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Abstract: Powder coatings are a promising, solvent-free alternative to traditional liquid coatings due
to the superior corrosion protection they provide. This study investigates the effects of incorporating
montmorillonite-based nanoclay additives with different particle sizes into polyester/triglycidyl
isocyanurate (polyester/TGIC) powder coatings. The objective is to enhance the corrosion-protective
function of the coatings while addressing the limitations of commonly employed epoxy-based coating
systems that exhibit inferior UV resistance. The anti-corrosive and surface qualities of the coatings
were evaluated via neutral salt spray tests, electrochemical measurements, and surface analytical
techniques. Results show that the nanoclay with a larger particle size of 18.38 µm (D50, V) exhibits a
better barrier effect at a lower dosage of 4%, while a high dosage leads to severe defects in the coating
film. Interestingly, the coating capacitance is found, via electrochemical impedance spectroscopy,
to decrease during the immersion test, indicating a self-repairing capability of the nanoclay, arising
from its swelling and expansion. Neutral salt spray tests suggest an optimal nanoclay dosage of 2%,
with the smaller particle size (8.64 µm, D50, V) nanoclay providing protection for 1.5 times as many
salt spray hours as the nanoclay with a larger particle size. Overall, incorporating montmorillonite-
based nanoclay additives is suggested to be a cost-effective approach for significantly enhancing the
anti-corrosive function of powder coatings, expanding their application to outdoor environments.

Keywords: montmorillonite; additive; dosage; particle size; polyester/TGIC; anti-corrosive; neutral
salt spray; electrochemical impedance spectroscopy

1. Introduction

Anti-corrosive coatings are commonly utilized to prevent metallic substrates from
corroding [1,2]. Among these coatings, solvent-borne liquid coatings are the most com-
monly used on the market, but there has been a shift towards powder coatings in recent
years. This change is occurring because powder coatings help reduce the use of volatile
organic compounds (VOCs) and hazardous air pollutants (HAPs) as solvents, making them
a potentially more environmentally friendly option [3–5]. In addition, powder coatings are
recognized for their 4Es, which include being ecological, economical, energy-efficient, and
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highly effective compared to their liquid counterparts. These advantages have contributed
to the growing popularity of powder coatings [5–8].

Powder coatings come in two main varieties: thermoplastic and thermosetting. The
latter is typically preferred due to its higher performance, achieved through a cross-linking
reaction that occurs during thermal or UV curing [4,9]. A typical thermosetting powder
coating formula consists of resin, a curing agent (collectively referred to as the “binder”),
additives, pigments, and fillers, which are all crucial components for achieving the desired
properties and performance.

Thermosetting powder coatings use a variety of binders, including polyester cross-
linked with triglycidyl isocyanurate (TGIC) orβ-hydroxyalkyl amide (HAA) [10], epoxy [11],
polyester–epoxy hybrid, polyurethane (PU) [12], and polyacrylate [5]. While epoxy powder
coatings offer superior corrosion protection, they are unsuitable for outdoor topcoat appli-
cations due to their poor UV resistance [4,5]. In contrast, polyester powder coatings are UV
resistant and can be used as both basecoat/primer and topcoat [3,4]. For polyester systems,
using HAA as the curing agent is more environmentally friendly [13,14], but its cured
coating film is more porous than the TGIC system due to the water vapor released from the
cross-linking reaction [4,9]. Therefore, this study adopted a polyester/TGIC binder.

An anti-corrosive additive is an additional component of coatings that can enhance their
properties. These additives work through three main mechanisms: barrier shielding, galvanic
effects (sacrificial anode), and inhibitive effects [1]. In terms of barrier effect, many solid
particles, especially those with high aspect ratios, have been used to enhance the protective
qualities of coating films and polymer composites [11,15]. This effect is primarily due to
the increased tortuosity of transport pathways within the coating and the inhibited ingress
and uptake of the corrosive medium (electrolyte) [13,16,17]. Micaceous iron oxide (MIO)
and nanoclays are two examples of additives that fall into this category [1,18,19]. Other
one-dimensional and zero-dimensional nanomaterials, such as graphene [20], graphene
oxides [21], MXenes [22], and their derivatives have been reported to provide an enhanced
barrier effect. However, the high cost of these novel materials would limit their application
in commodity anti-corrosive coatings.

Nanoclay based on montmorillonite [(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O (MMT)],
with a plate thickness of 1 nm, is a commonly used clay in polymers and coatings [18,23,24].
Montmorillonite can be derived from bentonite, and the terms are often used interchange-
ably [14,25]. Surface treatment of the clay has been shown to improve the interfacial
adhesion and compatibility between the particle surface and polymer matrix [17,18]. As
a smectite mineral, montmorillonite has a large specific surface area and exhibits high
swelling and expansion capability in contact with water [13,25]. It has been used as a rheo-
logical modifier (thickener) and an anti-corrosive additive for waterborne coatings [26–28].
Additionally, it serves as a functional filler in various polymer composites for enhancing
impermeability [14,16,17,29–36]. However, its use in powder coatings remains rare.

Incorporating nanoclay particles with a layered structure into polymers can increase
their barrier properties by increasing the tortuosity of the transport pathway for aggres-
sive species, similarly to other lamellar-shaped pigments [1,13,16]. Van der Zwaag also
demonstrated that nanoclay could fill moisture-induced cracks in sol-gel-based coatings as
an expandable phase [37]. Huttunen-Saarivirta et al. [11] investigated the effect of MMTs
on epoxy powder coatings and found that the mechanical properties and barrier effect
of the coatings were both improved. Platelet-shaped MMTs had a stronger barrier effect
than rod-like ones. Additionally, Zhu et al. noted that nanoclay acted as a dispersing aid,
facilitating the dispersion of other coating components [38]. Its water-absorbing ability
could also trap electrolyte inside the cured coating film, inhibiting the ingress of corrosive
media during environmental exposure.

Apart from the chemical structure of the incorporated additive particles, factors such
as particle size, particle size distribution (PSD), aspect ratio, and surface treatment signif-
icantly affect their characteristics and performance in coatings and polymer composites.
Experimental and modeling efforts studies have been conducted to investigate these fac-
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tors [11,15,39–43], and it has been reported that particle size could impact the behavior and
properties of clay in coating systems [11,15,39,40,42].

This study compares two nanoclays with different particle sizes and particle size
distributions (PSDs) at various dosages in a polyester/TGIC powder coating binder. The
effects of these nanoclays on the mechanical and anti-corrosive properties of the coatings
were assessed using applicable ASTM and ISO standards for industrial applications as well
as electrochemical impedance spectroscopy (EIS), which has been widely used for coating
performance evaluation and formulation optimization [44–48].

2. Materials and Methods
2.1. Materials and Coating Formulations

This study investigated two sets of cost-effective montmorillonite (MMT) that were
surface-modified with a quaternary ammonium salt, Claytone® HT (C1, with a larger parti-
cle size, see Figure 1a), and CLOISITE® 30B (C2, with a smaller particle size, see Figure 1b)
(BYK USA Inc., Wallingford, CT, USA). These were incorporated into a polyester/TGIC
binder using the standard manufacturing process for powder coatings. The surface treat-
ment of the clay was found to improve the interfacial adhesion and compatibility between
the particle surface and the polymer matrix [17,18]. Other treatment methods, such as
plasma or ozone exposure [49], may serve similar purposes and can be compared in fu-
ture studies.

Table 1 shows the montmorillonite particle sizes measured using a laser diffraction
particle size analyzer (BT9300S, Bettersize Instruments Ltd., Dandong, China).

Table 1. Particle sizes of montmorillonite nanoclays measured in D.I. water, refractive index input = 1.55.

Code Additive Particle Size/µm Density/(g/cm3)

D10, V D50, V D90, V
C1 Claytone® HT 4.49 18.38 46.10 1.70
C2 CLOISITE® 30B 1.91 8.64 23.08 1.98

The study evaluated and compared the anti-corrosive effects of the two nanoclays
in a previously optimized powder coating formulation (see Table 2). A range of additive
dosages (i.e., contents or concentrations) were tested to determine the optimal dosages,
and the resulting formulations with different dosages of the two nanoclays are shown in
Table 3. The naming scheme for each formulation reflects the different levels of dosages.

Table 2. Binder formulation of the polyester/TGIC powder clearcoat (PC).

Component Composition Content/wt.%

Resin Carboxylated polyester 90.8
Curing agent TGIC 6.8

Flow and leveling agent polyacrylate 1.6
Degassing agent Benzoin 0.8

Table 3. Naming and formulae of powder coatings with nanoclays C1 and C2 in a polyester/TGIC binder.

Formula Code Nanoclay/wt.% Binder/wt.%

Control-PC 0.0 100.0
C1–02%-PC 2.0 98.0
C1–04%-PC 4.0 96.0
C1–06%-PC 6.0 94.0
C1–08%-PC 8.0 92.0
C1–16%-PC 16.0 84.0
C2–02%-PC 2.0 98.0
C2–04%-PC 4.0 96.0
C2–06%-PC 6.0 94.0
C2–08%-PC 8.0 92.0
C2–16%-PC 16.0 84.0
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Figure 1. SEM images: original nanoclay particles (a) C1, (b) C2; cross-sections of nanoclay-contain-
ing coatings with different C1 dosages in PC (c–g) 2%–16%; cross-sections of nanoclay-containing 
coatings with different C2 contents in PC (h–k) 2%–8%; (l) localized corrosion spot on the coating 
prepared from C2–04%-PC; (m) coating prepared from C1–02%-PC after immersion test; EDX maps 
of (n) Si, (o) Al, and (p) C of image (m); coating surfaces prepared from C1–02%-PC (q) before and 
(r) after immersion tests. 

2.2. Preparation of Powder-Coated Panels 
The raw materials in the powder coating formulations were pre-mixed and extruded 

in a laboratory-scale powder coating extruder (SLJ-10, Yantai Donghui Powder Coating 
Equipment Co., Yantai, China). The infeed, plastification, and homogenizing zones were 

Figure 1. SEM images: original nanoclay particles (a) C1, (b) C2; cross-sections of nanoclay-containing
coatings with different C1 dosages in PC (c–g) 2%–16%; cross-sections of nanoclay-containing coatings
with different C2 contents in PC (h–k) 2%–8%; (l) localized corrosion spot on the coating prepared
from C2–04%-PC; (m) coating prepared from C1–02%-PC after immersion test; EDX maps of (n) Si,
(o) Al, and (p) C of image (m); coating surfaces prepared from C1–02%-PC (q) before and (r) after
immersion tests.



Coatings 2023, 13, 1220 5 of 22

2.2. Preparation of Powder-Coated Panels

The raw materials in the powder coating formulations were pre-mixed and extruded
in a laboratory-scale powder coating extruder (SLJ-10, Yantai Donghui Powder Coating
Equipment Co., Yantai, China). The infeed, plastification, and homogenizing zones were
optimized and maintained at temperatures of 80, 90, and 100 ◦C, respectively, with a twin-
screw rotation speed of 300 rpm, screw feeder speed of 10 rpm, and rolling chiller speed of
10 rpm. The torque was maintained within 80 ± 5% of the equipment’s capacity. The hot
extrudates were cooled, crushed, pulverized, and sieved to produce coating powders with
a median diameter (D50, V) of 35 ± 3 µm.

The powder coatings were electrostatically sprayed onto standard phosphated steel
panels (ASTM D609 Type 2 [50], Q-Lab Corporation, Cleveland, OH, USA) using a Gema
OptiSelect corona gun and an OptiStar manual gun control unit (Gema Switzerland GmbH,
Gallen, Switzerland) at a constant voltage of −50 kV. The panels were cured for 15 min at
200 ◦C to cross-link the coating films fully. Film thicknesses were measured using a film
thickness gauge PosiTector 6000 (DeFelsko Corporation, Ogdensburg, NY, USA) as per
ASTM D7091–13 [51] and confirmed under a scanning electron microscope. Coated panels
with film thicknesses of 60 ± 5 µm were selected for testing and characterization.

2.3. Coating Performance Evaluations

Coating performance was evaluated using various ASTM (ASTM International, for-
merly known as the American Society for Testing and Materials) standards. The surface
quality of the coatings was evaluated using a Rhopoint IQ 20/60 gloss meter (goniopho-
tometer, Rhopoint Instruments Ltd., St Leonards, UK) to measure specular gloss and
distinctness-of-image (DOI) according to ASTM D523–14 [52] and D5767–18 [53]. The
mechanical properties of the coatings were assessed using ASTM standards for cross-cut ad-
hesion (D3359–09) [54], pencil hardness (D3363–05) [55], and impact resistance (D2794−93,
Reapproved 2010) [56].

2.4. Anti-Corrosive Performance Evaluations
2.4.1. Neutral Salt Spray Tests

To evaluate the anti-corrosive performance of the coated panels, a neutral salt spray
test was conducted in accordance with ASTM B117−16 [57] using a salt spray chamber
MX-9204 (Associated Environmental Systems, Ayer, MA, USA). Two 0.5 mm wide scribes
were made to expose the steel substrate before testing. Every 500 h, the sample panels
were removed from the chamber, rinsed, and scraped vigorously with a flexible plastic
spatula alongside the scribe, following ASTM D1654–08 (Reapproved 2016) Section 8.1.1
Method 1 [58]. The time taken to reach a mean creepage of 2 mm was recorded as a result.

2.4.2. Electrochemical Tests and Degree of Rusting

Electrochemical techniques, especially electrochemical impedance spectroscopy (EIS),
have been instrumental in obtaining insightful information on organic coating films [44,59,60].
In widely adopted organic coatings models, the coating film is considered non-conductive,
with pores over the cross-sections that gradually permeate with conductive electrolyte
during immersion test [61,62]. The ingress of the electrolyte through the pores can be
analyzed visually or by an equivalent electrical circuit (EEC) modeling and breakpoint
frequency analysis [59], allowing for quantitative interpretation and comparison of the
effect of defects in the coating [63–65]. By fitting EECs to EIS spectra, multiple indicators,
such as the coating capacitance and pore resistance, can be used to monitor the coating
evolution during immersion over time [66,67].

The coating film is a dielectric medium between the metallic substrate and the elec-
trolyte in contact with the coating surface. Its capacitance is expressed by Equation (1),

C =
ε0εr A

d
(1)
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where C is the coating capacitance, ε0 the vacuum permittivity (8.83 × 10−14 F/cm), εr
the dielectric constant (relative electrical permittivity) of the coating, A the area of the
coating surface, and d the coating film thickness. The latter value changes with electrolyte
uptake through the microscopic pores inside the coating film. The volumetric content of
water Xv inside the coating film can be estimated using the Brasher–Kingsbury equation
in Equation (2) [48,68], which has been verified to yield values close to gravimetric values
obtained experimentally [69,70],

Xv =
log10

(
Ccoat, t
Ccoat, 0

)
log10(80)

(2)

where Ccoat,t is the coating capacitance at time t, Ccoat,0 the initial coating capacitance, and
80 the relative electrical permittivity of water at 20 ◦C.

The lower breakpoint frequency, as shown in Equation (3), is proportional to the
delaminated area and can be used to identify the initiation and estimate the degree of
coating degradation [64,71,72],

fb =
Ad

2πε0εrρ0 A
(3)

where Ad and A are the delaminated and total areas of the coating film, respectively, and
ρ0 the specific ionic resistance of the coating.

In addition to EIS, measurements of the open circuit potential (OCP, also called cor-
rosion potential, Ecorr) and polarization resistance (Rp) are also non-destructive electro-
chemical techniques that can be used to monitor coating changes over time [73–77]. In
coating research, OCP is used to compare the chemical activity of different coating systems
and formulations qualitatively, with a higher OCP value indicating a more protective sys-
tem [77–79] (if the cathodic reaction is unchanged). The Rp value, defined in Equation (4),
can be obtained by measuring the current response within the pseudo-linear region of
potential at OCP ±5 to ±10 mV [65,80]. The Rp value is inversely proportional to the
corrosion rate of the material, as shown in Equation (5). In the case of a defective coating
film, the decrease in Rp corresponds to an increase in the exposed substrate area over time.

1
Rp

=

(
∆I
∆E

)
∆E→0

(4)

Rp ∝
1

icorr
(5)

Compared to EIS measurement and interpretation, monitoring OCP and Rp are faster
and easier procedures that do not require highly sophisticated instruments and software.

A conventional three-electrode electrochemical cell was used for all the electrochemical
measurements. The cell was housed inside a Faraday cage to reduce electromagnetic
interference from external sources. A saturated calomel electrode (SCE, 0.242 V vs. standard
hydrogen electrode, SHE) was used as the reference electrode, and a Pt plate as the counter
electrode; 5% NaCl by weight in Type I water (resistivity 18.2 MΩ·cm) was used as the
electrolyte. An integrated potentiostat and frequency response analyzer (FRA), Solartron
Analytical Modulab XM CHAS 08 (AMETEK Scientific Instruments, Oak Ridge, TN, USA)
and Modulab XM ECS software version 3.4 were used to perform the OCP, Rp, and EIS
measurements and data collection.

The electrochemical impedance spectroscopy (EIS) scanning was subsequently con-
ducted in a frequency range from 10 mHz to 100 kHz using an OCP ± 10 mV (absolute)
sinusoidal potential perturbation. The OCP was measured first, followed by the Rp, which
was measured potentiodynamically within the range of OCP ± 10 mV at a scan rate of
10 mV/min. The three measurements were all conducted at a 1-day interval to monitor
changes in the coating film. The EIS fitting was performed using ZView software (Scribner
Associates Inc., Southern Pines, NC, USA) version 4.0c.
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In addition to these measurements, the degree of rusting was also graded through
visual inspection using ASTM D610–08 (Reapproved 2019) [81] after the immersion tests.
This standard provides a visual reference for grading the degree of rusting on metal surfaces.
The overall purpose of these tests was to monitor the effectiveness of the coating film in
preventing rust and to identify any changes in the coating film over time.

2.5. Characterization Techniques

The characterization techniques used in the study include scanning electron mi-
croscopy (SEM), field emission scanning electron microscopy (FE-SEM), confocal laser
scanning microscopy (CLSM), Raman spectroscopy, X-ray diffractometry (XRD), and X-ray
micro-computed tomography (microCT).

For SEM, an S-3900 SEM (Hitachi High-Tech Corporation, Tokyo, Japan) with an
Oxford ULTIM MAX 65 SDD X-ray analyzer (Oxford Instruments plc, Abingdon, UK) or a
SU3500 variable pressure SEM (Hitachi High-Tech Corporation, Tokyo, Japan) combined
with an Oxford Aztec X-Max50 SDD X-ray analyzer (Oxford Instruments plc, Abingdon,
UK) were used. SEM was used to analyze the additive particles and the cross-sections of
the coating films. FE-SEM imaging was performed with a Hitachi SU8230 Regulus ultra
high-resolution field emission SEM (Hitachi High-Tech Corporation, Tokyo, Japan) to study
the details of the particle dispersion in the coating film.

For CLSM, a LSM 900 confocal laser scanning microscope for materials (Carl Zeiss
Microscopy GmbH, Jena, Germany) was used. CLSM was used to examine the coating
surface morphology and roughness. The acquired data were processed using ConfoMap
version 7.4.8341 (Digital Surf, Besançon, France).

An InVia Reflex Raman Spectrometer at a 633 nm laser wavelength (Renishaw plc,
Gloucestershire, UK) was employed for Raman spectroscopy. Raman spectroscopy was
used to identify the corrosion products and chemical reaction mechanisms.

For XRD, a Rigaku SmartLab automated multipurpose X-ray diffractometer with a Cu
source, equipped with a Cross Beam Optics (CBO) system and a 2D HyPix-3000 detector
XRD (Rigaku Corporation, Akishima, Japan), was used. XRD was also used to characterize
the corrosion products for large, coated surface areas (approximately 100 mm × 100 mm).
A grazing incidence XRD with an incidence angle of 3◦ was used for all measurements.

Finally, for microCT, the instrument used was a ZEISS Xradia Context microCT (Carl
Zeiss Microscopy GmbH, Jena, Germany). MicroCT was used for non-destructive 3D
imaging. The acquired data were reconstructed by ZEISS Scout-and-Scan software, and
the data post-processing and visualization were performed using Dragonfly Pro version
4.0.0.569 software.

3. Results and Discussion
3.1. Coating Morphologies

Figure 1c–f,h–k show that the nanoclay particles were dispersed in the polymer
matrices as platelets at dosages of 2, 4, 6, and 8%. Only a small number of agglomerates
with diameters of approximately 10 µm were observed, and no visible pores or voids were
present in multiple 8 mm wide cross-section specimens for each formulation. However,
when the clay dosage was increased to 16% in the coating prepared from the formula
C1–16%-PC, severe defects—including voids, pores, and micrometer-scale channels—were
formed due to the inhibited flow and leveling, as shown in Figure 1g. The higher melt
viscosities of the polymeric binder at high particle content caused deterioration of the
coating uniformity and integrity.

The immersion test revealed cracks inside the coating films of multiple specimens, as
shown in Figure 1m. The cracks resulted from the swelling and expansion of the nanoclay
particles in the confined space of the rigid polymer matrix. For coatings with a nanoclay
dosage of 16% (C1–16%-PC), inadequate coating flow and the film contraction during
cross-linking caused severe defects, leading to aggravated performance deterioration in
the immersion test. The corrosion spots in the coating cross-sections after immersion were
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inspected using SEM and EDS mapping, as shown in Figure 1l,n–p (the coating with 2%
nanoclay, C1–02%-PC). Corrosion products of the steel substrate were present inside and
around the pores on the coating surface, as shown in Figure 1q,r.

FE-SEM imaging exhibited the dispersion of nanoclay particles with a broad size
distribution in the binder (Figure 2a,b) and proved that the nanoclay particles existed in
both intercalated (binder intercalated between nanoclay layers, Figure 2c,d) and exfoliated
(binder presenting no ordering along the stacking axis of the nanoclay layer) forms [82].
There was a significant number of particles successfully dispersed to be 10 nm in diame-
ter (Figure 2e,f).
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Figure 2. FE-SEM images: cross-sections of the coating with C1 4%, (a) large nanoclay particles with
space at the particle–binder interface; (b) small nanoclay particles embedded in the coating binder;
(c) nanoclay particle with a layered structure; (d) magnified layered structures with binder inside the
layers; (e) particle clusters embedded in the binder; (f) magnified nanoscale particles embedded in
the binder.

Surface scanning using CLSM was performed to measure the roughness of the coating.
As shown in Figure 3a,c–j, the coating surfaces transitioned from glossy to a sandpaper-like
visual appearance with an increase in nanoclay dosage. The calculated surface roughness
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values as per ISO 25178 [83] are shown in Figure 3b. The confocal maps showed that
larger nanoclay dosages led to lower effective film thicknesses for the same measured film
thickness. The decreased effective film thickness and increased defects in the coating films
could both contribute to deteriorated protective performance.
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MicroCT images (Figure 4a,b, a 3D video can be found in the Supplementary Materials)
show that the particles were uniformly dispersed in a 60 µm × 750 µm × 750 µm coating
film with only a small number of agglomerates. The X-ray micro-computed tomography
was able to show the inner structure of a significantly larger area than the small image field
of SEM.
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In summary, the nanoclay dosages significantly affected the coating morphology,
surface roughness, and effective film thickness. Higher dosages led to more defects and
worse protective performance. The microCT technique provided a more comprehensive
view of the inner structure of the coating than did SEM.

3.2. Coating Properties

The cross-cut adhesion, as measured by ASTM D3359, was found to be 4B for all
coatings (with less than 5% of the area removed in the test), and this good adhesion was
maintained even after a prolonged immersion test for electrochemical measurements. The
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specular gloss, DOI, and reflection haze were measured as a function of the additive dosage,
and these values are plotted in Figure 5a,b. Larger nanoclay particles resulted in lower
gloss and DOI values.
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Figure 5c,d show the mechanical property values for pencil hardness and impact
resistance. The addition of nanoclay with a larger particle size improved the coating
hardness at 2% and 4% dosages, while the nanoclay with smaller particle size had no
such effect. Only the addition of nanoclay with the smaller particle size improved the
impact resistance. The coatings with dosages of 2% and 4% of larger nanoclay particles
exhibited decreased impact resistance, but they still met the requirement for anti-corrosive
applications in the industry.

3.3. Electrochemical Measurement Results
3.3.1. OCP and Rp

To evaluate the protection performance of nanoclay-containing coatings, the OCP and
Rp values for all the coated sample panels were recorded as a function of immersion time.
Figure 6 shows the results for Days 0–5.

The OCP value of the uncoated steel substrate decreased from−617 mVSCE to−745 mVSCE
during the first 5 days of immersion, with visible corrosion and discoloration observed
after only 15 min in the electrolyte. The coated panels exhibited higher OCP and Rp values
than the substrate, indicating the shielding effect of coating films. The stochastic layer-
by-layer clay particle swelling and expansion at different depths inside the coating films
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caused fluctuations in both OCP and Rp. The decrease in both values over time indicated
continuous electrolyte ingress into the coating films.
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Figure 6. OCP and Rp of the coatings with (a,b) C1 0%–16%, (c,d) C2 0%–16%; Days 0–5.

Figure 7 shows the OCP and Rp values of coatings with C1 4% and C2 8% over a
prolonged immersion of 40 days. Coatings with higher OCP values also had higher Rp
values, indicating stronger protection. The coatings with nanoclay particles of larger size
exhibited a stronger barrier effect than those with smaller size. The optimal dosages for
nanoclays C1 and C2 were found to be 4% and 8%, respectively, based on significantly
higher OCP and Rp values. At the high dosage of 16%, both values for the two series were
significantly lower than those of other formulae, including the clearcoat (Control-PC), due
to increased porosity and severity of defects within the coating film, which agreed with the
transition of the coating morphology.
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3.3.2. Electrical Equivalent Circuit Analysis

EIS measurements were carried out for 40 days on two specimens covered by coatings
with the optimal additive dosages, until both test panels reached a rust grade of 9-G
(0.03% rusted) in the general rusting category, in accordance with ASTM D610 [81]. The EIS
spectra of the specimen C1–04%-PC are shown in Figures 8a–d and 9a–d. Two equivalent
electrical circuits (EECs, Figures 8e and 9e) were employed to fit the EIS data, and the
values obtained, along with each χ2 goodness of fitting, are listed in Table 4.
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Figure 8. Representative EIS spectra (a–d) of an electrode with a coating prepared from the formula
C1–04%-PC; (e) EEC for data fitting, Days 0, 1, and 5.

The Nyquist plots revealed that the coating film exhibited two transition stages. The
coating film exhibited a pure barrier effect during the first eight days. To fit these spectra,
the equivalent electrical circuits shown in Figure 8e were used, comprising electrical
components such as Rs, Rpore, and Rct, which represent the solution (electrolyte) resistance,
coating pore resistance, and charge transfer resistance at the electrolyte/substrate interface,
respectively. Additionally, two constant phase elements (CPEs)—namely CPEcoat and
CPEdl, as defined in Equation (6)—were used instead of the coating capacitance and double
layer capacitance to obtain good fits, mainly due to the inhomogeneity of the coating
structure and involved interfaces [84]. The equivalent electrical circuits are superimposed
with the coating structure, as shown in Figure 10a,b,

Z(ω) =
1

Q(jω)α (6)

where Q and α are the CPE parameters, j the imaginary unit (j2 = −1), and 0 < α ≤ 1. When
α = 0, the CPE shows pure resistance, and when α = 1, the CPE shows pure capacitance.
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Figure 10. Schematics for (a,b) EECs and coating structure, (c,d) the protective mechanism of nanoclay,
(e,f) delamination of the nanoclay-containing coating after mechanical damage.

Higher impedance modulus at low frequency, a phase angle closer to −90◦ at high
frequency, and a lower breakpoint frequency (the frequency at which the phase angle
ϕ = –45◦) correspond to a stronger barrier effect [44,63,85]. Generally, Rpore has a strong
correlation with the long-term protective performance of coating films [62,65] and can
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also be used as an indicator of coating transition. All the fitted CPEcoat values from the
fitting procedure were converted into coating capacitance using the Hsu and Mansfeld
method [86]. The calculated Ccoat values were plotted in Figure 11 with the Rpore values.
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and C2–08%-PC.

For the spectra collected between Days 9 and 40, the Nyquist plots showed angles
of 45◦ and above 45◦ in the low-frequency region, indicating the diffusion of Fe2+ or
oxygen [44]. The EEC in Figure 9e was used, and a generalized Warburg element with a
short terminus [87], defined in Equation (7), was added in series with Rct,

Zws = RD
tanh(jωTD)

P

(jωTD)
P (7)

in which TD = l2

D , RD = σl√
D

, where σ is the Warburg coefficient, l is the effective diffusion
layer thickness, D is the effective diffusion coefficient of the migrating species, and P is the
exponential factor of the Warburg element.

Over the course of the immersion test, the Rpore value decreased with time in an exponential
decay pattern, indicating the progression of electrolyte ingress. However, the coating capacitance
did not follow the previously reported pattern, in which the value increased with the ingress
and reached a plateau after saturation and then went up again when coating film delamination
increased the exposed substrate area [88]. In this nanoclay-containing coating film, the Rpore
value decreased to a stable value around Day 10, and during the same period, the Ccoat value
increased, as the electrolyte-filled channels had much higher capacitance than the solid polymer.
It is possible that the end of this stage was caused by the saturation of the coating film with
electrolyte. As a result, the Rct value slowly decreased due to coating delamination and the
propagation of under-coating corrosion.

Between Days 9 and 40, the Rpore value decreased slightly, while the Ccoat value also
decreased. However, the compression of the space between the nanoclay particle surfaces
and the surrounding polymer matrix due to the expansion and swelling of the nanoclay
particles made it impossible to estimate the water content using the Brasher–Kingsbury method
(Equation (2)). This unusual phenomenon demonstrated that the cracks in the coating films
after the immersion tests were caused by the densification of the coating film structure and the
partial squeezing of the electrolyte pathways, as schematized in Figure 10c,d.

The coatings prepared from the formula C2–08%-PC with nanoclay C2 showed the best
protective capability in the C2-containing series. EIS spectra of this specimen are shown
in Figures 12a–d and 13a–d. EECs shown in Figures 12e and 13e were employed for the
data fitting. Table 5 provides a comparison of the values obtained. The fitted Rpore values
for C2 were smaller than those of C1, confirming the findings from the Rp comparison.
Over the prolonged immersion, the transition of the Ccoat values in Figure 11b showed
the same declining pattern as that of C1. Both nanoclays expanded when in contact with
the electrolyte, providing a self-repairing capability to the coating. However, the higher
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nanoclay dosage in the coating prepared from the formula C2–08%-PC led to more severe
coating delamination, as indicated by its lower Rct values.

Overall, the coating prepared from the formula C1–04%-PC exhibited superior protective
capability compared to both the control and the other formulations. The use of nanoclay
particles in this coating improved its barrier properties without compromising the structural
integrity of the coating. These findings suggest that the addition of nanoclay particles to
coatings can be an effective strategy for improving their protective capabilities. Similar results
were obtained through the breakpoint frequency analysis, as shown in Figure S1.
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Table 4. Fitted values of EEC elements; a coating prepared from the formula C1–04%-PC.

Time CPEcoat Rpore Calculated Ccoat CPEdl Rct Ws, RD Ws, TD Ws, P χ2

Days Qc/
Ω−1·cm−2·sα αcoat Ω·cm−2 F·cm−2 Qd/

Ω−1·cm−2·sα αdl Ω·cm−2 Ω·cm2·sP s

0 6.71 × 10−11 0.971 2.02 × 107 5.52 × 10−11 2.16 × 10−10 0.804 5.41 × 108 7.04 × 10−4

1 9.58 × 10−11 0.945 9.87 × 106 6.35 × 10−11 8.30 × 10−10 0.751 4.35 × 108 1.53 × 10−3

5 9.87 × 10−11 0.944 4.95 × 106 6.29 × 10−11 2.42 × 10−9 0.625 3.91 × 108 5.22 × 10−4

9 1.34 × 10−10 0.921 3.49 × 106 6.95 × 10−11 4.34 × 10−9 0.602 2.88 × 108 2.88 × 108 4.49 × 103 0.500 7.56 × 10−4

10 8.42 × 10−11 0.909 3.09 × 106 7.24 × 10−11 4.45 × 10−9 0.620 1.55 × 108 2.13 × 108 4.01 × 103 0.500 7.56 × 10−4

20 5.09 × 10−9 0.957 1.63 × 106 5.63 × 10−11 3.46 × 10−9 0.534 4.46 × 107 2.02 × 108 3.51 × 103 0.558 2.06 × 10−4

30 1.12 × 10−10 0.932 1.70 × 106 6.03 × 10−11 7.11 × 10−9 0.538 2.04 × 107 4.52 × 107 5.54 × 103 0.500 4.52 × 10−4

40 4.43 × 10−11 1.000 1.10 × 106 4.43 × 10−11 1.12 × 10−9 0.559 2.53 × 107 1.65 × 108 7.42 × 103 0.554 1.68 × 10−4

Table 5. Fitted values of EEC elements; a coating prepared from the formula C2–08%-PC.

Time CPEcoat Rpore Calculated Ccoat CPEdl Rct Ws, RD Ws, TD Ws, P χ2

Days Qcoat/
Ω−1·cm−2·sn αcoat Ω·cm2 F·cm−2 Qdl/

Ω−1·cm−2·sn αdl Ω·cm2 Ω·cm2·sP s

0 8.15 × 10−11 0.944 3.93 × 106 4.89 × 10−11 3.07 × 10−10 0.739 4.99 × 108 2.34 × 10−4

1 2.38 × 10−10 0.863 1.70 × 106 6.65 × 10−11 3.59 × 10−9 0.726 1.67 × 108 2.38 × 10−3

5 1.13 × 10−10 0.922 7.47 × 105 4.98 × 10−11 3.68 × 10−8 0.445 1.97 × 107 6.49 × 107 6.80 × 102 0.500 4.20 × 10−4

9 7.91 × 10−11 0.949 5.57 × 105 4.67 × 10−11 4.09 × 10−8 0.430 4.63 × 106 6.30 × 107 4.57 × 103 0.500 8.69 × 10−4

10 8.43 × 10−11 0.945 4.75 × 105 4.11 × 10−11 5.94 × 10−8 0.396 4.01 × 106 4.51 × 107 3.17 × 103 0.500 1.77 × 10−4

20 7.51 × 10−11 0.955 1.58 × 105 4.13 × 10−11 8.52 × 10−8 0.374 1.59 × 106 2.24 × 107 6.00 × 103 0.522 1.50 × 10−4

30 1.06 × 10−10 0.931 2.37 × 105 4.78 × 10−11 1.17 × 10−7 0.368 9.81 × 105 1.33 × 107 5.84 × 103 0.545 1.91 × 10−4

40 1.10 × 10−10 0.934 2.75 × 105 5.03 × 10−11 1.46 × 10−7 0.390 7.03 × 105 1.14 × 107 5.52 × 103 0.589 3.72 × 10−4
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3.4. Neutral Salt Spray Test Results

The neutral salt spray test is a common method of evaluating the anti-corrosion per-
formance of coatings. In this study, the tests were conducted until a mean creepage of
2 mm was reached, and the results are plotted in Figure 14k. The coating with 2% of
both nanoclays exhibited the best anti-corrosive enhancement, reaching salt spray hours
of 1000 h and 1500 h before reaching 2 mm creepage. However, all the higher dosages of
nanoclay led to the deterioration of coating performance, as evidenced by severe delamina-
tion of the coating films alongside the scribe marks (Figure 14a–j). The incorporation of
swelling nanoclay also exacerbated the adhesion loss of the coatings. Comparing the visual
appearance of scribe marks, one can see that the smaller particles exhibited slightly better
performance in the salt spray tests.
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The corrosion products and corrosion reactions were studied by X-ray diffraction
(XRD) and Raman spectroscopy, and the results are shown in Figures S2 and S3.

These results suggest that once the coating film is mechanically damaged, the nanoclay
particles may not be able to inhibit the electrolyte ingress in the direction parallel to the
substrate. Even though the self-repairing function imparted by the nanoclay remains the
same in the coating film, it is undermined by the delamination at the mechanically exposed
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coating-substrate interface, as schematized in Figure 10e,f. The findings highlight the
differences between the salt spray test and electrochemical measurement results, as the
former only captures corrosion propagation while bypassing the coating self-repairing
process induced by electrolyte ingress. In contrast, the latter measures the complete process
of coating films undergoing slow changes after immersion.

We emphasize the importance of choosing the appropriate evaluation method, which de-
pends on the working conditions of the coatings, particularly the risk of mechanical damage [10].

This study has employed long-term electrochemical (in an electrolyte solution) and
salt spray (in atmosphere) testing approaches and found slightly contradicting results
because the nanoclay swelling, which in some cases had a self-healing effect, required
water from the electrolyte solution. This finding might imply that the self-healing effect of
nanoclay-containing coatings might depend on the humidity and environmental conditions
during its service life. Future studies should investigate the effects of these factors.

4. Conclusions

In conclusion, the incorporation of montmorillonite-based nanoclay particles into
powder coatings can enhance their anti-corrosive properties. Larger clay particles are more
effective, although they result in lower surface quality. The nanoclay particles increase the
tortuosity of the coating films, while their self-repairing capability contributes to better
corrosion resistance. The study also emphasizes the importance of selecting the appropriate
test method for the environment of interest when evaluating coating performance. Overall,
this research provides useful information for developing more effective powder coatings
with improved anti-corrosive properties and longer service life.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings13071220/s1, Video S1: 3D structure of the coating prepared
from the formula C1–02%-PC by MicroCT; Figure S1. Lower breakpoint frequencies determined on
coatings prepared from the formulae C1–04%-PC and C2–08%-PC; Figure S2. (a,b) XRD patterns and
(c,d) Raman spectra of the coatings prepared from the formulae PC-Control and C1–04%-PC [89];
Figure S3. Corrosion reactions of the steel substrate under the coating films.
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