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Abstract: Waste resource utilization can save energy, reduce costs, and is one of the important
means to protect the environment. Flue-gas desulphurized (FGD) gypsum is a common industrial
by-product. These by-products are not only difficult to use, but also have serious impacts on the
ecological environment. The conventional process of the industrial utilization of the calcium sulfate
whisker pretreatment process leads to a low utilization rate of FGD gypsum, further increasing the
consumption of resources and leading to secondary pollution. This study presents a method of
preparing composites by adding FGD gypsum directly into epoxy resin with polyethylene-grafted
maleic (PGM) anhydride as a compatibilizer of FGD gypsum/epoxy resin composites. Results
showed weak tensile properties and impact properties of the composites when only FGD gypsum
was added. When the amount of PGM added was 6 wt%, the tensile properties and impact properties
of FGD gypsum/epoxy resin composites improved by 75% and 63%, and compared with the neat
epoxy resin, the tensile properties and impact properties of FGD gypsum/epoxy resin composites,
respectively, improved by 30% and 57%. Additionally, laser particle size analysis, X-ray diffraction
(XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM),
energy-dispersive X-ray spectroscopy (EDS), a thermogravimetric analyzer (TGA), and a Differential
scanning calorimeter (DSC) were used to examine the effects of PGM on the mechanical properties of
FGD gypsum/epoxy resin composites and its mechanism of action. The recycling of FGD gypsum in
resin materials has been extended in this study.

Keywords: composite material; epoxy resin; flue-gas desulfurized gypsum; polyethylene-grafted
maleic anhydride

1. Introduction

Semidry desulfurization and wet desulfurization in a furnace are usually used in the
circulating fluidized bed boiler in the power production of thermal power plants, and these
two approaches lead to high calcium content in the fly ash and bottom slag of circulating
fluidized beds and produce abundant flue-gas desulfurized (FGD) gypsum [1]. The gross
production of FGD gypsum reached 550 million tons in China in 2016, and a voluminous
amount was discarded [2]. FGD gypsum produced via flue-gas desulfurization in thermal
power plants has attracted widespread attention because of the technical problems and
widespread distribution associated with it, and relevant recycling research has been con-
ducted. The resource utilization of FGD gypsum is a hot spot in the research of industrial
solid waste at present. However, the utilization rate of FGD gypsum is low and the treat-
ment of FGD gypsum is more complex. Moreover, FGD gypsum often requires calcination
to be used, which not only causes additional energy consumption, but also becomes a
burden on the environment.

FGD gypsum has been explored in several scientific studies. FGD gypsum application
could significantly increase crop yield and improve soil quality [3]. FGD gypsum applica-
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tion is a viable strategy for reclaiming sodic soils due to its positive effects on soil fertility
and biochemistry and because it may contribute to soil ecosystem sustainability [4]. The
FGD gypsum produced as an energy-plant waste byproduct has recently been advocated
as a physiochemical remediation strategy for phosphorus (P) through sorptive removal [5].
In addition, FGD gypsum can also be used as a potential high-efficiency fluoride-removal
material [6].

By calcinating FGD gypsum into FGD plastic and blending it with fly ash and ordi-
nary Portland cement, the applicability of FGD gypsum has been extended to structural
composite materials [7]. The inorganic cementitious materials prepared using circulating
fluidized bed fly ash, carbide slag, and FGD gypsum reduces cost and carbon emissions
relative to traditional mortar [8]. Li et al. [9] reported the magnesium oxysulfate cement
(MOSC) could be effectively improved when FGD gypsum was mixed into the MOSC at the
curing at 40 ◦C. FGD gypsum can also be used to prepare building composite blocks [10,11].
Additionally, Tabatabai et al. [12] reported enhanced mechanical properties of polyester
resin by utilizing approximately 50% FGD gypsum content.

Epoxy resin (EP) is a typical thermosetting polymer that is widely used as struc-
tural adhesives, coatings, electronic packaging materials, and matrices of fiber-reinforced
composites [13]. However, the toughness of epoxy resin is poor, and good interfacial
compatibility with the FGD gypsum has not yet been established [14,15]. Epoxy resins are
often toughened with highly elastic polymer materials or rigid nanomaterials. However,
the compatibility between solid rubber and EP is usually poor, leading to severe phase
separation and, consequently, a poor toughening effect [16]. Dittanet et al. [17] reported
that the addition of silica nanoparticles did not have a significant effect on glass transition
temperature (TG) or the yield stress of epoxy resin, i.e., the yield stress and TG remained
constant regardless of silica nanoparticle size.

In order to improve the resource utilization rate of FGD gypsum, reduce energy con-
sumption, and protect the environment, in this study, we propose preparing the FGD
gypsum/epoxy resin composites via direct mixing of the FGD gypsum and epoxy resin
to improve the resource utilization of FGD gypsum. However, direct incorporation of
FGD gypsum into epoxy resin can significantly reduce the mechanical properties of FGD
gypsum/epoxy resin composites. PGM not only has good workability and polyethylene
properties, but also presents reactivity and strong polarity of polar molecules of maleic an-
hydride. PGM is an excellent compatible additive for composite-material preparation [18].
Polyethylene-grafted maleic (PGM) anhydride was added as the compatibilizer to improve
the interfacial compatibility between the FGD gypsum and composite matrix and the
mechanical properties of FGD gypsum/epoxy resin composites.

2. Experiment
2.1. Materials

The epoxy resin (E-51) was purchased from China Shenzhen Jitian Chemical Co., Ltd.
The polyamide (PA) resin, as a curing agent, was supplied by China Yichun Junzheng New
Material Co., Ltd. Untreated flue-gas desulfurized (FGD) gypsum, as a filler, was obtained
from China Hainan Landao Environmental Protection Industry Co., Ltd. Polyethylene-
grafted maleic (PGM) anhydride, the material used for the composites, was purchased from
Dow Chemical Company (PGM: the particle size was 500 mesh, density: 0.95 g/cm3, the
melt flow index was 2.3 g/10 min, and the grafting rate was 1.1 wt%, Midland, MI, USA).
The defoamer (XYS-6201, industrial-grade purity) was obtained from China Guangdong
Yunfeng Technology Co., Ltd., Guangzhou, China.

2.2. Preparation Method

The composite ratios are shown in Table 1. In the first place, the FGD gypsum was
put into an electrothermal blowing dry box (GZX-9070MBE, Shanghai Boxun Industrial
Co., LTD, Shanghai, China) to dry for 24 h at 80 ◦C and screened with a 300-mesh screen.
Then, the epoxy resin was mixed with the polyamide resin, and the booster electric mixer
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(JJ-15, Changzhou Hua’ao Instrument Manufacturing Co., Ltd., Changzhou, China) was
used for 5 min to make them evenly mixed at room temperature. Subsequently, the
300 mesh of FGD gypsum was evenly added into the epoxy resin/polyamide resin mix-
ture, and the stirring continued for 15 min. Next, the PGM was added into the FGD
gypsum/epoxy resin composites. The stirring time was 5 min. In the process of preparing
the composites, the mechanical stirring made the composites produce bubbles. Therefore, a
defoamer was added into the composites and stirred for 5 min to remove bubbles. Addi-
tionally, the composites were poured into the mold. Then, the composites were placed on a
plate hot press (XH-406BEW-50-300, Dongguan Xihua Test Instrument Co., Ltd., Dongguan,
China) for pressure curing at a temperature of 90 ◦C and pressure of 15 MPa for 40 min.

Table 1. Material proportions for the composites.

Experimental
Group

Epoxy Resin
wt%

FGD Gypsum
wt%

PGM
wt%

PA Resin
wt%

Defoamer
wt%

Sample 1 50 0 0 40 10
Sample 2 30 40 0 20 10
Sample 3 27 40 3 20 10
Sample 4 24 40 6 20 10
Sample 5 21 40 9 20 10

2.3. Characterization

X-ray diffraction (XRD) analysis of the FGD gypsum used in this study was performed
(DX-2700BH, Jiangsu Skyray Instrument Co., Ltd., Kunshan, China). Fourier transform
infrared spectroscopy (FT-IR, Nicolet iS50 + continuum, Hangzhou Shiming Instrument
Equipment Co., Ltd., Hangzhou, China) was used to analyze the surface groups of the
PGM and samples. The microstructure of the samples was observed using scanning
electron microscopy (SEM, Inspect F50, FEI, Thermo Fisher Scientific, Waltham, MA, USA).
The distributions of FGD gypsum and PGM were observed with energy-dispersive X-ray
spectroscopy (EDS). Thermogravimetric analysis (TGA) of particle samples was conducted
using a thermogravimetric analyzer (Q600, American TA Company, Wilmington, DE,
USA) under the following conditions: flowing air atmosphere; temperature from RT to
1000 ◦C; nitrogen as the protective gas; and heating rate, 10 ◦C/min. Differential scanning
calorimeter (DSC) was used on a DISCOVER DSC250 at a heating rate of 10 ◦C/min under
a nitrogen atmosphere; temperature from 20 ◦C to 250 ◦C. The tensile test was implemented
using a universal tensile testing machine (AI-7000-SU2, GOTECH Testing Machine Co.,
Ltd., Taiwan, China) in accordance with GB/T 2567-2008, the Chinese national standard for
tensile strength of epoxy resin. The impact test was conducted using a dial-type cantilever
beam impact tester (XBL-22, Shenzhen Kai Strength Test Instrument Co., Ltd., Shenzhen,
China) in accordance with GB/T 1843-2008, the Chinese national standard for the impact
strength of epoxy resin.

Specific amount of the FGD gypsum was used to perform laser particle size analysis
using wet-particle-size testing using Hydro 2000SM (Malvern Company, Malvern, Worces-
tershire, UK). X-ray diffraction (XRD) analysis of the FGD gypsum used in this study was
performed (DX-2700BH, Jiangsu Skyray Instrument Co., Ltd., Kunshan, China). Fourier
transform infrared spectroscopy (FT-IR, Nicolet iS50 + continuum, Hangzhou Shiming
Instrument Equipment Co., Ltd., Hangzhou, China) was used to analyze the surface groups
of the PGM and samples. The microstructure of the samples was observed with scanning
electron microscopy (SEM, Inspect F50, FEI, Waltham, MA, USA). The distributions of
FGD gypsum and PGM were observed with energy-dispersive X-ray spectroscopy (EDS).
Thermogravimetric analysis (TGA) of particle samples was conducted using a thermo-
gravimetric analyzer (Q600, American TA Company, Wilmington, DE, USA) under the
following conditions: flowing air atmosphere; temperature from RT to 1000 ◦C; nitrogen as
the protective gas; and heating rate, 10 ◦C/min. Differential scanning calorimeter (DSC)
was used on a DISCOVER DSC250 (American TA Company, Wilmington, DE, USA) at a
heating rate of 10 ◦C/min under a nitrogen atmosphere; temperature from 20 ◦C to 250 ◦C.
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The tensile test was implemented using a universal tensile testing machine (AI-7000-SU2,
GOTECH Testing Machine Co., Ltd., Taiwan, China) in accordance with GB/T 2567-2008,
the Chinese national standard for tensile strength of epoxy resin. In accordance with GB/T
2567-2008, the loading speed of the tensile strength of the samples was set to 2 mm/min.
The impact test was conducted using a dial-type cantilever beam impact tester (XBL-22,
Shenzhen Kai Strength Test Instrument Co., Ltd., Shenzhen, China) in accordance with
GB/T 1843-2008, the Chinese national standard for the impact strength of epoxy resin.

3. Results and Discussion

As shown in Figure 1, flue-gas desulfurized (FGD) gypsum has a small particle
size; 3–60 µm is the main distribution range. Figure 2 shows the XRD analysis result for
FGD gypsum. The composition of FGD gypsum is relatively pure, with calcium sulfate
hemihydrate as the main component.
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Figure 3a shows the FT-IR spectra of PGM. The peaks at 2922 cm−1 and 2846 cm−1

represent methylene C–H stretching vibration contained in maleic anhydride grafted
polyethylene powder, the peaks at 1460 cm−1 are the methyl C–H stretching vibration, and
the peaks at 720 cm−1 are the C–H out-of-plane bending vibration of methyl.
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Figure 3b shows the FT-IR spectra of samples 1 to 5. The peak at 3306 cm−1 represents
the –OH stretching vibration of the free water in each substance. The peaks at 1550 cm−1

in samples 1 to 5 represent C=N stretching vibrations, which weaken after the addition of
FGD gypsum (sample 2) and remain unchanged after the addition of PGM (samples 3 to 5).
This is due to FGD hindering the crosslinking reaction between epoxy resin and PA [19].

Peaks at 1634 cm−1 can be observed for samples 1 to 5. Additionally, the peaks at 1634
cm−1 represent the vibration absorption peak of –C=O. These peaks remained constant
with the addition of FGD gypsum (samples 1 and 2). Then, these peaks gradually weakened
with the addition of PGM (samples 3 to 4), but slightly strengthened with the excessive
addition of PGM (sample 5). The carbonyl group was a polar group. It only adsorbed
with Ca+ after adding FGD gypsum (sample 2), and did not react with FGD gypsum.
Therefore, the peak at 1634 cm−1 did not change after adding FGD gypsum (sample 2).
After the addition of PGM, the carbonyl group in PGM and the carbonyl group in epoxy
resin adsorbed each other, and the peak (sample 4) was weakened. When excess PGM
was added, the carbonyl group increased. Therefore, the peak (sample 5) was slightly
strengthened. In this study, the reactive anhydride group reacted with the amino group at
the end of the PA molecule to form an amide bond first and then an imide bond through a
closed loop to generate a PE-g-PA graft copolymer [20–22].

The microstructure of the samples was revealed in the SEM images (Figure 4). The
fracture of sample 1 was smooth and flat, and sample 1 presented a relatively smooth
crack pattern of the cracked surface, which was a typical brittle failure mode. The fracture
surfaces became rougher with the addition of FGD gypsum and PGM (samples 2 to 5).
However, the fracture surface of sample 2, with only the FGD gypsum added, was much
smoother than that of samples 3 to 5, with both FGD gypsum and PGM added. Notably,
a handful of transverse fracture (red circle) were observed in the crack initiation zone of
sample 4, compared with samples 2, 3, and 5. This indicated that the stress of sample 4 was
relatively dispersed during fracture [23].
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When subjected to stress, the blend of calcium sulfate hemihydrate and PGM acted as
stress concentrators; this phenomenon was followed by the formation of a triaxial stress
field surrounding the blend of calcium sulfate hemihydrate and PGM, which further led
to the formation of cavities via blend debonding or blend cavitation [24]. These cavities
relieved the stress in front of the crack tip, which allowed the composite cavities to grow
and enhance the mechanical properties of the composites [25]. This process altered the
stress state of the surrounding matrix from a plane-strain state to a plane-stress state and
caused plastic deformation and the yielding and crazing of the matrix; consequently, the
mechanical properties of composites were improved [26].

Figure 5 shows the EDS images of samples 1 to 5. The distributions of FGD gypsum and
PGM were observed with EDS. With the addition of PGM, the distribution of FGD gypsum
at the fracture interface gradually became uniform (samples 3 and 4). This phenomenon
indicates the ability of PGM to improve the interface compatibility between FGD gypsum
and the base material. However, FGD gypsum also aggregated from sample 5. The
excessive addition of PGM likely caused the aggregation, which led to the poor dispersion
of FGD gypsum.
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Figure 6a shows the TGA curves of samples 1 to 5. Figure 6b shows the derivative
TGA curves corresponding to Figure 6a, indicating the rate of temperature change in the
thermal weight loss of the samples. In the initial temperature range to 500 ◦C, the weight
loss of sample 1 accelerated significantly, and the weight loss was the most obvious, with
a weight loss of 97.01%. Samples 2 to 5 were dehydrated at 230 ◦C and partially semi-
hydrated calcium sulfate to anhydrite III, and at 500 ◦C partially dehydrated anhydrite
III to anhydrite II. The other part of the semi-hydrated calcium sulfate, at 850 ◦C, directly
dehydrated into type II anhydrite. Therefore, in the range of 780 ◦C to 850 ◦C, the weight
loss of samples 2 to 5 accelerated significantly. The above information can well-illustrate
the adsorption of Ca+ with epoxy resin in the matrix material [27,28].
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As can be seen from Figure 6b, in the initial temperature range to 500 ◦C, after the
addition of FGD gypsum (sample 2), the decomposition rate of the composite was slowed
down, and the thermal stability of the composite was improved. After adding PGM
(samples 3 to 5), the thermal stability of the composite material was further improved, and
the decomposition rate of the composite material was further slowed down. In particular,
the thermal stability of sample 4 was the best among the five samples.

The curing behaviors of the composites were investigated using a DSC. As can be seen
in Figure 7, the addition of FGD gypsum (sample 2) had very little impact on the onset,
peak, and final temperatures of the curing reactions. When adding PGM to the composites,
the endothermic peak, which was the melting heat absorption peak of polyethylene, of
PGM can be observed (samples 3 to 5). At the same time, the endothermic peak continued
to rise with the increase in PGM addition.
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Figure 8 and Table 2 show the effects of PGM on the tensile strength and impact
strength of the composite material. As shown in Figure 8a, the addition of FGD gypsum
led to a decrease in the tensile strength of the composites. The tensile strength of sample
2 was nearly 25% lower than that of sample 1. For sample 4, when PGM was added
to the composites as the compatibilizer, its tensile strength significantly improved by
approximately 30% compared with that of sample 1. The impact strength of the composites
is shown in Figure 8b. The impact strength of sample 2 was approximately 4% lower
than that of sample 1. For sample 4, when PGM was added to the composites as the
compatibilizer, its impact strength increased by approximately 57% compared with that of
sample 1.
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Table 2. Mechanical properties of FGD gypsum/epoxy resin composites with different PGM contents.

Experimental Group Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Tensile strength (MPa) 17.77 ± 0.43 13.21 ± 2.49 13.75 ± 1.97 23.09 ± 1.47 14.52 ± 0.51
Impact strength (kJ/m2) 6.94 ± 1.73 6.66 ± 1.44 7.36 ± 1.04 10.83 ± 0.72 6.89 ± 0.62

Thus, the addition of PGM improved the interface compatibility between FGD gypsum
and the matrix material (Figure 9). The addition of PGM (sample 4) not only solved the
problem that the mechanical properties of the composites decreased due to the addition
of FGD gypsum, but also improved the mechanical properties of the composites after
the addition of PGM compared with neat epoxy resin (sample 1). In addition, the maleic
anhydride group caused the epoxy group to open the ring and react with the epoxy resin to
form a strengthened three-dimensional structure [29]. An esterification reaction occurred
between the maleic anhydride group and secondary amide group, and a chemical link
between the PGM and matrix material was formed [30]. This indicated that PGM can
promote the crosslinking curing reaction of the composites, because when PGM was added
to the composites, the anhydride group and epoxy group formed crosslinking propagation
through ester and ether bonds [31,32]. The chemical link promoted the linkage between the
FGD gypsum and the base material.
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Figure 9. Analysis model of the influence of polyethylene-grafted maleic anhydride on flue-gas
desulfurized gypsum/epoxy resin composites.

4. Conclusions

Due to the inherent high cross-linked structure of epoxy resin, the brittleness is great.
When flue-gas desulfurized (FGD) gypsum was mixed into epoxy resin to prepare FGD
gypsum/epoxy resin composites, the mechanical properties of FGD gypsum/epoxy resin
composites will be reduced. FGD gypsum/epoxy resin composites with good mechan-
ical properties were prepared in this study by adding PGM. The addition of PGM to
FGD gypsum/epoxy resin composites improved the interface compatibility between the
FGD gypsum and matrix material. However, the addition of excessive PGM to FGD gyp-
sum/epoxy resin composites will lead to the agglomeration of FGD gypsum, which will
make its dispersibility worse in the matrix material. The results indicate that 6 wt% was
the best amount of PGM added. The tensile strength and impact strength of FGD gyp-
sum/epoxy resin composites enhanced by 75% and 63%. In addition, the tensile strength
and impact strength of FGD gypsum/epoxy resin composites were increased by approxi-
mately 30% and 57%, respectively, compared with those of the neat epoxy resin. This study
expands the engineering application of solid waste reuse of FGD gypsum and provides a
wide range of possibilities for the further efficient utilization of FGD gypsum.
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