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Abstract: To address the inverse problem of thermal growth oxide (TGO) thickness in thermal barrier
coatings (TBCs), a novel multi-scale analysis (MSA) method based on terahertz time-domain spec-
troscopy (THz-TDS) is introduced. The proposed method involves a MSA technique based on four
wavelet basis functions (db4, sym3, haar, coif3). Informative feature parameters characterizing the
TGO thickness were extracted by performing continuous wavelet transform (CWT) and max-pooling
operations on representative wavelet coefficients. Subsequently, multi-linear regression and machine
learning regression models were employed to predict and assess the wavelet feature parameters.
Experimental results revealed a discernible trend in the wavelet feature parameters obtained through
CWT and max-pooling in the MSA, wherein the visual representation of TGO thickness initially in-
creases and then gradually decreases. Significant variations in these feature parameters with changes
in both thickness and scale enabled the effective inversion of TGO thickness. Building upon this,
multi-linear regression and machine learning regression prediction were performed using multi-scale
data based on four wavelet basis functions. Partial-scale data were selected for multi-linear regression,
while full-scale data were selected for machine learning regression. Both methods demonstrated high
accuracy prediction performance. In particular, the haar wavelet basis function exhibited excellent
predictive performance, as evidenced by regression coefficients of 0.9763 and 0.9840, further confirm-
ing the validity of MSA. Hence, this study effectively presents a feasible method for the inversion
problem of TGO thickness, and the analysis confirms the promising application potential of terahertz
time-domain spectroscopy’s multi-scale analysis in the field of TBCs evaluation. These findings
provide valuable insights for further reference.

Keywords: thermal barrier coatings; terahertz time-domain spectroscopy; multi-scale analysis;
thermal growth oxide

1. Introduction

With the increasing thrust-to-weight ratio in the current aerospace field, the demands
for aero-engine hot-end components have become more stringent. Aero-engine turbine
inlet temperatures have already surpassed 1500 ◦C, presenting a challenge for conventional
high-temperature alloys to meet the required safety standards [1]. To extend the service
life of these components, ceramic coatings are applied to the surfaces of metallic materials,
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combining the superior strength and toughness of metals with the high temperature
resistance of ceramics. This enables the creation of multi-layered systems with exceptional
thermal insulation properties, referred to as thermal barrier coatings (TBCs) [2]. TBCs
are applied to the hot-end components of aero-engines operating in high-temperature
service environments to offer thermal protection. They efficiently obstruct heat conduction,
reduce surface temperatures, and enhance the material’s heat resistance and service life.
Typical TBCs consist of a multi-layer structure, featuring a ceramic top layer principally
containing ceramic powders such as yttria-stabilized zirconia (ZrO2 8 wt.% Y2O3, 8YSZ).
The ceramic layer exhibits low thermal conductivity, providing optimal thermal insulation
protection. Typically, the metal bond coat layer includes MCrAlY (M represents Ni, Co,
or other materials) material, which significantly improves the bonding strength between
the ceramic layer and the substrate. Simultaneously, it also helps prevent oxidation and
corrosion of the metal substrate. Usually, high-temperature nickel-based alloys are used
as the metal substrate [3]. However, in harsh high-temperature service environments,
oxygen could infiltrate the coating’s pores, cracks, or interface defects and react with
aluminum and other elements present in the coating, resulting in the formation of oxide
compounds. These oxide layers gradually accumulate, giving rise to the formation of
a thermal growth oxide (TGO) layer between the ceramic layer and the bond coat [4,5].
The main constituent of TGO is typically α-Al2O3. The growth process of TGO can be
broadly categorized into three stages: the rapid growth of Al2O3, stable growth, and the
appearance of mixed oxides accompanied by rapid thickening [6]. The formation of TGO
could result in coating damage and delamination, thereby impacting the service life of the
thermal barrier coating [7]. When the TGO thickness reaches a critical value of 12–15 µm,
cumulative interfacial thermal mismatch stresses occur, resulting in the development of
cracks in TBCs and hastening coating failure, posing a threat to the service life of TBCs.
Therefore, the monitoring and evaluation of TGO thickness, as a critical aspect of TBCs, are
of great importance in ensuring the functionality and lifespan of the coating [8–10].

To achieve accurate measurement of TGO thickness in TBCs, researchers have con-
ducted extensive studies over the past few decades. Traditional methods for measuring
TGO thickness include metallographic microscopy and scanning electron microscopy [11]
(SEM), which involve examining electron microscope images of cross-sections of the TBCs
to obtain high-resolution surface morphology and microstructural images. The impedance
spectroscopy method may also be used. Huang et al. [12] utilized impedance spectra to
assess TGO growth and interpreted the electrical response related to TGO thickness using
an equivalent circuit model. The findings indicated that the thickness of alumina could
be evaluated through the modulus spectra. The ultrasonic method is another possibility.
Ma et al. [13] introduced the use of ultrasonic reflection coefficient amplitude spectra (UR-
CAS) to evaluate the TGO at the interface between ceramic coating and adhesive coating
in TBCs. Theoretical analysis revealed that the acoustic impedance matching between the
ceramic coating and its adjacent medium influences the URCAS. This method allowed
non-destructive characterization of TGO formation in TBCs, which is highly significant
for practical engineering applications. X-ray methods [14], among others, have also been
utilized. These classical methods provide preliminary characterization of TGO thickness
and possess specific detection advantages and scopes. However, existing methods still
have areas for improvement and come with certain limitations, such as the requirement for
grinding and inlaying of the coating, the destructive nature of the tests, the difficulty in
preparing samples, and the time-consuming nature of the process. Therefore, there is an
urgent need for advanced, non-destructive testing (NDT) that overcomes the limitations of
traditional methods and provides accurate, real-time, high-precision inspection of the TGO
thickness of TBCs.

Currently, terahertz time-domain spectroscopy (THz-TDS) technology has shown
great potential as a non-contact and high-resolution NDT method for the characterization
and evaluation of microstructures of TBCs [15,16]. Overcoming the limitations of conven-
tional methods, THz-TDS provides a superior solution. Terahertz radiation operates within
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the frequency range of 0.1–10 THz, lying between microwaves and infrared waves. Tera-
hertz waves exhibit strong penetration capabilities and high resolution, allowing detailed
information on the TBC’s internal structure to be obtained. Ye et al. [17–19] conducted
valuable research on the NDT of the microstructure in TBCs using terahertz technology,
with a focus on the porosity, interface cracks, and surface erosion damage of TBCs. This
research team proposed the time-domain broadening effect to measure the porosity and
applied machine learning algorithms to accurately analyze terahertz signals in time and
frequency domains, promoting the development of terahertz technology in the NDT of
TBCs. Chen et al. [20] proposed the use of the terahertz reflection method combined with
the time-domain simulation technique for the characterization of the interfacial oxide layer.
Zhang et al. [21] proposed an improved time of flight (TOF) method for measuring the TGO
thickness in TBCs using terahertz time-domain spectroscopy. The method achieved efficient
and accurate TGO thickness measurement, making it suitable for condition monitoring
and life prediction of TBCs. Luo et al. [22] proposed a novel SWT-BP algorithm combining
stationary wavelet transform (SWT) and a BP neural network for accurate thickness predic-
tion of thin TGO in TBCs using THz-TDS. The algorithm achieved a regression coefficient
of 0.92 and demonstrated good agreement with real-time results, making it suitable for
detecting TGO thickness in the range of 1–29 µm. Based on previous research, effective
methods can be applied to detect the thickness of TGO. By analyzing the THz-TDS, feature
extraction and analysis were performed to capture and interpret information to achieve
an accurate inversion of the TGO thickness. Information about the TGO layer, such as its
thickness, morphology, and physical properties, could be obtained. This made THz-TDS an
effective tool for the accurate inversion of TGO thickness in TBCs.

The primary objective of this study was to investigate the issue of TGO thickness in-
version in TBCs. The research is of great significance as it introduces an NDT method based
on multi-scale analysis (MSA) of THz-TDS, enabling real-time and accurate estimation of
the TGO thickness in TBCs. In comparison to traditional methods, this approach offers
distinct advantages in terms of non-destructiveness, real-time capability, and high precision,
thereby facilitating effective monitoring of performance changes and lifespan assessment
of TBCs. THz-TDS data were obtained through FDTD simulation, and continuous wavelet
transform (CWT) was employed for MSA to extract feature parameters at various scales.
Furthermore, four wavelet basis functions were compared and evaluated to determine
the optimal choice for predicting the TGO thickness, thereby enhancing the accuracy and
reliability of the study. Subsequently, multi-linear regression and deep extreme learning
machines (DELM) were employed to develop prediction models based on their correla-
tion with the TGO thickness, which facilitated precise prediction and inversion of TGO
thickness.

Consequently, THz-TDS technology emerges as a promising approach for non-destructive
measurement of TGO thickness in TBCs, offering considerable advantages and potential
applications. Its implementation could provide robust support for the design and mainte-
nance of TBCs, while also driving advancements in related fields. The research outcomes
are of paramount significance in ensuring the safe operation and enhancing the perfor-
mance of TBCs, while also introducing innovative insights and methodologies for utilizing
THz-TDS in material characterization and defect detection. This research paves the way for
the advancement and application of TBCs.

2. Models and Methods
2.1. Finite Difference Time-Domain Simulation

To investigate the TGO thickness in TBCs, terahertz time-domain spectroscopy was
employed, followed by multi-scale analysis [23,24]. The simulations were conducted using
the finite difference time-domain (FDTD) module. The main purpose was to simulate the
propagation behavior of terahertz waves in TBCs, as shown in Figure 1, which illustrates a
schematic diagram for terahertz detection of TBCs. Terahertz time-domain data related to
TGO thickness were obtained, as shown in Figure 2. Specific simulation parameters were
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set according to Table 1, encompassing 30 sets of different simulation data, covering a TGO
thickness range of 1.000–22.609 µm.
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Figure 1. Schematic diagram of terahertz non-destructive testing of TBCs.

Coatings 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 

To investigate the TGO thickness in TBCs, terahertz time-domain spectroscopy was 

employed, followed by multi-scale analysis [23,24]. The simulations were conducted using 

the finite difference time-domain (FDTD) module. The main purpose was to simulate the 

propagation behavior of terahertz waves in TBCs, as shown in Figure 1, which illustrates 

a schematic diagram for terahertz detection of TBCs. Terahertz time-domain data related 

to TGO thickness were obtained, as shown in Figure 2. Specific simulation parameters 

were set according to Table 1, encompassing 30 sets of different simulation data, covering 

a TGO thickness range of 1.000–22.609 μm. 

 

Figure 1. Schematic diagram of terahertz non-destructive testing of TBCs. 

 

Figure 2. Terahertz time-domain signal. 

Table 1. FDTD simulation parameter settings. 

Parameter Setting Conditions 

Simulation time 100 ps 

THz frequency 0.3–1.0 THz 

TGO thickness 1.000–22.609 μm 

Refractive index 3.653–4.811 

Extinction coefficient 0.062–0.221 

Porosity 6.220%–22.894% 

The simulation parameters utilized in this study were derived from actual 

experimental data, demonstrating a practical foundation for the parameter settings. These 

TC

BC

Substrate

... ...
TGO

Terahertz

THz S R1 Rn  S :

R1:

Rn:

Surface reflection

Interface reflection

Multiple reflection

20 40 60 80 100

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18 20 22 24
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

 Extinction coefficient

E
x

ti
n

ct
io

n
 c

o
ef

fi
ci

en
t

TGO thickness

0 2 4 6 8 10 12 14 16 18 20 22 24

3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

 Refractive index

R
e
fr

a
c
ti

v
e
 i

n
d

e
x

T
er

ah
er

tz
 s

ig
n

al
/a

.u
.

Time delay/ps

 TGO thickness=  7.349μm

 TGO thickness=14.779μm

 TGO thickness=22.609μm

−

−

−

−

−

Figure 2. Terahertz time-domain signal.

Table 1. FDTD simulation parameter settings.

Parameter Setting Conditions

Simulation time 100 ps
THz frequency 0.3–1.0 THz
TGO thickness 1.000–22.609 µm

Refractive index 3.653–4.811
Extinction coefficient 0.062–0.221

Porosity 6.220%–22.894%

The simulation parameters utilized in this study were derived from actual experimen-
tal data, demonstrating a practical foundation for the parameter settings. These parameters
were systematically adjusted and planned to accommodate the specific requirements of the
research focus in this study. Subsequently, these carefully selected parameters were incor-
porated into the FDTD module to facilitate the simulation process for terahertz detection
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of TGO thickness. The simulation parameters were not arbitrarily chosen but were based
on real experimental measurements. Their rational adjustment and integration into the
simulation software allowed an effective and targeted investigation of terahertz detection
of TGO thickness in alignment with the research objectives of this study. To make the
simulation more realistic, the porosity range was set between 6.220% and 22.894%. For the
FDTD simulation, the corresponding parameter settings for refractive index and extinction
coefficient ranged from 3.653 to 4.811 and from 0.062 to 0.221, respectively. These settings
aimed to better reflect the changes in TBCs during thermal cycling, where porosity in-
creased and TGO thickness grew simultaneously. By varying the TGO thickness, 30 groups
of THz-TDS data were generated, providing the foundation for subsequent multi-scale
analysis.

TGO thickness in TBCs has a significant impact on their performance and lifespan.
Typically, when the TGO thickness exceeds 15 µm, issues such as cracking and delamination
are prone to occur, thereby affecting the TBC’s service life. Therefore, accurate detection of
the TGO thickness is crucial for assessing the health status of the thermal barrier coating.

2.2. Multi-Scale Analysis

THz-TDS is an extremely effective method for measuring TGO thickness in TBCs.
By emitting and receiving terahertz electromagnetic waves and analyzing the sample’s
scattering, absorption, and transmission processes, complex signals containing information
about the TGO can be extracted. However, due to the complexity and diversity of the TGO
itself, these signals are often highly nonlinear and subject to noise interference, necessitating
data processing and signal analysis to extract valuable information.

Multi-scale analysis (MSA) is a technique that involves decomposing and analyzing
signals at different scales, allowing the extraction of both local and global features [25,26].
In the context of THz-TDS, applying MSA enables the transformation of terahertz signals
across various scales, thereby capturing information related to different scales. In this study,
continuous wavelet transform (CWT) was utilized for MSA. CWT convolved the signal with
a set of wavelet functions of different scales, allowing the representation of the terahertz
time-domain data as wavelet coefficients and approximation coefficients at different scales
and frequencies [27]. Each layer of wavelet coefficients represented the signal’s response at
a specific scale and frequency domain, while the approximation coefficients represented
the dominant low-frequency information. The wavelet coefficients across different layers
were independent and exhibited distinct time-frequency features.

Wavelet basis functions were typically selected based on the features of signals and
application requirements. As shown in Figure 3, the wavelet basis functions used in this
study included Daubechies (db), Symlets (sym), Haar (haar), and Coiflets (coif). The
absolute value operation was performed on the wavelet coefficients of each scale, and
its maximum value was extracted, which is known as max-pooling [28]. For each scale,
this process compressed the wavelet coefficients into a single scalar. Subsequently, the
feature values were combined into a feature vector, with each element representing the
absolute value of the maximum continuous CWT coefficient at that particular scale. The
units of each feature vector element were dimensionless and the values on the vertical axis
represented only relative sizes, indicating the strength of the CWT coefficient at each scale.
The inversion of TGO thickness was achieved through the MSA method.

CWT was one of the essential steps in the MSA. The formula for continuous wavelet
transform was as follows:

cwtD(a, b) =
1√
|a|

∫ ∞

−∞
x(t)ψ

(
a− b

a

)
dt (1)

where cwtD(a, b) is the wavelet coefficient at scale a and displacement b, x(t) is the time-
domain signal being analyzed, and ψ is the wavelet basis function. Processed by continuous
wavelet transform, the original time-series signal could be transformed into wavelet coeffi-
cients at different scales, thereby extracting features within different time ranges.
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Figure 3. Wavelet basis function (a) db4, (b) sym3, (c) haar, (d) coif3.

The basic process, as shown in Figure 4, involved taking the absolute values of the
wavelet coefficients at each scale and performing max-pooling. Specifically, a sliding
pooling window moved with a fixed stride from left to right and top to bottom, covering
the entire matrix of wavelet coefficients. The maximum value within each local window
was selected, resulting in one max-pooled value for each scale. These pooled values
served as the primary feature representation of the wavelet coefficients at different scales.
This process reduces dimensionality and extracts the most significant feature information,
highlighting the strongest variations in the wavelet coefficients while discarding weaker
portions, thereby reducing redundant information. It provides more compact and critical
features for further modeling and analysis.

fi = max
j

∣∣ci,j
∣∣, i = 1, 2, 3, 4 (2)

f = ( f1, f2, f3, f4) (3)

where ci,j is the j-th element of the i-layer wavelet coefficient, and fi represents the maximum
response of the i-layer wavelet coefficient. This operation is equivalent to taking the absolute
value of each row of data, and then taking the maximum value in the second dimension,
and the obtained vector f is the eigenvector of the wavelet of the time series signal.

The feature vectors for each TGO thickness are stored. Once the wavelet feature
vectors are extracted for all TGO thicknesses, further analysis can be performed.

f eaturesi = f , i = 1, 2, . . . , length(TGOth) (4)

where f eaturesi denotes the feature vector at the i-th TGO thickness.
Through this method, the original time-domain signal was transformed into a fixed-

length feature vector, thereby simplifying subsequent tasks such as model training, feature
selection, and classification recognition. Moreover, the MSA allowed the retention of signal
features at different scales and showed good interpretability and robustness.
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Figure 4. Structure diagram of max-pooling. The gray part is the local window of each step. The blue
part is the sliding window for each step. The green part is the max-pooled value for each sliding
window.

2.3. Multi-Linear Regression

Multi-linear regression is a statistical model used for elucidating the linear relationship
between feature parameters and a target variable. It is applicable for investigating the rela-
tionships among two or more variables. Within the framework of multi-linear regression,
there exist multiple independent variables and one dependent variable [29]. The model can
be used to describe the extent to which the independent variables impact the dependent
variable and predict future values of the dependent variable. In this study, multi-linear
regression was implemented to examine the relationship between TGO thickness and the
feature vectors of each wavelet function obtained from the wavelet decomposition of THz
time-domain data. Specifically, a multi-linear regression model was constructed using
the feature vectors of the wavelet functions as independent variables and TGO thickness
as the dependent variable. The model was used to determine the degree of influence of
each wavelet function’s feature vector on TGO thickness and to make predictions about
future TGO thickness values. MSA was conducted using four different wavelet basis
functions to extract wavelet feature parameters. These parameters were incorporated into
the multi-linear regression model to evaluate the effectiveness of various wavelet functions
in predicting TGO thickness and to identify the most effective wavelet basis function for
multi-linear regression.

The following are the steps for predicting multi-linear regression:
Normalize the data and scale it to the range of [0, 1].

x′ =
x−min(X)

max(X)−min(X)
(5)

where x′ is the normalized value, x is the original value, and X is the vector or matrix of the
feature parameter.

Multi-linear regression models were used to model the linear relationship between
several independent variables (wavelet feature parameters) and one dependent variable
(TGO thickness). Assuming there are N sample data, in which the i-th sample’s wavelet
feature parameter is expressed as x(i), and the corresponding TGO thickness is expressed
as Y(i), where i = 1, 2, . . . N.

Y = β0 + β1X1 + β2X2 + . . . + βpXp + ε (6)

where Y is the TGO thickness, X1, X2, . . . Xp are wavelet feature parameters, β0, β1, . . . , βp
is the regression coefficient, and ε is the error term.

Represent feature parameters and TGO thickness in matrix form:

Y = Xβ + ε (7)
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where Y is an N × 1-dimensional thickness matrix, X is an N × (p + 1)-dimensional matrix
of feature parameters, and β is a (p + 1) × 1-dimensional vector of regression coefficients.

For the fitting of the multi-linear regression model, the estimated value of regression
coefficient β̂ is solved by the least square method, which minimizes the residual sum of
squares:

β̂ =
(

XTX
)−1

XTY (8)

Using the multi-linear regression model obtained from training, predictions were
made on the test set to obtain the predicted values Ŷ.

To evaluate the performance of the multi-linear regression model, root mean square
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and
the regression coefficient (R2) are commonly used as metrics:

MAE =
1
N

N

∑
I=1

∣∣Ŷi −Yi
∣∣ (9)

RMSE =

√√√√ 1
N

N

∑
I=1

(
Ŷi −Yi

)2 (10)

MAPE =
1
N

N

∑
I=1

∣∣Ŷi −Yi
∣∣

Yi
× 100% (11)

R2 = 1− ∑N
I=1
(
Ŷi −Yi

)2

∑N
I=1
(
Yi −Y

)2 (12)

where Ŷi is the predicted value, Yi is the test value, and Y is the average value.
To summarize, the multi-linear regression method established a model using the

wavelet feature vectors extracted from THz time-domain data and the corresponding TGO
thickness as the independent and dependent variables, respectively. This method allowed
the prediction of TGO thickness and the selection of the optimal wavelet function for MSA
by comparing the prediction accuracy of different wavelet basis functions. By following
these steps, a multi-linear regression model could be established and used for prediction,
performance evaluation, and visualization of results. Through the comparison of evaluation
indicators and error items, the best wavelet basis function could be determined to achieve
the inversion of TGO thickness in TBCs via multi-scale analysis of THz-TDS.

2.4. Deep Extreme Learning Machine

Extreme learning machine (ELM) is a type of single-hidden-layer feedforward neural
network that achieves an optimal solution by randomly generating weights and thresholds.
However, due to its simple architecture, an ELM cannot effectively capture deep hierarchical
relationships. Therefore, the deep extreme learning machine (DELM) was introduced to
explore deep relationships [30,31].

As shown in Figure 5, DELM is a multi-layer neural network composed of an extreme
learning machine as autoencoder (ELM-AE), an unsupervised learning algorithm used to
extract effective feature information by copying input information to output data through
training. Compared with traditional algorithms, each hidden layer’s input weight in
DELM was initialized using ELM-AE and underwent hierarchical unsupervised training.
Assuming k nodes for the input and output layers and l nodes for the hidden layer, ELM-AE
achieved feature mapping of equal dimensions when k = l, dimensionality reduction feature
mapping when k > l, and high-dimensional feature mapping when k < l.
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Figure 5. Structure diagram of DELM.

Equidimensional feature mapping, implicit layer input weight matrix β:

β = H−1T (13)

where H is the hidden layer output matrix and T is the target output matrix.
High and low dimensional feature mapping, implicit layer input weight matrix β:

β = (
E
µ

HT H)−1HTX (14)

where E is the identity matrix, X is the input matrix, and µ is the regularization coefficient.
DELM offered a more comprehensive exploration of the mapping relationships among

data, enhancing non-linear fitting capability and predictive performance. Moreover, DELM
eliminates the need for backpropagation, rendering the network’s training time significantly
shorter. During DELM training, the original input samples were employed as the target
output matrix for the initial ELM-AE, leading to the derivation of an output weight matrix.
This weight matrix was subsequently orthogonalized and utilized as the input weight
matrix for the first hidden layer within DELM. The output of the first hidden layer served
as the input matrix of the subsequent ELM-AE, and this process continued layer by layer
until the last layer’s output weight matrix was obtained, thus completing the training
process of DELM.

DELM is an advanced deep learning algorithm renowned for its quick training process
and outstanding performance, making it well suited for feature extraction and regression
prediction tasks on extensive datasets. For TGO thickness prediction, the wavelet feature
parameters obtained through wavelet analysis were used as the input layer’s feature
vectors, while TGO thickness was considered as the output layer’s dependent variable.
The DELM algorithm was applied to train the model and predict the TGO thickness
of unknown samples. The selection of the optimal wavelet function was achieved by
comparing the prediction accuracy across different wavelet basis functions. A specific
methodology involved partitioning the dataset into training and testing sets with a certain
ratio. The DELM algorithm was then utilized to train the model using the training set,
and subsequent predictions were made on the testing set. Error indicators, such as those
discussed in Section 2.3, were computed to evaluate the prediction accuracy and enable
comparison across different wavelet basis functions.
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3. Results and Discussion
3.1. Continuous Wavelet Transform

Continuous wavelet transform (CWT) is a signal analysis method based on scale
transformation, which effectively captures the local features of a signal in both the time
and frequency domains. CWT was used to characterize the TGO thickness in TBCs by
decomposing and reconstructing the signal using wavelet basis functions. TGO thickness
gradually increased as the TBCs were exposed to service time. When a terahertz signal
traversed the TBCs, it experienced an influence from the TGO thickness, resulting in
changes in the numerical values of the wavelet coefficients. Therefore, by employing CWT
to process the time-domain signal and extracting parameters from the wavelet matrix to
represent the degree of signal variations, the relationship between TGO thickness and
terahertz signal could be revealed.

The four wavelet basis functions used in this study were db4, sym3, haar, and coif3.
CWT operated by convolving these basis functions with the signal, which was translated
and scaled in the time and scale dimensions. This process enabled the decomposition of
the signal on the time-scale plane, yielding continuous wavelet coefficients that provided
insights into the time-varying properties and energy distribution of the signal across
different scales and frequencies.

Specifically, each set of THz-TDS data corresponding to TGO thickness had a dimen-
sion of 3700, with 30 sets of data in total. Taking db4 as an example of the wavelet basis
function, a scale value of 50 was selected. The original THz data underwent CWT resulting
in a dimension of 50 × 3700. Each time series point was analyzed across 50 scales to obtain
50 coefficient sequences, with each value representing the relative strength of the signal
at that scale. Each column consisted of 50 numerical values, representing the wavelet
coefficients at the corresponding scale. As shown in Figure 6, the data of 50-scale analyses
for the time series extracted from the 400th, 900th, 1300th, 1700th, 2100th, 2500th, 2900th,
3300th, and 3700th columns were used to represent the energy distribution at different
scales at corresponding time points. Thus, it could be observed that the wavelet coefficients
of THz-TDS signals exhibited complex variations and redundant characteristics across dif-
ferent scales. To extract the key features of the signal and reduce redundancy, max-pooling
was applied to the wavelet coefficient matrix.

3.2. The Result of Max-Pooling

Max-pooling, a prevalent technique for feature extraction, reduces the dimensionality
of a feature matrix by choosing the maximum value within each local region. Specifically,
for each time point (each column), max-pooling selected the element with the maximum
value from the corresponding wavelet coefficients, obtaining the maximum response of the
wavelet coefficients at that scale. This formed a new feature vector, where each element was
a dimensionless scalar representing the absolute value of the maximum continuous wavelet
transform coefficient at the corresponding scale. These features reflected the maximum
degree of variation in the signal at different scales.

By further processing these wavelet coefficients, the most significant information
related to the signal’s features could be extracted. In this study, the max-pooling method
was employed to extract features, whereby the maximum wavelet coefficient at each scale
was selected as the feature value, transforming the results of multi-scale analysis into a
fixed-length feature vector representation.
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Figure 6. 50-scale decomposition for each time series point: (a) 400th, (b) 900th, (c) 1300th, (d) 1700th,
(e) 2100th, (f) 2500th, (g) 2900th, (h) 3300th, (i) 3700th.

As shown in Figure 7, it was evident that through the process of max-pooling, the
complexity and redundancy of the wavelet coefficients were further reduced, resulting in
more regular feature curves. The extrema of the feature curves corresponding to the four
wavelet bases occurred at the 33th, 32th, 38th, and 34th scales, respectively, exhibiting a
descending trend after reaching the extremum points. The pattern of the feature curve,
initially increasing and then decreasing, was attributed to the combination of filters used in
wavelet decomposition, which smoothed the signal to different extents and extracted details
at various scales. The wavelet coefficients at smaller scales primarily captured the signal’s
detailed information, while those at larger scales reflected its overall characteristics. Initially,
as the scale increased, the feature parameters gradually increased. This was attributed
to the smaller scales’ ability to capture high-frequency details and local variations in the
terahertz signal, which might be correlated with the TGO thickness. However, as the scale
further increased, the feature parameters reached a peak and gradually decreased. Because
larger scales captured low-frequency global features in terahertz signals, the correlation
between these features and TGO thickness may have been weak. Therefore, at larger scales,
the characteristic parameters gradually decreased.
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Figure 7. Multi-scale features of max-pooling processing: (a) db4, (b) sym3, (c) haar, (d) coif3.

To further validate the accurate representation ability of the feature parameters ex-
tracted through multi-scale analysis for TGO thickness, multi-linear regression and machine
learning regression were chosen as additional prediction methods. These methods allowed
modeling and prediction of the relationship between the feature parameters obtained from
MSA and TGO thickness, thereby enabling a more effective evaluation and comparison of
the predictive accuracy of MSA data employing distinct wavelet basis functions.

3.3. Performance Evaluation of Multi-Scale Analysis

This section mainly introduces the use of feature parameters obtained through MSA
based on four wavelet functions as independent variables for predicting TGO thickness
using multi-linear and machine learning regression models. The performance of MSA was
evaluated and compared using metrics such as MAE, RMSE, MAPE, and R2.

For multi-linear regression, considering the rank deficiency of the regression design
matrix, based on the analysis of wavelet coefficients in Section 3.2, scales around the peak
were selected as representative features. This selection was justified as scales in the vicinity
of peaks often encapsulate the most salient information pertaining to variations in TGO
thickness, thus significantly contributing to TGO thickness prediction. By selecting a
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subset of scales as independent variables, the dimensionality was reduced while ensuring
the nonsingularity of the regression design matrix and avoiding rank deficiency issues.
Specifically, scales 21 to 40 for each of the 30 thicknesses were chosen as the independent
variables for the multivariate regression to ensure the nonsingularity of the design matrix.
As shown in Figure 8, the multi-linear regression predictions were presented for the four
wavelet basis functions, with the haar wavelet exhibiting the highest degree of conformity
with the test values. Table 2 displays the results of various evaluation metrics, indicating
that the R2 values for haar, coif3, sym3, and db4 were 0.9763, 0.9093, 0.8944, and 0.7507,
respectively.
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Figure 8. Multi-linear regression prediction results: (a) db4, (b) sym3, (c) haar, (d) coif3.

Table 2. Multi-linear regression evaluation index.

Types of Wavelets MAE RMSE MAPE/% R2

db4 2.225 2.7078 26.59 0.7507
sym3 1.3483 1.8391 36.65 0.8944
haar 0.2711 0.3408 2.10 0.9763
coif3 1.1027 1.8790 9.03 0.9093

In Figure 9, the absolute error comparison diagram for multi-linear regression predic-
tions using the feature parameters obtained from the MSA with four wavelet functions is
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presented. It is evident that the haar wavelet exhibited the smallest absolute error, followed
by the coif3 wavelet, sym3 wavelet, and db4 wavelet, which had the largest absolute error.
However, in general, the prediction accuracy was high, with absolute errors controlled
within 5.
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These results further validate the effectiveness of the wavelet feature parameters
extracted through MSA as independent variables for linear regression prediction which
can accurately invert TGO thickness, and the performance differences of different wavelet
basis functions are also verified. Moreover, the higher accuracy of regression prediction
achieved by the haar wavelet suggests its superior capability for feature extraction, making
it a favorable choice for practical applications. This finding holds significant importance.

However, it should be noted that the multi-linear regression model was a prediction
method based on linear assumptions, and its predictive capability may be limited by the
assumptions of the model. In addition to evaluation metrics, the robustness, generalizability,
and stability of the model were also important factors to consider. Furthermore, the quantity
and quality of the samples were crucial factors that affected the predictive ability, so it was
necessary to ensure an adequate and representative sample size. The results presented
above demonstrate that selecting specific ranges of scale data could effectively predict the
TGO thickness. Then, in order to further validate the effectiveness of the complete scale
data, another set of experiments was conducted using the full 50 scales as inputs for deep
extreme learning machine prediction.

In Figure 10, the machine learning regression predictions using the four different
wavelet basis functions are presented. Due to the deep extreme learning machine’s ability
to explore the mapping relationships between variables, the predictions based on the MSA
data of the four functions outperformed those of the multi-linear regression predictions.
The experimental results indicate that even when using the full-scale data as input, the
haar wavelet basis function still outperformed the other wavelet basis functions in terms
of prediction accuracy. The discrepancy in the predicted results could be attributed to the
inherent characteristics and limitations of each wavelet basis function, which affected their
predictive accuracy. As shown in Figure 7, the scales corresponding to the maximum values
in the wavelet decompositions were 33, 32, and 34 for db4, sym3, and coif3, respectively,
while the scale for haar was 38. The multi-scale decomposition using the haar wavelet
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basis function more effectively captured the variations in TGO thickness, leading to higher
predictive accuracy. The haar wavelet is characterized by a step-like shape, with one
positive and one negative step. It is known for its ability to detect abrupt changes in
signals. The haar wavelet basis function had good temporal localization characteristics,
which could accurately capture subtle features of TGO thickness changes. Considering the
full-scale data, each scale contained information that was sensitive to TGO thickness to a
certain degree, and the haar wavelet basis function could better extract and represent this
information.
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Figure 10. DELM prediction results (a) db4, (b) sym3, (c) haar, (d) coif3.

As shown in Table 3, four indices were used to evaluate the predictive performance
of the deep extreme learning machine, and also to evaluate the effect of full-scale data on
the thickness inversion of TGO. The R2 of haar, coif3, db4, and sym3 were 0.9840, 0.9121,
0.9027, and 0.7921, respectively.

Figure 11 shows the prediction absolute error comparison diagram of machine learning
regression for the characteristic parameters of four wavelet basis functions after processing
in MSA. It could be seen that the absolute error of the haar wavelet was the smallest,
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followed by the coif3 wavelet, db4 wavelet, and sym3 wavelet. In general, the prediction
accuracy was very high, and the absolute error was controlled within 2.5.

Table 3. DELM regression evaluation index.

Types of Wavelets MAE RMSE MAPE/% R2

db4 0.4454 0.5650 2.25 0.9027
sym3 0.7859 1.1275 4.35 0.7921
haar 0.2146 0.2573 1.09 0.9840
coif3 0.3689 0.6025 1.79 0.9121
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Figure 11. Absolute error comparison of prediction by DELM.

This section presents a detailed description of the experimental results using the com-
plete full-scale data for deep extreme learning machine prediction. It further confirms the
effectiveness of the wavelet feature parameters obtained through MSA for TGO thickness
inversion and highlights the superiority of the haar wavelet basis function for predic-
tion. This research contributes to a more comprehensive understanding of TGO thickness
variations through inversion analysis.

Based on the study conducted, a multi-scale analysis was employed to extract wavelet
coefficients from THz-TDS data using CWT. The extracted coefficients were further sub-
jected to maximum pooling and utilized for the inversion of TGO thickness. Additionally,
both multi-linear regression and machine learning regression models were employed to
predict the TGO thickness, with TGO thickness as the dependent variable and wavelet
feature parameters as the independent variables. The experimental results show that the
wavelet feature parameters effectively represented the variations in TGO thickness, demon-
strating high predictive accuracy. Particularly, the haar wavelet function exhibited the best
predictive performance in both multi-linear regression and machine learning regression
models. These findings highlight the exceptional performance of the haar wavelet function
in multi-scale analysis, establishing it as a preferred choice for the optimal wavelet basis.

The findings of this research hold significant implications for the application of THz-
TDS. The extraction of wavelet feature parameters through MSA enabled accurate predic-
tion of TGO thickness, providing an effective approach for the detection and characteri-
zation of TGO in TBCs. Furthermore, by comparing multi-linear regression and machine
learning regression models, the advantages of machine learning methods in TGO thick-
ness prediction were demonstrated, further expanding the application scope of MSA. In
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conclusion, the outstanding performance of multi-scale analysis on terahertz time-domain
data and the effective characterization of TGO thickness using wavelet feature parameters
establish the feasibility of precise TGO thickness inversion.

4. Conclusions

This study focuses on employing THz-TDS with a multi-scale analysis approach to
estimate the TGO thickness in TBCs. Specifically, THz-TDS were obtained from FDTD
simulations for different TGO thicknesses (30 sets). The MSA technique was used to extract
features by applying continuous wavelet transformation with four wavelet basis functions
(db4, sym3, haar, coif3). The max-pooling method was utilized to derive feature parameters
from the wavelet coefficients. Visualization of the correlation between feature parameters
and TGO thickness revealed a clear pattern, where the dimensionless value of feature
parameters decreased as TGO thickness increased. Additionally, the feature parameter
curve exhibited an increasing then decreasing trend with an increasing scale, displaying a
noticeable peak. Smaller scales effectively captured low-frequency details, whereas larger
scales had a weaker correlation with high-frequency features and TGO thickness. Multi-
linear regression and machine learning regression models were used with wavelet feature
parameters as inputs (the 21st–40th scales for multi-linear regression and full-scale data for
DELM) and TGO thickness as output. Multi-linear regression considered the issue of rank
deficiency, while machine learning was suitable for large datasets and sample sizes; both
methods successfully performed the inversion, demonstrating the strong correlation and
robustness between the multi-scale data and thickness. Experimental results revealed that
the regression coefficients for the haar wavelet achieved the highest prediction accuracies
of 0.9763 and 0.9840 for the two models, respectively, further validating the effectiveness
of wavelet feature parameters obtained through multi-scale analysis for TGO thickness
inversion.

In summary, this study accomplished the inversion of TGO thickness using multi-
scale analysis techniques. It demonstrated the effectiveness of wavelet feature parameters
derived from the multi-scale analysis in TGO thickness inversion and validated the haar
wavelet as the optimal choice for the wavelet basis function. It is vital to acknowledge
the limitations of this research and identify future directions for improvement. The study
employed a relatively small sample size, and its applicability to larger datasets requires
further validation. Moreover, additional research and optimization are needed for the
selection of wavelet basis functions, parameter tuning, and exploration of other machine
learning algorithms. Additionally, the integration of other feature extraction methods
and prediction models could enhance the stability and robustness of the predictions. This
study provided valuable references for the problem of TGO thickness inversion, offering
a reliable methodology and theoretical basis for TGO thickness inversion. The practical
implications of this research are related its applicability to practical scientific investigations
and non-destructive testing in the realm of thermal barrier coatings.
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