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Abstract: Considering photocatalytic degradation technology has recently attracted great attention
for dyeing wastewater treatment, the polyacrylonitrile (PAN) nanofibrous membrane coated with the
TA/FeIII complexes was proposed as a novel photocatalyst in this work. The successful self-assembly
of TA/FeIII complexes on the PAN nanofibrous membrane after layer-by-layer deposition of TA and
FeIII was confirmed by the analyses of chemical structure, morphology, and hydrophilicity. With the
number of coating cycles, more TA/FeIII complexes coated on the PAN nanofibrous membrane, which
contributed to the excellent photocatalytic activity. Whereas, when the coating cycles reached seven,
the photocatalytic performance of the modified PAN nanofibrous membrane deteriorated due to the
serious aggregation of TA/FeIII complexes. Under optimum five coating cycles, owing to its great
light absorbance capability, the modified PAN nanofibrous membrane achieved 98% degradation
efficiency of RhB after 360 min illumination. This work would offer a promising high-performance
photocatalyst for dyeing wastewater treatment.

Keywords: photocatalysis; PAN nanofibrous membrane; TA/FeIII complexes; coating cycle

1. Introduction

With the rapid development of the textile industry, more and more dyeing wastewa-
ter was discharged into the environment, resulting in seriously water pollution [1]. The
untreated dyes are highly harmful to living organisms even at very low concentrations
(<1 ppm) [2]. Accordingly, various techniques including adsorption, coagulation, mem-
brane filtration, and oxidation have been used to treat the dyeing wastewater [3–6]. Whereas
these treatment methods are inefficient, cumbersome, and costly, that may even generate
some undesirable compounds. In comparison, photocatalytic degradation is a promising
alternative owing to its advantages of sustainability, energy conservation, and lack of
secondary pollutants [7,8].

Common photocatalysts include inorganic metal oxides, organic semiconductors,
metal-organic complexes (MOCs), and so on. Titanium dioxide (TiO2) and zinc oxide
(ZnO) are the representative inorganic metal oxides widely used as photocatalysts with
excellent photocatalysis. However, large bandgaps limit their optical response range to the
ultraviolet region which accounts for only 5% of the solar spectrum [9,10]. Although or-
ganic semiconductors such as the graphitic carbon nitride (g-C3N4) have narrow bandgaps,
rapid recombination of photogenerated electron-hole pairs greatly affects the photocatalytic
efficiency [11]. Compared with inorganic and organic photocatalysts, MOCs have attracted
much attention due to semiconductor-like behavior, tunable structure, and high specific
surface area [12]. Nevertheless, the prevalent drawbacks of photocatalysts mentioned
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above also affect the photocatalytic activity of MOCs [13]. For obtaining the broad absorp-
tion of visible light and effective separation of electron-hole pairs and transfer, doping, or
loading of different catalysts are used to realize the construction of efficient MOC photocat-
alysts [14,15]. The complicated preparation process increases the difficulty of photocatalyst
industrialization and the cost of wastewater treatment. Therefore, much effort should be
made to develop new MOCs with high photocatalytic efficiency, simplified preparation,
and low cost.

Tannic acid (TA), a natural plant polyphenol, can be combined with metal ions to
form MOCs, for example, TA/FeIII complexes [16]. Due to the great capacity of light
absorption, Cheng et al. enhanced the light harvesting of triazine-based covalent organic
frameworks by incorporating TA/FeIII complexes for high photocatalytic performance [17].
Cakar et al. used the TA/FeIII complexes to broaden the spectrum response of ZnO for
obtaining better photovoltaic properties in dye-sensitized solar cells [18]. Meanwhile,
because of the universal adhesion property, easy synthesis, and catalytic activity, TA/FeIII

complexes are widely used in the fields of electrocatalysis, photodynamic therapy, and
Fenton reaction [19–21]. Nevertheless, as far as we know, there are quite a few research
studies about the TA/FeIII complexes as the photocatalyst for dyeing wastewater treatment.

In this work, we report the polyacrylonitrile (PAN) nanofibrous membrane coated
with the TA/FeIII complexes as a novel photocatalyst for dying wastewater treatment. The
PAN nanofibrous membranes were fabricated by the electrospinning technology and then
coated with TA/FeIII complexes through layer-by-layer deposition of TA and FeIII. The
chemical structures, morphologies, and hydrophilicities of modified PAN nanofibrous
membranes with different coating cycles were investigated. In particular, the capabilities
of light absorbance of modified nanofibrous membranes were discussed for analyzing the
mechanism of photocatalysis. Moreover, the photocatalytic activities of different modified
PAN nanofibrous membranes were discussed and analyzed in detail.

2. Experimental
2.1. Materials

Polyacrylonitrile (PAN, Mw = 85,000) powders were purchased from Aladdin Chem-
istry Co., Ltd., Shanghai, China. N,N-dimethylformamide (DMF, 99.5%) was supplied
by Shanghai Lingfeng Chemical Reagents Co., Ltd, Shanghai, China. Tannic acid (TA),
FeCl3·6H2O and ethanol (99.8%) were obtained from Macklin Biochemical CO., Ltd., Shang-
hai, China. Rhodamine B (RhB) was supplied by Tianjin Kemiou Chemical Reagent Co.,
Ltd, Tianjin, China. All chemicals were used as received.

2.2. Preparation of PAN/(TA/FeIII) Nanofibrous Membranes

PAN solution for electrospinning was prepared by dissolving 10 wt% PAN powders in
DMF and stirring at 50 ◦C for 6 h. The prepared PAN solution was filled into a 10 mL plastic
syringe and ejected from a 20-gauge metal needle onto a silicon-coated sheet using an
electrospun device (JDF05, Changsha Nanoapparatus Co., Limited, Changsha, China). The
high voltage power (12 kV), the flow rate (8 uL/min), and the needle-to-collector distance
(10 cm) were fixed. The PAN fibers were collected for 6 h to obtain the PAN nanofibrous
membrane at 23 ± 2 ◦C and 35 ± 2% relative humidity.

The PAN/(TA/FeIII) nanofibrous membranes were prepared by layer-by-layer depo-
sition of TA and FeIII according to the literature with slight modifications [22]. As shown
in Scheme 1, the above PAN nanofibrous membrane (5 × 5 cm) was firstly placed in a
50 mL beaker for 10 min in which 20 mL of TA solution (3.2 mg/mL). The membrane
was taken out and rinsed with ethanol for 1 min. And then the membrane was placed
in a beaker of 20 mL FeCl3·6H2O solution (3.2 mg/mL) for another 10 min. Finally, the
membrane was thoroughly rinsed with ethanol for 1 min. This whole treatment process
was defined as one coating cycle. The coating process was repeated the preset number
of coating times (1, 3, 5, and 7 times). The modified PAN nanofibrous membranes were
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expressed as PAN/(TA/FeIII)1, PAN/(TA/FeIII)3, PAN/(TA/FeIII)5, and PAN/(TA/FeIII)7
nanofibrous membranes.
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Scheme 1. Schematic illustration of preparation of PAN nanofibrous membranes coated with TA/FeIII

complexes by layer-by-layer deposition.

2.3. Physicochemical Charactezrizations

The morphologies and elemental compositions of the bare PAN nanofibrous membrane
and PAN/(TA/FeIII) nanofibrous membranes were investigated using a field emission
scanning electron microscopy (FE-SEM, Ultra 55, ZEISS, Oberkochen, Germany) equipped
with an energy dispersive X-ray spectroscopy analyzer (EDS). The fiber diameters were an-
alyzed by ImageJ ((National Institutes of Health, Bethesda, MD, USA) based on the method
proposed by Hotaling et al. [23]. The chemical structures of the bare PAN nanofibrous mem-
brane and PAN/(TA/FeIII) nanofibrous membranes were monitored over 4000–600 cm−1

using a Fourier transform infrared spectroscopy (FTIR, NICOLET 5700, NICOLET, Madi-
son, WI, USA) equipped with an ATR device with diamond plate. X-ray photoelectron
spectroscopy (XPS) was measured to analyze the chemical compositions of membranes by
a K-Alpha instrument (Thermo Fisher Scientic, Waltham, MA, USA). Water contact angles
of the membranes were investigated using an optical contact angle instrument (DSA20,
KRÜSS, Hamburg, Germany) at room temperature. Ultraviolet-visible-near-infrared diffuse
reflectance spectra (UV-vis-NIR spectra) were detected on a UV-vis-NIR spectrophotometer
equipped with an integrating sphere BaSO4 (UH4150, Hitachi Limited, Tokyo, Japan) in
wavelength range of 300–1200 nm.

2.4. Photocatalytic Activity Evaluation

The photocatalytic activities of the membranes were evaluated based on the degra-
dation of RhB under visible light irradiation. The visible light source was supplied by
the simulated solar light of xenon lamp (300 W), which a UV cutoff filter of 420 nm was
used to eliminate the UV light. The membrane (25 mg) was immersed into the 20 mL
of RhB solution (10 mg/L) for 60 min in a dark environment to reach the adsorption–
desorption equilibrium and then was placed under the visible light for the photocatalytic
experiment. According to the Beer–Lambert law (Supplementary Figure S1), the concen-
tration of RhB solution at the given intervals was analyzed by the absorption intensity of
554 nm in the UV-vis spectrum (UV1102, Prism Instrument, Shanghai, China). The RhB
degradation rate (%) was calculated after 360 min illumination based on the equation:
Degradation (%) = (C0−C)/C0 × 100%, where C0 and C are the initial and actual concentra-
tions of RhB, respectively. The stability of the photocatalyst was evaluated by comparing



Coatings 2023, 13, 1212 4 of 11

the degradation efficiency after the successive photocatalysis cycle. Each photocatalysis
cycle was set to 360 min.

3. Results and Discussion

3.1. Preparation and Characterizations of PAN/(TA/FeIII) Nanofibrous Membranes

The preparation of PAN nanofibrous membranes coated with TA/FeIII complexes
was accomplished according to the strategy depicted in Scheme 1. The abundant phenolic
hydroxyl groups of TA not only make it easy to adhere to the surface of fibers but also
can combine with FeIII to form the complexes through strongly metal chelation [22,24].
Therefore, during the layer-by-layer deposition process, TA molecules diffused into the sur-
faces of nanofibers as the PAN membrane was soaked into the TA solution. Subsequently,
FeIII cations rapidly reacted with TA molecules to form the TA/FeIII complexes coating on
the surface of PAN nanofibrous membranes. The coating process was repeated until the
desired modified PAN nanofibrous membranes are obtained. As observed in Figure 1, the
intensity of PAN characteristic bands at 2937 cm−1 and 2242 cm−1, which correspond to
the asymmetrical bending of C–H and the stretching vibration of C≡N, respectively [25],
decreased obviously with the number of coating cycles. In the meanwhile, the typical
adsorption bands of TA appeared in the IR spectra of modified PAN nanofibrous mem-
branes. These bands, at 1712 cm−1, 1320 cm−1, 1201 cm−1 and 757 cm−1, were assigned to
the C=O stretching vibration of carbonyl groups, the –OH in-plane bending vibration of
phenolic hydroxyl groups, the C–O stretching band of phenolic hydroxyl groups, and the
C–H bending vibration of aromatic rings, respectively [26,27]. Moreover, because of the
metal chelation between TA and FeIII, the –OH in-plane bend of TA shifted from 1320 to the
higher wavenumber in the spectra of modified PAN nanofibrous membranes. The intensity
and the location changes of characteristic bands confirmed the successful deposition of TA
and FeIII and the formation of TA/FeIII complexes on the surface of membranes. Further-
more, the quantity of TA/FeIII complexes presented an increasing trend with the number
of coating cycles.
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Figure 1. FTIR-ATR spectra of PAN, PAN/(TA/FeIII)1, PAN/(TA/FeIII)3, PAN/(TA/FeIII)5,
PAN/(TA/FeIII)7 nanofibrous membranes.

In order to further confirm the surface chemical compositions of membranes, XPS
analysis is performed in Figure 2. In the full survey XPS of PAN/(TA/FeIII)5 nanofibrous
membrane (Figure 2a), characteristic peaks assigned to C 1s, O 1s, N 1s, and Fe 2p can be
clearly observed, indicating the existence of TA and FeIII components. The high resolution
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C 1s spectrum (Figure 2b) showed three dominant peaks at 284.6 eV, 286.2 eV, and 288.5 eV,
assigned to C–C/C=C, C–O, and C=O/O–C=O bonds, respectively [28]. Deconvolution of
O 1s spectrum (Figure 2c) displayed two peaks at 531.7 eV and 533.2 eV, corresponding
to C–O/Fe–O, and C=O/O–H, which possibly pertained to the chelating structure of the
TA/FeIII complexes [12,29,30]. In the Fe 2p spectrum (Figure 2d), the peaks at 711.6 eV
and 725.0 eV were assigned separately to Fe 2p3/2 and Fe 2p1/2 of FeII, while the peaks at
716.0 eV and 728.7 eV were attributed to Fe 2p3/2 and Fe 2p1/2 of FeIII, respectively [31,32].
Two valence states of Fe element showed that TA could reduce partial FeIII cations to the
lower state during the self-assembly of TA/FeIII complexes [33].
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Figure 3 presents the morphology of PAN nanofibrous membranes before and after
the deposition of TA and FeIII. The bare PAN nanofibrous membrane consisted of smooth
and random nanofibers with a mean diameter of about 320 nm. After layer-by-layer
deposition of TA and FeIII, small grains can be seen on the surface of nanofibers. Note that
the number of grains increased, and grains gradually aggregated as the increase of coating
cycles, resulting in the roughening nanofiber surface and the increasing nanofiber diameter.
Especially after seven coating cycles, the large size of aggregations unevenly distributed in
the interfibrous pores (Figure 3i). This phenomenon could be due to the strong interactions
between TA and FeIII, which made subsequent TA and FeIII tend to bound the TA/FeIII

complexes that had already adhered on the surface of nanofibers, rather than continue to
uniformly deposit on the surface of nanofibers [34]. In addition, the distribution of the
elements in Figure 3k, l also supported that the modified PAN nanofibrous membranes
contained TA and FeIII, which is consistent with the above analysis.
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The hydrophilic properties of PAN nanofibrous membranes coated with TA/FeIII

complexes are investigated in Figure 4. The water contact angle of the bare PAN nanofibrous
membrane was about 35◦, revealing the hydrophilicity of PAN. After being coated with
TA/FeIII complexes, the modified PAN nanofibrous membranes showed smaller water
contact angles. When the number of coating cycles was more than five, the water droplet
dissolved immediately once contacting with the modified PAN nanofibrous membranes,
illustrating that the membranes became more and more hydrophilic. The changes of water
contact angles indicated that the TA/FeIII complexes can enhance the hydrophilicity of
PAN membranes, which can be attributed to the hydrophilic groups of TA. On the other
hand, it also confirmed that more TA/FeIII complexes adhered on the PAN nanofibrous
membranes with an increase of coating cycle.
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3.2. Photocatalytic Activity

Rhodamine B (RhB), one of the most important cationic xanthene dyes, has been
widely applied in the textile industry [35]. Due to its high stability, non-biodegradability,
and toxicity, the discharge of dyeing wastewater containing RhB into the water bodies seri-
ously endangers human health and the ecological environment. Herein, RhB was chosen as
a model pollutant to evaluate the photocatalytic activities of TA/FeIII complexes modified
PAN nanofibrous membranes shown in Figure 5. Before the photodegradation experiment,
a dark adsorption test was carried out, in which the photocatalyst fully contacted the target
pollutant in the dark for 1 h to the establishment of the adsorption–desorption equilibrium.
As shown in Figure 5a, the amount of adsorbed RhB by modified PAN nanofibrous mem-
branes was much higher than that by the bare PAN nanofibrous membrane, owing to the
contribution of TA/FeIII complexes. The stronger adsorption affinity is beneficial for photo-
catalyst to the subsequent photocatalytic degradation process. As the photodegradation
experiment was performed under light illumination, it can be seen that RhB could be hardly
degraded by the bare PAN nanofibrous membrane. In comparison, RhB was almost com-
pletely degraded by PAN/(TA/FeIII)1, PAN/(TA/FeIII)3, and PAN/(TA/FeIII)5 nanofibrous
membranes after 360 min illumination (Figure 5,b). It fully demonstrated the photocatalysis
of TA/FeIII complexes. Furthermore, among these modified PAN nanofibrous membranes,
the photocatalytic activity was enhanced with the number of coating cycles. The final
degradation efficiency of PAN/(TA/FeIII)5 nanofibrous membrane reached to 98% after
360 min illumination (Figure 5d). And the degradation efficiency of PAN/(TA/FeIII)1 and
PAN/(TA/FeIII)3 nanofibrous membranes both exceeded 90%. It means that the loaded
amount of TA/FeIII complexes contributed to the improvement of the observed photocat-
alytic behavior. However, when the number of coating cycles exceed 5, the photocatalytic
activity of the membrane was found to decrease, and the final degradation efficiency was
only 72%. The reason may be that the aggregation of TA/FeIII complexes shown in Figure 3i
can reduce the number of active sites, thus reducing the photocatalytic efficiency [36]. In
addition, Figure 5c also revealed that PAN/(TA/FeIII)5 nanofibrous membrane exhibited
an excellent photocatalytic activity with a much higher kinetic constant based on the fitting
to kinetic pseudo-first-order model.
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3.3. Light Absorbance Capability

To understand the role of TA/FeIII complexes during the photocatalytic process, the
optical properties of modified PAN nanofibrous membranes were investigated in depth.
Figure 6 gives the UV-vis-NIR spectra of the bare PAN nanofibrous membranes and PAN
nanofibrous membranes coated with TA/FeIII complexes. Compared with the bare PAN
nanofibrous membrane, the light absorbance intensities of modified PAN nanofibrous
membranes were enhanced obviously in the 400–1000 nm range. The increased light
absorbance capabilities were attributed to the d-d transitions and the ligand-to-metal charge
transfer (LMCT) in the TA/FeIII complexes [37]. With the increase of coating cycles, more
TA/FeIII complexes coated on the PAN membranes, leading to the stronger light harvesting
capabilities. Whereas, the aggregation of TA/FeIII complexes in the PAN/(TA/FeIII)7
nanofibrous membrane may interfere with the active centers to receive the light radiation.
The stronger light absorbance capability contributed to generating more free radicals for
the photodegradation of RhB [12,38].
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3.4. Stability of Photocatalyst

The stability of the photocatalyst was evaluated by the cycling tests shown in Figure 7a.
Although the photocatalytic performance decreased slightly after each photocatalytic cycle,
the degradation efficiency remained above 70%. To analyze the reason for the change in the
photocatalytic property, the morphology of the PAN/(TA/FeIII)5 nanofibrous membrane
after the cycling tests was investigated in Figure 7c. Compared to the original morphology
of the membrane, there were only a few grains fixed on the surface of the membrane after
the cycling tests. It revealed that the adhesive force between TA/FeIII complexes and
PAN nanofibrous membrane should be further improved. Nevertheless, the above results
confirmed the PAN nanofibrous membrane coated with TA/FeIII complexes displayed high
photocatalytic performance and reusability.
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4. Conclusions

In this work, the PAN nanofibrous membrane coated with TA/FeIII complexes was
fabricated by layer-by-layer deposition of TA and FeIII cations for efficient photocatalysis.
The analysis of chemical structure, morphology and hydrophilicity confirmed the success-
ful self-assembly of TA/FeIII complexes on the surface of PAN nanofibrous membranes.
Furthermore, the amount and morphology of TA/FeIII complexes in the PAN nanofibrous
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membranes can be adjusted based on the coating cycles. More importantly, the modified
PAN nanofibrous membranes showed excellent photocatalytic activities owing to their
great light absorption capabilities. Therefore, the PAN nanofibrous membrane coated
with TA/FeIII complexes could be used as a novel photocatalyst with high efficiency and
reusability for dyeing wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/coatings13071212/s1, Figure S1: The standard curve titration diagram of
RhB solution.
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