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Abstract: Graphene oxide (GO), derived from the two-dimensional nanosheet graphene, has received
unprecedented attention in the field of metal corrosion protection owing to its excellent barrier per-
formance and various active functional groups. In this review, the protection mechanism “labyrinth
effect” of composite coatings against metal corrosion was demonstrated systematically. The origi-
nation, structure and properties of GO were also analyzed. Their poor dispersion in polymer and
tendency to aggregate as nanofillers in composite coatings are the main limitations during application
of the coating fillers. In addition, a comprehensive overview on the perspectives of the surface
modification of GO and the multi-functionalization of the composite coatings based on GO were
given in particular. Green modification methods, reasonable arrangement of GO sheets in composites
and development of multi-functional coatings remain challenges in current studies and should be
a focus in the future development of GO-based anticorrosive coatings. This review is of value to
researchers interested in the design and application of GO in corrosion protection coatings.

Keywords: graphene oxide; two-dimensional fillers; surface modification; multi-functional composite
coatings

1. Introduction

Currently, with the rapid development of modern industry, metals and alloys have a
wide range of applications [1–6]. However, under complex working environments (such as
a marine environment), corrosion occurs easily and significantly affects the metal properties.
Corrosion degradation is detrimental to metal structure, as severe corrosion shortens the
lifetime of the metals and alloys. Failure of metal structure and properties lead to huge
economic losses and unexpected disasters [7–9], such as bridges breaking, buildings collaps-
ing, machinery fails and so on. Therefore, corrosion protection of metal/alloys is of great
urgency and necessity. Corrosion inhibitor, surface coating and electrochemical protection
are typical technologies in metal protection, among which organic coatings are the most
commonly used due to their simplicity, high efficiency and cost-effectiveness [10,11].

Various organic coating systems, such as epoxy, polyaniline, polyurethane, alkyd,
polymethylmethacrylate, polystyrene, polyamide, polypropylene, polydopamine, silane
and polydimethylsiloxane [12–16], are widely used in metal anticorrosion owing to their
outstanding property of acting as a physical barrier [17]. However, during application,
some microcracks and holes are generated because of the high crosslinking density of the
organic coatings, which lead to a certain permeability to H2O, O2 and Cl- in corrosive
media [18,19]. The invasion of these substances obviously affects the anticorrosion perfor-
mance of the coating and accelerates the corrosion of the metals. Thus, traditional coatings
are unable to provide long-term protection. Accordingly, a great deal of work has focused
on improving the impermeability of organic coatings to enhance their corrosion resistance.
Reinforcements and fillers (e.g., oxide ceramic particles) are supposed to improve the
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anticorrosion effect, as they can fill the defects of the coatings to avoid the occurrence of
micro-galvanic corrosion [20].

In recent years, the appearance of new two-dimensional fillers opens up a new sit-
uation for organic coatings. They can serve as barriers to prolong the propagation path
length of the corrosion medium and thus enhance the labyrinth effect [21]. The large aspect
ratio and excellent physical barrier make the two-dimensional fillers good candidates for
anticorrosion fields. Take steel for example, when exposed to the corrosive environment,
the corrosive substance contacts with the metal surface and the metal corrosion occurs
gradually. As shown in Figure 1, the corrosion media can easily penetrate the organic
coating and then reach the substrate of metal, thus leading to rapid metal corrosion. On
the other hand, incorporation of 2D fillers with polymers to make composite coatings
provides more winding roads for the penetration of the corrosive substance, which can
even block the invasion of harmful ions. Due to their outstanding barrier properties, 2D
nanosheets including graphene (Gr), boron nitride (BN), molybdenum disulfide (MoS2),
zirconium phosphate (ZrP) and titanium carbide (MXene) are attracting research attention
for the applications of metal anticorrosion [22–26]. The corrosion reactions initiated at the
metal/coating interface are listed as follows:

Fe→ Fe2+ + 2e− (1)

Fe2+ → Fe3+ + e− (2)

2H2O + O2 + 4e− → 4OH− (3)

2H2O + O2 + 2Fe2+ → 2H+ + 2FeOOH (4)
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fillers [27].

Among these fillers, graphene, a two-dimensional (2D) carbon allotrope, has at-
tracted large attention since its discovery in 2004 [28]. Undoubtedly, the impermeability
of graphene plays a critical role in corrosion barrier coatings. The excellent impermeable
characters of graphene mainly depend on its atomic structure. The C-C bond length is
0.14 nm and, considering the nuclei of the carbon atoms alone, the pore diameter (or
lattice constant) of graphene is only 0.246 nm. Taking the van der Waals radii of carbon
atoms (0.11 nm) into account, the pore diameter further decreases to 0.064 nm. Such a
small pore size indicates a minimal permeability to corrosive media (such as H2O, O2,
Cl− and SO4

2−) [29,30]. Moreover, the dense delocalized electron clouds and free elec-
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trons in the π-conjugated carbon networks fill the void within aromatic rings, forming a
reactive molecule-repellent field inside the graphene structure [31–33]. Despite the bar-
rier effect, other properties such as thermal stability, excellent processing performance,
environmentally friendly, surface flexibility and perfect mechanical properties (Young’s
modulus reaching 1000 GPa) [34,35] also provide graphene with the possibility for further
application in the field of anticorrosion coatings.

Derived from graphene, graphene oxide (GO) has been widely employed in the
applications of anticorrosion composite coating. As shown in the Figure 2, according to
the data collected by the web of science on the topic of “graphene oxide” and “coating”,
there are quite a number of articles about this kind of research every year. In recent years,
it shows an increasing trend.

Coatings 2023, 13, x FOR PEER REVIEW 3 of 18 
 

 

[29,30]. Moreover, the dense delocalized electron clouds and free electrons in the π-con-
jugated carbon networks fill the void within aromatic rings, forming a reactive molecule-
repellent field inside the graphene structure [31–33]. Despite the barrier effect, other prop-
erties such as thermal stability, excellent processing performance, environmentally 
friendly, surface flexibility and perfect mechanical properties (Young�s modulus reaching 
1000 GPa) [34,35] also provide graphene with the possibility for further application in the 
field of anticorrosion coatings. 

Derived from graphene, graphene oxide (GO) has been widely employed in the ap-
plications of anticorrosion composite coating. As shown in the Figure 2, according to the 
data collected by the web of science on the topic of “graphene oxide” and “coating”, there 
are quite a number of articles about this kind of research every year. In recent years, it 
shows an increasing trend. 

 
Figure 2. The amount of literature on the topic of “graphene oxide” and “coating” in recent years. 

In this review, the mechanism of metal corrosion and protection by composite coat-
ings were demonstrated systematically. The origination, the structure and properties of 
GO were analyzed, and its limitation employed as nanofillers in composite coatings was 
introduced in detail. In addition, comprehensive perspectives of the surface modification 
of GO and the multi-functionalization of the composite coatings based on GO were given. 
Finally, remaining challenges and the future development of GO-based anticorrosive coat-
ings were proposed. 

2. Graphene Oxide as Composite in Organic Coatings 
Although graphene possesses remarkable properties, problems still exist and need to 

be solved in the practical application. Lei et al. [36] showed that corrosion occurred on the 
grain boundaries of the graphene layer. The inherent interstitial impurities could lead to 
a significant reduction in the mechanical strength of graphene and, meanwhile, accelerate 
the structural transformation under strains. Additionally, the intrinsic vacancy sites ben-
efited the absorption of corrosive substances, which could deteriorate the chemical stabil-
ity of graphene by accelerating the formation of point defects and promoting substances 
growth along the grain boundaries [8]. In addition, active functional groups were absent 
in the graphene structures, making it difficult to form composites with other functional 
materials. The compatibility between graphene and the organic coatings is another prom-
inent problem of concern. The large aspect ratio and high surface energy of graphene 
make it easy to obtain agglomeration [37]. Moreover, there are four unpaired electrons in 
the outermost layer of each carbon atom of graphene, and one of which is free to move 
within the graphene structure, making it reactive for electron conduction [38]. This unique 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0

20

40

60

80

100

120

140

160

180

Citation frequency

pu
bl

ic
at

io
n

publication

0

1000

2000

3000

4000

5000

6000

C
ita

tio
n 

fr
eq

ue
nc

y

Figure 2. The amount of literature on the topic of “graphene oxide” and “coating” in recent years.

In this review, the mechanism of metal corrosion and protection by composite coatings
were demonstrated systematically. The origination, the structure and properties of GO were
analyzed, and its limitation employed as nanofillers in composite coatings was introduced
in detail. In addition, comprehensive perspectives of the surface modification of GO and
the multi-functionalization of the composite coatings based on GO were given. Finally,
remaining challenges and the future development of GO-based anticorrosive coatings
were proposed.

2. Graphene Oxide as Composite in Organic Coatings

Although graphene possesses remarkable properties, problems still exist and need
to be solved in the practical application. Lei et al. [36] showed that corrosion occurred
on the grain boundaries of the graphene layer. The inherent interstitial impurities could
lead to a significant reduction in the mechanical strength of graphene and, meanwhile,
accelerate the structural transformation under strains. Additionally, the intrinsic vacancy
sites benefited the absorption of corrosive substances, which could deteriorate the chem-
ical stability of graphene by accelerating the formation of point defects and promoting
substances growth along the grain boundaries [8]. In addition, active functional groups
were absent in the graphene structures, making it difficult to form composites with other
functional materials. The compatibility between graphene and the organic coatings is
another prominent problem of concern. The large aspect ratio and high surface energy of
graphene make it easy to obtain agglomeration [37]. Moreover, there are four unpaired
electrons in the outermost layer of each carbon atom of graphene, and one of which is free
to move within the graphene structure, making it reactive for electron conduction [38].
This unique structure brings graphene excellent electrical conductivity. The conductive
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graphene could promote the electrochemical reaction at the interface and thus accelerates
the corrosion of metal substrates.

These defects greatly limit the use of graphene in organic coatings. As a result,
to overcome these shortcomings and simultaneously take advantages of the merits of
the graphene, graphene oxide (GO), a derivative of graphene, aroused wide concern.
As a heavily oxygenated form of graphene, graphene oxide is supposed to be the most
studied form of graphene and probably causes the most significant changes to graphene
application at present [31]. It can be prepared by direct oxidation and exfoliation of graphite.
Figure 3 shows the synthesis method of modified Hummer’s method, which is one of the
most commonly used to produce graphene oxide. After covalent reactions, the surface
of graphene is decorated with reactive oxygen functional groups such as carboxyl, epoxy,
hydroxyl, carbonyl, phenol, lactone and quinine [39]. During these covalent reactions,
a large density of sp3-hybridized carbons in the graphene network are also formed [40],
which disrupts the delocalized π cloud and thus reduces its electrical conductivity. The
transporting speed of charges plays a very important role to corrosion. When applied in
practical application, as the service time increases, the metal is inevitably oxidized and
thus loses electrons [41]. However, due to the destruction of the conjugated structure, the
charge transfer rate on the GO is reduced, which is also beneficial to reducing the rate of
electrochemical reaction and thus slow down corrosion. Compared with original graphene,
GO becomes more dispersible in water as well as other solvents on account of the rich
functional oxygen groups on the surface [42].

To summarize, on one hand, GO retains the excellent characteristics of graphene in-
cluding shielding effect, high aspect ratio, high specific surface, and an outstanding ability
to block the penetration of corrosive substances. On the other hand, the electrical insulativ-
ity and the dispersibility of graphene are improved. Most importantly, GO is more easily
covalently and/or noncovalently functionalized owing to the presence of functional groups,
leading to the improved compatibility between the GO and solvents/polymers [37,43]. GO
has been regarded as an ideal nanofiller to prepare composites, and thus has been brought
into wide ranges in the anticorrosion field [44,45].
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Dispersion and compatibility in a polymeric matrix greatly affect the blocking effect of
GO. However, similar to the original graphene, the GO sheet has properties of large volume,
high surface energy and poor dispersibility in organic coatings [13,27,47]. Due to its high
surface energy and intrinsic van der Waals interaction, GO is still easy to aggregate. Once
agglomeration happens, the unique aspect ratio of two-dimensional materials disappears,
and its barrier properties towards corrosive media will be greatly weakened. As shown
in Figure 4, two-dimensional materials are arranged in parallel and stacked layer upon
layer in the coating, significantly improving the permeability resistance of the corrosive
media in the coating. In other words, this “labyrinth effect” greatly prolongs the diffusion
path of the corrosive media and becomes an obstacle to their penetration into the coating.
In this way, the corrosion of metal substrate can be effectively delayed. Well-dispersed
nanosheets prolong the permeation path of the corrosive materials, but poorly dispersed
coating cannot provide effective protection for the metal. The amount of addition also
needs to be considered. A too small amount of fillers cannot provide effective protection,
while too large an amount of the addition leads to an agglomeration on the contrary.
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The density variations at the interface of the polymer and the fillers lead to the
formation of microcracks and pores near the fillers, so that the contact between the substrate
and the surrounding environment is enhanced. Such cracks and pores may be connected
to each other to form rapid channels for the invasion of corrosive materials, leading to
localized corrosion spreading under the coating [49,50]. Moreover, differences in physical
and chemical properties between filler and polymer result in poor interfacial compatibility
and low bonding strength between them [51]. The formed interfaces are sensitive to
external stimuli, such as alternating hydrostatic pressure in the deep sea, hydrolysis of
electrolytes and erosion of seawater. These external factors will lead to rapid peeling failure
of the coating and loss of adhesion in the initial phase. As a result, the diffusion of water
through the coating will be accelerated, and its overall corrosion resistance is gradually
weakened [52,53].

3. Modification of GO

According to the discussion above, the reinforcement of the dispersion and interfacial
compatibility between GO and the polymer matrix are the keys to enhance the corrosion
resistance of GO-based composite organic coatings. To conquer these obstacles, various
studies have been put into the topic based on the optimization of GO nanofiller. Researchers
are devoted to modifying the surface of GO to improve its dispersion and compatibility in
the composite coating so as to improve the protective effect [54]. Various reagents were
applied to change the original properties of the filler surface aiming at forming chemical
bonds on the GO/resin interface. By improving the interface bonding ability, the interface
compatibility and dispersion of GO can be adjusted and enhanced. According to the types
of chemical bonding formed between GO and other materials, the modification methods
can be mainly divided into noncovalent bonding modification and covalent bonding
modification [55].

3.1. Covalent Modification

Due to the existence of abundant oxygen-containing groups such as carboxyl, hydroxyl,
epoxide and carbonyl in the structure, it is possible for GO to react with other materials [56].
Covalent bonding modification is mainly achieved by introducing groups to form covalent
bonds with GO on the surface by chemical reaction with the existing active groups. Owing
to its stability and strong bond energy, covalent bond modification is studied by most
researchers. This method is beneficial to maintain the chemical stability and mechanical
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properties of GO. Li et al. [57] reported the design and preparation of novel green silk
fibroin (SF)-GO nanofillers for a waterborne epoxy coating anticorrosive system. After
grafting with SF fibers, GO changed from an inorganic surface to an organic surface. The
attached SF fiber could interact with the basic epoxy resin, and thus the dispersibility
of the modified GO was greatly improved. Meanwhile, the attached SF fiber on the GO
surface could enhance the crosslinking density of the epoxy resins. In the work of Wu
et al. [58], aniline oligomer (AO) and grafted GO were used to improve the wear and
corrosion performance of phenoxy-resin coating. The grafted AO on the GO surface
formed an organic interconnection structure with phenoxy-resin (PHE), which enhanced
the interfacial interaction between GO and PHE. After the modification, the composite
coatings possessed a better anti-wear and corrosion protection performance. Jiang et al. [59]
prepared a polyethyleneimine-grafted graphene oxide (PEI-GO) hybrid material to improve
the anticorrosion performance of the waterborne epoxy coating. PEI-GO was uniformly
dispersed in the epoxy matrix and the PEI-GO filler exhibited considerable anticorrosive
superiorities compared to the primary epoxy coating.

Inhibitors are also used in the graft modification of GO, and the structure of corrosion
inhibitors can also improve the protective effect of composite coatings. Chen et al. [60]
successfully fabricated a hydrophobic silane/graphene oxide composite coating implanted
with benzotriazole (BTAH) inhibitor (BTAH-silane/GO) on copper surface. The formed
Si-O-C bond indicated a successful covalent reaction with the silanol groups and a BTAH
inhibitor was uniformly embedded to improve the resistance of the composite coating.
Liu et al. [61] prepared an ionic liquid–graphene oxide hybrid nanomaterial via a facile
grafting reaction between imidazole ionic liquid and GO. Tests proved that the enhanced
protective performance of the composite coatings was attributed to the synergistic effect
of the impermeable property of graphene nanosheets and the inhibitory function of the
imidazole-based ionic liquid. Phytic acid (PA), a green corrosion inhibitor derived from
nature, was also employed to modify GO by Wang et al. [62]. The as-prepared PA modified
GO (PAGO) thus possessed the passive barrier property and active corrosion inhibition
function simultaneously.

In addition to the modified reagents mentioned above, coupling agents are also used
to achieve functional modification in practical application. The coupling agents serve as a
bridge to combine the polymer and GO. Due to the hydrophilicity of GO, the hydrophilic
groups of the coupling agent are connected with GO, and the other groups react with the
polar polymer. After modification by coupling agent, long polymer chains are grafted on
the edges or surfaces of GO, which can enhance the dispersion and compatibility of GO
inside the polymer matrix. At the same time, the modified GO possesses the properties
of a polymer, and the inherent defects can be filled by the high crosslinking degree of the
polymer, thus improving the overall performance of composite coating.

Liu et al. [63] synthesized novel self-thixotropic hydrogenated castor oil modifying
graphene oxide (HMGO) nanosheets from 3-aminopropyltriethoxysilane (APTES) modified
GO sheets by grafting the hydrogenated castor oil (HCO) with long alkyl chain molecular
structure. HMGO could form a three-dimensional hydrogen network to separate and
stabilize the nanosheets in the polyaspartic coating matrix homogeneously. The superiority
of the as-prepared composite coating was mainly owing to the fact that the self-thixotropic
effect of HMGO met the demands of homogeneous distribution and high compatibility
of HMGO nanosheets in the polyaspartic polymer matrix. Pu et al. [64] synthesized
the waterborne polyurethane modified by epoxy resin (WEPU) and GO derivatives by
copolymerization. The isophorone diisocyanate (IPDI) was grafted to the surface of GO
to form the functionalized GO (iGO). Owing to the strong interaction between iGO and
WEPU, iGO was then uniformly dispersed in the WEPU emulsions by a prepolymer
method and acted as a nanofiller for the composite coating. Ramezanzadeha et al. [65]
applied polyaniline (PANI) to functionalize GO and prepared GO-PANI/epoxy coatings.
In their design, the titanate coupling agent was used to disperse functionalized GO in a
poly(urethane-acrylate) matrix. The titanate coupling agent acted as a bridge to covalently
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connect GO and the polymer matrix, and, consequently, increased the compatibility and
interactions between GO and the polymer matrix. Through this method, high-performance
nanocomposite coatings could be developed [66]. In other work, Zhou et al. [67] used a co-
crosslinking strategy between polydopamine (PDA) and polyethyleneimine (PEI) to modify
GO. Through the Michael addition and Schiff base reactions, high-density amino-branched
PEI and highly adhesive PDA formed covalent bond crosslinks with GO (PDA/PEI-GO).
The lamellar spacing of GO was increased by the formed covalently crosslinked network,
further enhancing the interfacial bonds between the PDA/PEI-GO lamellae and EP matrix.
Due to the improved dispersion and surface activity of GO, the PDA/PEI-GO nanofiller
composite coating displayed excellent resistance.

After the successful covalent modification and the introduction of new functional
groups, the nonpolarity of modified GO can be improved effectively. As shown in Figure 5,
obviously, the storage stability of GO derivatives dispersed in organic matrix solution was
improved dramatically compared to the bare GO. This result illustrated that the dispersion
and compatibility of the modified GO were significantly enhanced. The improvement of
compatibility with polymer further enhanced the protective effect of composite coating.
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3.2. Non-Covalent Modification

The noncovalent functional modification is mainly achieved by weak non-bond in-
teraction including π-π bond, hydrogen bond, ionic bond and electrostatic interaction.
The noncovalent bond modification of GO can retain the original structure and excellent
properties of GO and increases the distance between GO nanosheet layers, thereby reducing
agglomeration and improving the dispersion of GO. Without the usage of a large amount
of organic solvents, noncovalent modification is more environmentally friendly compared
to covalent modification.

For example, Gao et al. [68] fabricated amorphous cellulose (AC) edge-functionalized
GO by electrostatic self-assembly of negatively charged AC (NAC) and positively charged
GO (NGO). The schematic diagram of preparation progress is shown in Figure 6. The
formed NAC enhanced the anticorrosion performance of NGO as a nanofiller in waterborne
epoxy resin (WEP) coatings, due to the well dispersion of NAC/NGO composite and its
strong interfacial interactions with the matrix.

Amrollahi et al. [69] developed a polyaniline (PANI)-modified GO for obtaining
a high-performance epoxy nanocomposite film with anticorrosion properties. Analysis
demonstrated that the successful polymerization of the emeraldine base form of polyaniline
on the GO surface could be ascribed to two forms of noncovalent bonding. One was the
π-π interactions between the quinoid ring of the PANI and the basal plane of GO, and the
other was the covalent bonding through reaction with epoxide groups. The as-developed
composite coating also showed better dispersion of GO modified with polyaniline. Wu
et al. [70] chose the hydrophilic GO as an intercalator to exfoliated hexagonal boron nitride
(h-BN) and enhanced its dispersion in water-borne epoxy (WBE) directly. Similarly, its π-π
interaction between GO and h-BN enabled h-BN homogeneously to load on the surface of
GO. Performance of the GO/h-BN/WBE composite coatings showed prominent anticorro-
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sion properties due to the homogeneous dispersion of GO/h-BN (1:1 w/w) composite as
well as the barrier effect of GO and h-BN for the corrosive medium.
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Non-covalent modification effectively inhibits the agglomeration of GO by increasing
the layer spacing. The dispersion and compatibility of GO in polymer can also be improved
with appropriate noncovalent modification. As shown in Figure 7, after noncovalent modi-
fication, the GO composite showed a homogeneous dispersion state under the optimal ratio.
Despite the characteristic of maintaining the original structure and high specific surface area
of GO [71], the noncovalent modification is generally applied as a supplement to covalent
modifications, because of the weaker interaction between the GO and the functional groups
and less stability of the coating material. The sole application of noncovalent modification
is relatively limited.
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(D) GO/h-BN (1:3 w/w), (E) GO/h-BN (2:1 w/w), (F) GO/h-BN (3:1 w/w) and (G) GO in water 48 h
after ultrasonication for 30 min [70].
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As is shown in Figure 8, the low-frequency impedance modulus (|Z|0.01Hz) of the
composite coatings after GO modification was compared with that of the blank samples.
Obviously, after the covalent/noncovalent modification, the dispersion and compatibility
of nanofillers were enhanced, leading to much better performance of composite coatings
on metal protection.
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4. Graphene Oxide-Based Multi-Functionalization Coatings

Generally, the traditional composite coatings focus more on the long-term performance,
durability as well as reliability for metal protection. However, when facing a complex
service environment, the multi-functional anticorrosion coatings gradually attract more
and more attention. These multi-functionalization anticorrosion coatings that are self-
sensing, self-healing, wear-resisting, antibiosis and super-hydrophobic have intensively
been developed to promote advanced applications [72]. To meet the demands of the multi-
function in composite coatings, GO plays a significant role due to its excellent properties
discussed above. Instead of focusing on its dispersion and compatibility, this part discusses
several kinds of GO-based multi-functionalization coatings.

4.1. Self-Healing Composite Coatings

As discussed above, the presence of microcracks in polymer coatings degrades the
structural stability and lifespan of the protective layers. In general, once the anticorrosive
coating is applied and fully cured on the substrate, it is difficult to inspect the coating for
damage and repair it in a timely manner. As a result, accomplishing coatings with self-
healing properties has attracted considerable attention for polymer systems. The strategy
of self-healing is mainly based on a responsive approach to repair material damage during
its service life. External environment, such as vibration, pressure, pH value, heat, light
and humidity can stimulate active response to change. Corrosion inhibitors can protect
the metal by delaying or even inhibiting the corrosion. However, the direct addition
of corrosion inhibitors to coating formulations can cause a deactivation of the inhibitor
and/or fast degradation of adhesion and barrier properties of the coating [73,74]. To solve
these issues, micro- or nanoparticles encapsulating/loading inhibitors were embedded in
coatings [75–78].

GO, with outstanding barrier performance and rich surface groups, can also serve
as a container of corrosion inhibitors in the field of intelligent self-repair. Microcapsules
with reasonable mechanical stability, thin wall thickness and high loading capacity act
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as permeation barriers to prevent not only the diffusion of corrosive medium but also
the leakage/solidification of healing agents. On this occasion, GO with outstanding im-
permeability, high specific surface area and abundant surface functional groups can be
fabricated not only as platforms for stimuli-responsive nanocontainers but also as fillers to
block corrosive components. Corrosion inhibitors can be entrapped in its capsules, and the
existing pores of the container allow intelligent release by different triggering factors [79].

As is shown in Figure 9, the containers with inhibitors are well dispersed in the
polymer matrix to enhance the “labyrinth effect” when the composite coatings are complete,
which prolongs the path of corrosive media or even blocks their invasion to the substrate.
At this stage, the containers serve as the physical barrier to improve the corrosion resistance
of composite coating. On the other hand, once the damage of coatings occurs, corrosive
substances from the environment penetrate the coating and reach the metal substrate.
Thus, the microcurrent is easily generated in the microscopic areas and the micro-corrosion
happens without any hesitation. Straightaway, a “stimulus signal” prompts inhibitors to be
released, and the released inhibitors will be adsorbed on the metal surface, exerting their
anticorrosion effect.

Coatings 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 9. Anti-corrosion and self-repair mechanism of coatings: (a) complete coating, (b) damaged 
coating, (c) local corrosion occurs and (d) coating self-healing [80]. 

Zhou et al. [81] reported the successful fabrication of a novel dual self-healing anti-
corrosion coating based on benzotriazole loaded TiO2 nanocapsule (BTC) modified GO 
sheets and the multibranched waterborne polyurethane (WPU). GO sheets were first mod-
ified with amino groups (GO-NH2) and then grafted with 3-isocyanatopropyltriethox-
ysilane (GNI) to further react with the BTCs (GNI-BTCs) as shown in Figure 10. After a 
series of reactions, BTCs were well dispersed on the surface of GNI sheets to improve the 
dispersion of GNI into the waterborne coatings. 

 
Figure 10. Fabrication of the dual self-healing anticorrosion coating [81]. 

Figure 9. Anti-corrosion and self-repair mechanism of coatings: (a) complete coating, (b) damaged
coating, (c) local corrosion occurs and (d) coating self-healing [80].

Zhou et al. [81] reported the successful fabrication of a novel dual self-healing anticor-
rosion coating based on benzotriazole loaded TiO2 nanocapsule (BTC) modified GO sheets
and the multibranched waterborne polyurethane (WPU). GO sheets were first modified
with amino groups (GO-NH2) and then grafted with 3-isocyanatopropyltriethoxysilane
(GNI) to further react with the BTCs (GNI-BTCs) as shown in Figure 10. After a series of
reactions, BTCs were well dispersed on the surface of GNI sheets to improve the dispersion
of GNI into the waterborne coatings.
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Luo et al. [82] used isophorone diisocyanate, polytetramethylene ether glycol, dimethyl-
glyoxime and glycerol to prepare polyurethane. GO was added to obtain a polyurethane/GO
composite with self-healing and shape memory properties. Yu et al. [83] fabricated GO
microcapsules containing light-curing epoxy resin based on the Pickering emulsions in
a single step. The chemical stability of microcapsules was improved through chemical
stitching of GO nanosheets with polyether amine. A self-assembly process was employed
by Li et al. [84] to prepare the graphene oxide microcapsules (GOMCs) containing linseed
oil as the healing agent. The nanometer-thick shells of GOMCs were built by the liquid
crystalline assembling of GO sheets, forming at the liquid–liquid interface in Pickering
emulsions. The as-prepared composite coatings not only possessed self-healing properties,
but also showed excellent anticorrosion properties based on the physical barrier property
of the GO shell. Chen et al. [85] developed a new strategy to improve anticorrosion per-
formance of epoxy coatings, in which halloysite nanotubes (HNTs) were combined with
GO. On one hand, the corrosion inhibitors loaded in nanocontainers would be released
when the coating was damaged and subsequently prevented metal from further corrosion
because of the pH-responsive ability of the nanocomposite. On the other hand, GO exerted
the physical barrier property to protect the metal matrix against a corrosive medium.

In all, in order to avoid the direct addition of corrosion inhibitors that could be
harmful to the polymer matrix, the GO-based containers provide a buffer for the release
of an inhibitor and achieve long-term protection. When corrosion occurs, the GO-based
containers can release corrosion inhibitor and repair the corroded area in time, realizing
the self-healing effect.

4.2. Self-Warning Composite Coatings

Generally speaking, microcracks that are not easy to detect are the initial stage of
various properties degradation of polymer materials. Lacking timely detection and re-
pairment of these defects, corrosion deterioration may develop rapidly, resulting in rapid
degradation of the protective coatings for substrate matrix. Therefore, the self-warning
ability of anticorrosive coating materials is of great significance in practical applications.
Timely sensing of the coating damage leads to proper healing and maintenance procedures
to improve structural integrity and avoid unexpected failure [86]. It is of great significance
to provide autonomous early warning by detecting the corrosion reaction at an early stage.
Only in this way, the timely maintenance can be conducted. Although urgent as it is, this
kind of research is still in the preliminary stage and needs more investigation.
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Metal corrosion usually involves two reactions. Anodic reaction is metal electron
loss oxidation to generate related metal ions, which may be accompanied by hydrolysis
and acidification of metal ions according to environmental conditions. Cathode reaction
includes electron reduction of oxygen or water in etched areas to form hydroxide ions [87].
Once corrosion occurs, a change in the concentration of metal ions is inevitably generated,
while possible acidification due to the formation of hydroxide ions also results in a change
in the pH of the etched area. Based on the ions and pH changes produced by corrosion, we
can choose appropriate indicators for warning.

Ionic indicators are related to the detection of various metal ions. For example, sulfos-
alicylic acid and potassium thiocyanate are indicators of ferric ion; rhodaminohydrazine
and phenanthroline are indicators of ferrous ions; 8-hydroxyquinoline and coumarin have
a fluorescence response to aluminum ion; rhodamine ethylenediamine is an indicator of
copper ions. Common pH indicators are sensitive to pH change within a given pH range.
Here, we listed several pH-based indicators that can be used for corrosion monitoring in
Table 1.

Table 1. Some pH-sensing molecules that have the potential for corrosion detection.

Sensing Molecules pKa Transition pH Range

Phenolphthalein OH− 8.2–10.0
Bromocresol green OH− 8.0–10.7

Cresol red OH− 7.2–8.8
Methyl red H+ 4.2–6.2

Bromothymol blue H+ 6.0–7.6

Similarly, it is not suitable to add the indicator directly to the coating, which may
lead to their early leakage and properties reduction in the polymer matrix. In the study
of Tiago et al. [88], the coating with direct addition of phenolphthalein performed even
worse than that of pure coating samples. As their work presented, the uncoated phenolph-
thalein reduced the crosslinking degree of resin during curing. On the contrary, with the
protection of the silica nanocapsules shell, detrimental interaction with the active com-
pound in the coating could be minimized, which proved the importance of encapsulation
of phenolphthalein by the container.

As a result, combined with GO, a novel design of corrosion alarming coating was
proposed. Take for instance, 1,10-phenanthroline (Phen) was employed as the corrosion
indicator, which was grafted on GO surfaces so that the Phen could distribute uniformly
in the polymer matrix. In the work of Li et al. [89], they prepared a self-sensing polymer
composite coating with functionalized GO. The GO was chemically modified with Phen
which could form a red complex with Fe2+ to realize a corrosion alarm at an early stage.
At the same time, the addition of laponite RD (laponite) improved the dispersion of Phen-
modified GO in the polyurethanes (PU) matrix. Results illustrated that the as-prepared
composite coatings showed higher corrosion resistance compared to the pure PU coatings.

4.3. Other Multi-Functional Coatings

In addition to excellent barrier properties, its large surface area, rich surface func-
tional groups and good mechanical properties also promote the GO application in coating
fields of super hydrophobic, antibacterial, wear resistance and so on. GO with abundant
oxygen-containing functional groups and nanoscale size was prepared and incorporated
into waterborne polyurethanes (WPU) by chemical grafting to improve the dispersion
in WPU [26], resulting in excellent mechanical properties and solvent resistance of the
coating. Besides the good compatibility with WPU, the tensile strength of that coating film
increased by 64.89%, and the abrasion resistance and pendulum hardness increased by
28.19% and 15.87%, respectively. This chemical grafting strategy provides a feasible way
to improve the dispersion of GO in coatings and of reference value in the modification of
waterborne coatings.
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Superhydrophobic silane/GO composite coating, with excellent anticorrosion perfor-
mance and durability, was also successfully synthesized on copper surface using simple
dipping and subsequent curing procedure [90]. The prepared superhydrophobic silane/GO
composite coating possessed the largest impedance modulus and the protection efficiency
was over 99% after exposed to 1 M NaCl solution for 120 h. Apart from these applications
listed above, studies on the nanotribological properties of GO indicated that excellent
lubrication performance and wear resistance of GO made it a potential high-performance
nano-lubricating material [91,92]. Zhang et al. [93] mixed GO with WC-17Co alloy powder.
GO was embedded in the coating as transparent thin sheets. The friction coefficient of the
GO coating was reduced by approximately 22% compared to that of the original coating.
The formation of lubrication films in the micro-area improved the self-lubrication and anti-
wear effects of the coatings. Similarly, GO was incorporated into WC-12Co powder via wet
ball milling and spray granulation, and GO was embedded in the structure in a transparent
and thin-layer state [94]. Compared to the friction coefficient (0.6) of the WC-12Co coating
obtained at room temperature, the friction coefficient of the GO/WC-12Co coating was
decreased by approximately 50%. In another work [95], the NiCr-WC-Al2O3 composites
with the addition of GO were fabricated by powder metallurgy technique. Results showed
that in high temperature ranges, the composites with the addition of 3 wt% GO exhibited
the lowest friction coefficient (0.41) and wear rate (1.0 × 10−5 mm3/Nm) at 700 ◦C. In
the above studies, the improvement of GO nanosheets to the tribological performance of
metal is mainly due to excellent mechanical and tribological properties. In addition, GO is
thought to be a promising antibacterial material. The oxygen-containing functional groups
endowed GO with good hydrophilicity, dispersity and biocompatibility, making GO a
promising biomedical applications candidate [96–98]. A number of studies have proved
the strong antibacterial activities of GO, and its antibacterial activity is considered to be
mediated by the physicochemical interaction between GO and microbes [99,100].

In all, the multi-functional composite coatings refer to the materials with practical
functions including self-healing, self-warning, superhydrophobic, wear-resistant, antibacte-
rial, etc. Apart from enhancing the barrier property of coating as reinforcements/fillers,
more efforts should be put into the study of multi-functional coatings based on the excellent
properties of GO.

5. Conclusions and Perspective

Graphene oxide is distinct in the field of organic composite coatings in corrosion
protection due to its outstanding barrier properties. At present, research is mainly devoted
to two aspects: one is to improve the dispersion and compatibility of GO in polymer
through modification, so as to further improve the barrier performance and the protection
effect of organic composite coating. The other is based on the structure of GO and abundant
covalent bonds on it to carry out multi-functionalization of organic coatings such as self-
sensing, self-healing and wear-resist and antibacterial so as to give more possibilities to
composite coatings.

Short as the history of GO to be a filler of organic composite coating is, the study of its
reaction mechanism is limited. More work is needed to be done in the future.

1. The stable effect and strong interaction between GO and functional groups make
the covalent modification the mainstream method of GO. Nevertheless, this method
destroys the original structure of GO to some extent. During the reactions, a large
amount of highly toxic organic reagents are used. Therefore, more systematic and com-
prehensive investigation is needed to develop green modification methods that can
preserve the original structure and properties of graphene, so as to ensure dispersion
while reducing risk of environmental pollution and health hazards.

2. In addition to the problems of dispersion and compatibility highlighted above, the
arrangement of GO and its derivatives in polymers also make great sense on its barrier
effect. Due to the high aspect ratio of GO nanomaterials, the relative arrangement of
corrosive media and nanomaterials (parallel or perpendicular to the path of corrosive
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media) has a great difference in exerting its labyrinth effect during the process of
penetrating coating. In this regard, to realize orderly and reasonable arrangement
of GO sheets in polymer composites is still a big challenge for the fabrication of
multi-functional and high-performance composites. The orientation arrangement
of such two-dimensional lamellar materials induced by external magnetic field or
electric field are worth studying.

3. Compared with the widely employed epoxy resins, the content of volatile organic
compounds (VOCs) in water-based epoxy resins is much lower, which caters to
people’s demands for green chemistry and sustainable development. However, low
hardness, long curing time and insufficient shielding effect on corrosive media make
water-based epoxy resin unable to replace the application of epoxy resins. Study of
ideal polymers should still be promoted.

4. The development of multi-functional coatings (such as self-sensing and self-healing),
especially in special environments such as deep sea, is still in the initial stage. Ad-
ditionally, the trigger conditions of “intelligent” are relatively strict and insensitive,
making it far from ready for industrial employment. A lot of work is needed to make
improvement on it.
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