing treatment [20]. According to the
Thornton’s diagram revised by Anders [22], the morphology of the coatings becomes less
dense as the average energy of the impinging species decreases by increasing the deposition
pressure. Previous works have shown that dense La2NiO4 coatings are deposited under a
low pressure of 0.4 Pa [21]. The present work was carried out at a higher pressure of 2.4 Pa
followed by an annealing treatment in order to obtain the appropriate porous coatings.
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Table 1. Sputtering parameters for deposition of La–Ni–O coatings with the La/Ni atomic ratio
of 2.04.

Parameters La Target Ni Target

Ar flow rate (sccm) 200 200
O2 flow rate (sccm) 6 6
Total pressure (Pa) 2.4 2.4

Drawing distance (mm) 70 70
Power (W) 500 102

Frequency (kHz) 50 50
Toff (µs) 5 5

The as-deposited coatings were amorphous (Figure 3). Successive annealing treat-
ments were realized under air for 2 h from 500 ◦C to 1100 ◦C, with steps of 100 ◦C, in order
to obtain their crystallization. Annealing at 500 ◦C is characteristic of atomic rearrange-
ments since the position of the maximum of the continuous background modulation shifts
from about 34◦ to 38◦. The coating starts to crystallize toward the La2NiO4 phase at 600 ◦C,
while a relatively complete La2NiO4 phase appears at 700 ◦C. This can be judged from
the appearance of two main peaks at 36.7◦ and 38.5◦ ascribed to the La2NiO4 phase. An
ideal La2NiO4 coating with K2NiF4 structure can be obtained at 800 ◦C, which is consistent
with the literature results [20]. Interestingly, a La3Ni2O7 phase appeared after annealing at
1100 ◦C. This may promote the conductivity of the coatings due to the appearance of higher-
order Kn+1NinO3n+1 [23]. Additionally, the average grain size of the coating increases with
the annealing temperature (Table 2). In particular, the average grain size increases sharply
at 700 ◦C.
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Table 2. Average grain size of samples subjected to different annealing treatments.

Annealing Treatment Average Grain Size (nm)

As deposited 1.9
500 ◦C for 2 h 3.7
600 ◦C for 2 h 5.1
700 ◦C for 2 h 27.0
800 ◦C for 2 h 32.0
900 ◦C for 2 h 36.2
1000 ◦C for 2 h 42.9
1100 ◦C for 2 h 71.2

1000 ◦C 2 h–750 ◦C 120 h 47.6
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The morphological features of the coatings deposited on alumina plates were charac-
terized by scanning electron microscopy with a backscattered electron detector (SEM-BED).
Figures 4 and 5 shows the top surface and cross-section morphologies of the coatings as
the annealing progresses. For the as-deposited coating, the morphology reproduces the
alumina substrate roughness. Columnar growth was observed from the cross-section,
which is consistent with the characteristics of general coatings deposited by magnetron
sputtering. In addition, the coatings cover the substrate tightly and exhibit good adhesion.
As the annealing temperature increased, the morphology of the coatings changed. The
micro (or nano) pores began to appear in the coating near the alumina substrate at 700 ◦C
with a whole volume that does not change much up to 900 ◦C (Figures 4d–f, 5d–f and 6).
These pores should come from the elimination of intrinsic atomic-scale defects. At this
time, the pores were not open, which was not conducive to oxygen diffusion. A porous
morphology of a large size was observed on the top surface of the coating after annealing at
1000 ◦C (Figure 4g). Pores in the top surface of the coating after annealing at 1000 ◦C with
a diameter between 20 and 120 nm occupy more than 90% (Figure 7a). As the annealing
temperature increased to 1100 ◦C, the number of pores on the top surface of the coating
decreased, but their size further increased (Figure 4h). The pore size of the coating after
annealing at 1100 ◦C is concentrated mainly between 50 and 250 nm, accounting for more
than 90% (Figure 7c). For the porous morphology, the cross-section of the coatings from
1000 ◦C to 1100 ◦C shows the same phenomenon as the top surface (Figures 4g–h and 7b,d).
As the annealing temperature increases, the grain size increases, which in turn causes the
micron (nano) pores to be aggregated into macropores accompanied by volume increase
(Figure 6). Moreover, there are channels between the pores inside the coating, which is
conducive to oxygen diffusion (Figure 4g,h). However, increasing the pore size reduces the
number of small pores (from 1000 to 1100 ◦C), which may reduce the specific surface area
inside the coating.
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A short-term stability experiment was performed to examine the stability of the
coating. The coating deposited on the alumina plate after annealing at 1000 ◦C for 2 h was
continuously annealing at 750 ◦C for 120 h. The structure and the porous morphology of
the coating were assessed by XRD and SEM, respectively, as shown in Figures 8 and 9. The
porous morphology of the coating was still well maintained (Figure 8a). Figure 8b shows
that the number of the pores of the top surface in the larger pore size range (120–240 nm)
was slightly increased compared to Figure 7a. However, the pore size distribution of the
cross-section is still concentrated mainly in the 20–120 nm range. On the other hand, no
obvious difference was observed in the cross-section (Figure 8c,d) of the coating compared
to Figures 4g and 6b. This suggests that the porous morphology of the coating obtained
after annealing at 1000 ◦C for 2 h remains relatively stable. The XRD result indicates the
chemical stability of this coating at 750 ◦C (Figure 9), but the average grain size is increased
(Table 2).
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Figure 9. XRD measurements of La2NiO4 coatings after annealing at 1000 ◦C in air for 2 h followed
by annealing at 750 ◦C in air for 120 h.

3.3. Electrical and Electrochemical Properties of the La2NiO4 Coatings

The coatings undergo crystallization, structure change, and morphology evolution
during annealing treatments, which may affect their performance. In this work, the elec-
trical conductivity of LNO coatings subjected to different annealing treatments and the
electrochemical behavior of LNO/YSZ/LNO symmetric half-cells were assessed. The
electrical conductivity of the LNO coatings deposited on alumina plates after different an-
nealing treatments was analyzed by the four-point probe method under air (Figure 10). The
electrical conductivity of LNO coatings undergoes three stages as a function of the anneal-
ing temperature. It first increases with the annealing temperature up to 700 ◦C, which may
be attributed to the crystallization of the coatings. From 700 ◦C to 1000 ◦C, a decrease in
electronic conductivity of the coating was observed, which may be affected by its increasing
number of pores. The formation of higher-order phases (La3Ni2O7) may be an important
factor for the increase in the electronic conductivity observed from 1000 ◦C to 1100 ◦C [23].
Therefore, the electronic conductivity of the coating was affected by crystallization, phase
nature, and morphology.
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To determine the electrochemical performances of the coatings as a function of the
annealing temperature, coatings with thickness of 1.6 µm were deposited on both sides of
the YSZ plates, named LNO−1 (annealing at 900 ◦C), LNO−2 (annealing at 1000 ◦C), and
LNO−3 (annealing at 1100 ◦C), respectively. Electrochemical impedance spectroscopy (EIS)
measurements of the LNO/YSZ/LNO symmetric half-cells were performed under air from
700 ◦C to 900 ◦C by steps of 50 ◦C. These EIS experiments were carried out with a voltage
amplitude of 0.1 V in the frequency range from 10 MHz to 1 Hz with 11 points per decade.
The impedance of all cells was normalized by multiplying the superficial area (0.1 cm2).

Nyquist plots of the symmetric half-cells obtained at 750 ◦C for LNO−1, LNO−2, and
LNO−3 are shown in Figure 11. Three contributions are identified in the high, medium,
and low frequency ranges. The contribution in medium and low frequency ranges can
be explained as follows [24–26]: (i) the semicircle in the medium frequency range (MF)
was attributed to the transfer of O2− from the electrode to the electrolyte; and (ii) the large
depress arc in low frequency range (LF) represents an oxygen adsorption/dissociation
step overlapping with the diffusion process. Generally, high frequency resistance (Rs)
was attributed to electrolyte resistance. To facilitate analysis of the LNO cathode, Rs was
removed. The contributions appearing in MF and LF ranges corresponding to that of the
LNO electrode were fitted by an equivalent circuit consisting of two Resistance–Constant
Phase Elements (R-CPE) in parallel, associated in series (see Figure 11).
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The Nyquist plots were fitted by Z-View software, where the open symbols represent
the experimental measurements, and the green lines represent the fitting results. Relevant
resistance and capacitance information were extracted from the fitting results to calculate
polarization resistance, activation energy, and equivalent capacitance. The polarization
resistance was calculated by the Formula (1):

Rp =

(
(RMF + RLF)× S

2

)
(1)
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where RMF and RLF were the resistance values at the MF and LF ranges, respectively, and S
is the superficial area (0.1 cm2).

The activation energy (Ea) for electrochemical behavior was calculated according
to the Arrhenius relation from the slope of the curve Ln R = f (1000/T). The equivalent
capacitance (Ceq) was calculated using Formula (2):

Ceq = Re
1−n

n ×CPE
1
n (2)

where R was the electrical resistance, n, the decentering parameter of the Constant Phase
Element, and CPE, the capacitance of the Constant Phase Element.

Figure 12 presents the Rp calculated from EIS measurements from 700 ◦C to 900 ◦C
for LNO−1, LNO−2, and LNO−3. The Rp of all the samples decreased with increasing
temperature. LNO-2 and LNO-3 exhibit lower Rp than LNO−1, which may be attributed
to the porous morphology if we refer to previous work [9]. At an intermediate temperature
(700 ◦C), the Rp of LNO−2 is 2.37 Ω·cm2, which is in agreement with the 4.0 Ω·cm2 of
Zhao et al. [27], the 7.77 Ω·cm2 of Escudero et al. [28], and the 2.1 Ω·cm2 of Benamira
et al. [29]. For the activation energy of electrochemical phenomena, LNO−2 shows the
lowest value of 0.44 eV compared to LNO−1 and LNO−3, which is close to the previous
work of 0.4 eV and lower than the values of the literature (Table 3).
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Table 3. The activation anergy of LNO−1, LNO−2, and LNO−3.

Samples Ea Calculated from Rpol (eV)

LNO−1 0.67
LNO−2 0.44
LNO−3 0.89

LNO 1.47 [25], 1.2 [26], 1.0 [28], 0.4 [9]

Furthermore, Figures 13 and 14 present the Arrhenius plots of Rp and equivalent
capacities at the MF and LF ranges, corresponding to different electrochemical responses. It
can be seen from Figure 13 that LNO−1 has the highest Rp in the LF range, which may be
limited by the O2 diffusion caused by the closed micro (nano) pore morphology. Similarly,
LNO−3 exhibits the lowest Rp in the LF range, thanks to the porous morphology with a
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larger pore size. LNO−2 has a clear advantage in the MF range compared to LNO−1 and
LNO−3, which may be the result of a combination of two reasons: (i) the abundant porous
morphology promotes the diffusion of O2; and (ii) more specific surface area provides
more oxygen adsorption sites and thus enhances the ORR. From Figure 14, the equivalent
capacitance in the MF range was much lower than that in the LF range for LNO−1, LNO−2,
and LNO−3, which was consistent with the study by Mauvy et al. [24]. In general, low
capacitance was thought to be associated with ion transport, gas adsorption/desorption,
and ORR [9,30,31]. The equivalent capacitance of LNO−2 was between LNO−1 and
LNO−3 in the MF range, which may also verify that LNO−2 has the lowest Rp in the MF
range due to the combined effect of the two reasons mentioned above.
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4. Conclusions

The La–Ni–O coating with a La/Ni atomic ratio of about 2.04 deposited by reactive
magnetron sputtering was subjected to a suitable annealing treatment process to obtain
a porous LNO coating with a La2NiO4 phase. The annealing temperature was crucial
to the formation of the La2NiO4 phase and the porous morphology. The LNO coating
with abundant pores was obtained after annealing at 1000 ◦C for 2 h. Electrochemical
impedance spectroscopy (EIS) characterization of the symmetrical cells indicated that the
LNO−2 cathode obtained by annealing at 1000 ◦C exhibited lower polarization resistance
compared to the LNO−1 (annealing at 900 ◦C) and LNO−3 (annealing at 1100 ◦C) cathodes.
The short-term stability experiment confirmed the stability of this porous morphology at
the operating temperature of 750 ◦C. This work aims to provide a reference for the direct
synthesis of appropriate porous LNO cathodes on electrolyte by magnetron sputtering.
Nevertheless, further works must be carried out, such as lowering the subsequent annealing
temperature to facilitate more flexible applications in the fabrication of metal-supported
solid oxide fuel cells (MS-SOFC) operating at intermediate temperatures.
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