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Abstract: Nowadays, the particleboard industry cannot meet the market’s demand. Therefore, filler
materials have started to be used both to conserve raw materials and to enable the use of wood-based
boards in different areas. This study investigates the effects of incorporating different ratios of
activated carbon (0%, 1.5%, 4.5%, 7.5%) on the properties of particleboards. The physical properties
were examined, including density, moisture content, thickness swelling, and water absorption. The
results reveal that the density increased with increasing activated carbon content while the moisture
content decreased, indicating improved dimensional stability and water resistance. Additionally,
the color properties were influenced by activated carbon, leading to a darker appearance with
decreased lightness and yellow-blue components. The mechanical properties, such as internal bond
strength, modulus of rupture, and modulus of elasticity, showed significant enhancements with the
addition of activated carbon, indicating improved bonding and increased strength. Moreover, the
thermal conductivity decreased with increasing activated carbon content and improved insulation
performance. Scanning electron microscope analysis confirmed the uniform distribution of activated
carbon within the particleboard matrix, without agglomeration, positively impacting the mechanical
performance. According to the thermogravimetric analysis results, the addition of activated carbon
led to a decrease of up to 6.15% in mass loss compared to the control group. The incorporation of
activated carbon at a ratio of 4.5% in particleboards confers notable enhancement to their physical,
mechanical, and thermal characteristics. These findings contribute to understanding the potential
benefits and considerations of using activated carbon as an additive in particleboard production.

Keywords: activated carbon; additive; particleboards; mechanical properties; physical properties

1. Introduction

Wood is a preferred building and engineering material due to its properties, such
as being a good insulator, easy to work with, and aesthetically pleasing, and not causing
any harm to humans or the environment during both its use and after its service life [1].
However, due to the increasing population and demands, solid wood alone cannot meet the
required needs, making it necessary to utilize wood waste [2]. Adding adhesives transforms
wood waste into products such as fiberboard and particleboard. Particleboard, born out of
the need to utilize large quantities of wood waste, such as sawdust, planer shavings, and, to
a lesser extent, mill residues generated by other wood industries, has become increasingly
popular. It is widely used in manufacturing furniture, cabinets, and various structural
products [3]. In 2021, 4,075,000 m3 and 103,955,051 m3 of particleboard were produced
in Turkey and the world, respectively [4]. Due to the particleboard industry’s inability
to meet market demand, filler materials are being used to conserve raw materials and
enable the use of wood-based boards in different areas [5]. Thus, filler materials, such
as vermiculite [6] for improving acoustic properties, calcium carbonate [7], clay [8], and
montmorillonite [9] for enhancing thermal properties, carbon nanotubes [10] for improving

Coatings 2023, 13, 1476. https://doi.org/10.3390/coatings13091476 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13091476
https://doi.org/10.3390/coatings13091476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-5926-6039
https://doi.org/10.3390/coatings13091476
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13091476?type=check_update&version=1


Coatings 2023, 13, 1476 2 of 12

physical properties, and zeolite [11] and activated carbon [12] for enhancing mechanical
properties, have been used in previous studies.

Activated carbon is an amorphous material obtained by activating high-carbon content
organic and inorganic materials through chemical or physical methods to increase their
internal surface area and pore volume [13]. Furthermore, activated carbon differs from
elemental carbon as it allows for widespread use in adsorption and purification due to the
oxidation of carbon atoms present on its internal and external surfaces [14]. Additionally,
activated carbon is used in capacitors [15], and recently, in composite materials [16]. It was
found that materials produced from silicone-modified activated carbon exhibited resistance
against combustion [17]. Activated carbon aerogels derived from carboxymethyl cellulose
could be used in energy storage applications [18]. The addition of activated carbon to
poly(lactic acid)-polybutylene succinate foams enhanced their thermal and mechanical
properties [19]. In the last few decades, activated carbon has started to be studied in
fiberboard production. Studies have examined the effects of adding activated carbon on
the physical properties (thickness swelling, water absorption, and density) and mechanical
properties (internal bond strength, modulus of rupture, and modulus of elasticity) of
produced medium-density fiberboard [12,20]. The porous and diverse functional group
structure of activated carbon was utilized to reduce the emission of free formaldehyde in
wood-based panels [21]. Wood-based panels are primarily used as construction materials
indoors. Therefore, investigating the thermal properties of these materials and elucidating
the impact of activated carbon is crucial. In addition, the effects of activated carbon have
not been investigated before on particleboard properties.

This study explored the effects of adding activated carbon at different ratios to single-
layer particleboard on its physical, mechanical, thermal, and morphological properties.
Thus, the usability of activated carbon as an additive in particleboard production was
investigated. In addition, the thermal properties of particleboards, mostly used indoors,
were examined, and the thermal effect of activated carbon was determined.

2. Materials and Methods
2.1. Materials

Activated carbon (AC) was bought from Aromel Chemie (Konya, Turkey) and pos-
sessed a 2140 kg/m3 density. The AC was produced from coconut shells with the physical
activation method. The commercial particleboard factory supplied urea-formaldehyde ad-
hesive (UF) and the chips. The dimensions of the chips were 10.5 mm × 10.5 mm. The chip
mixture ratios were as follows: Pinus nigra: 50%, Fagus orientalis: 20%, Carpinus betulus: 20%,
Populus nigra: 10%. The UF was characterized by a viscosity of 220 mPa·s at 22 ◦C, a density
ranging from 1260 kg/m3 to 1280 kg/m3, and a solid content of approximately 65%. To
facilitate adhesive curing, a 20% ammonium chloride solution was added with a proportion
of 1.5% relative to the adhesive weight, and the solution was stirred at 600 rpm for 10 min
with a mechanical stirrer (WiseStir, HS-120A, Daihan Scientific, Gangwon, South Korea).
All chemicals supplied were of analytical grade and procured from Merck (Darmstadt,
Germany) or Fluka (Buchs, Switzerland).

2.2. Production of Particleboard

The chips obtained from the particleboard facility produced single-layer particleboards.
Before adhesive application, the chips were dried to a moisture content ranging from 1% to
3% and stored in airtight plastic bags to prevent air exposure. The study employed UF with
a solid content of 65%. AC was incorporated into the adhesive at concentrations of 1.5%,
4.5%, and 7.5% based on the dry matter content of the adhesive, and the mixture was stirred
at 600 rpm for 30 min. The viscosities of the adhesive were 0 % AC: 242 ± 4, 1.5% AC:
255 ± 3, 4.5% AC: 267 ± 6, and 7.5% AC: 271 ± 5 at 22 ◦C. The adhesive application was
conducted using an adhesive gun within a rotary drum mixer (ECOMIX, 42750 Saint-Denis
de Cabanne). Subsequently, the manual spreading process was performed using a wooden
spreading mold, and the board assembly was placed into a hot press with dimensions of
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400 × 400 × 12 mm. Each group produced three particleboards. After the pressing process,
the resulting boards were allowed to cool and be conditioned at a relative humidity of
65 ± 5% and a temperature of 20 ± 2 ◦C to achieve equilibrium moisture content. The
samples were then extracted for the determination of board properties. The particleboard
production parameters are shown in Table 1.

Table 1. Particleboard production parameters.

Particleboard Production Parameters Values

Thickness (mm) 12
Target board density (kg/m3) 700

Board dimensions (mm) 400 × 400
Specific press pressure (bar) 35

Press temperature (◦C) 175
Press time (s) 220

2.3. Characterization

The particle size distribution of the AC was measured with a Mastersizer 3000 in-
strument (Malvern, Cambridge, United Kingdom). The test panels were left to stabilize
under ambient conditions for one week. Following this, the test samples were prepared in
accordance with the EN 326-1 (1999) standard [22]. The samples were then conditioned
in a controlled environment chamber for one week at 20 ± 2 ◦C and a relative humidity
of 65 ± 5%. The moisture content (MC) of the test panels was determined according to
the EN 322 (1999) standard [23], while their densities were measured according to EN 323
(1999) [24]. Thickness swelling (TS) was evaluated following the guidelines of EN 317
(1999) [25]. Water absorption (WA) was conducted according to ASTM D1037-12 (2020) [26].
The color measurements of the particleboards were carried out using a Konica Minolta
spectrophotometer (Osaka, Japan). According to ISO 7724-2 (1984) [27], the L*, a*, and b*
values were determined by analyzing the measurements taken from randomly chosen areas.
The evaluation of the color coordinates used the CIE Lab system. The experimental boards’
L*, a*, and b* color coordinates for each variation were established for particleboards both
with and without AC. The L* axis represents the black–white axis, where L* = 0 corresponds
to black and L* = 100 corresponds to white. The a* axis represents the red–green color
spectrum, with positive values indicating red and negative values indicating green. The
b* axis represents the yellow–blue color spectrum, with positive values indicating yellow
and negative values indicating blue. Changes in the color coordinates (∆L*, ∆a*, and ∆b*)
were calculated by determining the difference between the values obtained by the control
group (0% AC) and the particleboard, which included different ratios of AC. The total color
differences (∆E*) were calculated according to Equation (1).

∆E* = [(∆a*)2 + (∆b*)2 + (∆L*)2] 1/2 (1)

where ∆L* represents the change in L*, ∆a* represents the change in a*, and ∆b* represents
the change in b*. ∆E* represents the total color change.

The internal bond strength (IB), modulus of rupture (MOR), and modulus of elas-
ticity (MOE) were determined according to EN 319 (1999) [28] and EN 310 (1999) [29],
respectively. The morphologies of the particleboards were examined using a scanning
electron microscope (SEM) (Maia3 Xmu model, TESCAN, Brno, Czech Republic). In order
to enhance the conductivity of the particleboards, a thin layer of gold with a thickness
of 5 nm was applied to the samples. The SEM microscope was operated at a voltage of
20.0 kV during the analysis of microstructure images. The thermal conductivity of the
particleboards was measured at 24 ◦C, and the ASTM C518 (2021) standard [30] was fol-
lowed, utilizing a heat flux instrument (KEM QTM 700, Kyoto Electronics, Kyoto, Japan).
The samples were subjected to thermogravimetric (TG) and derivative thermogravimetric
(DTG) analyses (Hitachi-STA 7300, Hitachi, Ltd., Tokyo, Japan), where they were heated
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from room temperature to 600 ◦C. The heating rate used was 10 ◦C/min under a nitrogen
atmosphere, with a 50 mL/min gas flow rate. All tests, except for the TGA and SEM
analyses, were repeated in six samples for each group. The impact of varying amounts of
activated carbon on the physical and mechanical properties of the chipboard was assessed
using a one-way analysis of variance (ANOVA) in the SPSS 16 program, with a confidence
level of 95% (p < 0.05). Statistically significant homogeneous groups were determined using
the Duncan homogeneity test.

3. Results and Discussion
3.1. Particle Size Distribution of the Activated Carbon

The particle size distribution of the AC, which was essential to determine before
utilizing it in particleboard production, is shown in Figure 1.
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Figure 1. Particle size distribution of AC.

It was determined that 95% of the particle sizes of AC were smaller than 60 µm. The
particle size was closely associated with grinding, which constituted the final stage of
AC production. Fourier transform infrared spectroscopy, field emission scanning electron
microscopy, energy dispersive spectrometry, and elemental mapping analyses of activated
carbon were given in Ergun and Bulbul’s study [31].

3.2. Physical Properties of Particleboards

The statistical analysis of the physical properties of the produced single-layered boards
is shown in Table 2. The letters (a, b, and c) in Table 2 indicate that sample groups with
equal importance are clustered.

Table 2. Physical test results of AC-reinforced particleboards.

Codes Density
(kg/m3)

MC
(%)

TS (%)
(2 h)

TS (%)
(24 h)

WA (%)
(2 h)

WA (%)
(24 h)

%0 AC 750 a ± 53.87 7.13 b ± 0.41 26.18 a ± 1.92 37.42 ab ± 2.66 49.81 a ± 5.15 66.38 a ± 6.99
%1.5 AC 750 a ± 46.60 6.25 a ± 0.33 31.27 b ± 3.27 40.18 bc ± 2.41 49.49 a ± 4.01 66.45 a ± 3.82
%4.5 AC 760 a ± 47.03 6.24 a ± 0.07 26.53 a ± 1.84 35.11 a ± 4.37 49.31 a ± 5.01 65.34 a ± 4.01
%7.5 AC 770 a ± 44.28 6.17 a ± 0.01 29.43 ab ± 4.24 42.32 c ± 4.08 47.43 a ± 3.74 64.16 a ± 4.26

a,b,c Letters indicate Duncan’s homogeneity groups in the column.

The results show that the AC content affected the physical properties of the particle-
board. When the effects of AC addition on some physical properties of the particleboards
were examined statistically, it was understood that there was a significant difference be-
tween the 2 h and 24 h TS values (p < 0.05). Although the AC content increased in the
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particleboards, and the density of the particleboards changed between 750 kg/m3 and
770 kg/m3, it was determined that there was no statistically significant difference between
them. This variation suggests that the AC particles possessed a greater density (2140 kg/m3)
than the wood particles’ density. The MC of the particleboard decreased with increasing AC
content, suggesting that the AC particles reduced the water uptake of the particleboards.
The TS and WA of the particleboard after the 2 h and 24 h immersion tests showed different
trends depending on the AC content. The particleboard with 4.5% AC had the lowest TS
and WA values among all the samples, indicating that the AC improved the dimensional
stability and water resistance of the particleboard by filling the pores and blocking the water
penetration. However, the particleboard with 7.5% AC had higher TS and WA values than
the particleboard with 4.5% AC, implying that there might be an optimal AC content for
minimizing the TS and WA of particleboard. The 2 h WA and 24 h WA of the particleboards
decreased with the increase in AC content, indicating that the AC improved the water
resistance of the boards by reducing the capillary action and water diffusion in the board
matrix. As the content of AC in the particleboards increased, it served the role of a filling
material that fills voids or pores within the material. This could act as a barrier, impeding
the movement of water within the particleboard, and thus, functioning as a deterrent to
water ingress and absorption, consequently reducing the WA. On the other hand, the AC
particles formed bonds with the wood particles, creating a more water-resistant matrix and
reducing the WA. The incorporation of AC had the potential to alter the overall structure
and density distribution within the particleboards. These modifications influenced how
the water was absorbed and distributed throughout the material, resulting in TS and WA
value changes. It was stated that in wood-based composites, the hydrophobic nature of
glass wool and carbon fiber resulted in a decrease in the WA values and swelling ratios for
thickness [32]. On the other hand, the addition of AC to MDF resulted in swelling ratios
ranging from 15.7% to 22.4% and WA values ranging from 88% to 75% after 24 h [20,21].
Akin and Boyaci (2021) found that the TS ratios and WA values of MDF produced with
UF and activated carbon were found to be between 19.46% and 22.01% and 45% and 53%,
respectively [33].

Color measurements play a crucial role in assessing the color properties of wood
materials and monitoring any alterations in color [34]. This method is vital for preserving
the material’s aesthetic appeal and ensuring quality control during production. The color
changes in particleboards produced with varying ratios of AC addition can be observed in
Table 3 and Figure 2.

Table 3. Color changes in AC-reinforced particleboards.

Codes L a b ∆L ∆a ∆b ∆E (%)

%0.0 AC 58.13 8.44 24.40 - - - -
%1.5 AC 61.02 6.30 22.57 2.89 −2.14 −1.83 4.03
%4.5 AC 59.31 5.18 20.08 1.18 −3.26 −4.32 5.54
%7.5 AC 54.22 5.33 18.52 −3.91 −3.11 −5.88 7.72
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Based on the data, it can be seen that the color properties of the particleboards were
affected by the AC content ratio. As the AC content ratio increased, the lightness (L) and the
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yellow–blue component (b) declined. It was determined that the addition of AC reduced
the red–green component (a) compared to the control group (0% AC). The color difference
(∆E) also increased with the AC content ratio, indicating that the particleboards became
darker and less yellow as more AC was added (Figure 2d). When activated carbon was
added to the composite materials, it led to a color change in the composite. Yue and Vakili
(2017) found that the color of pitch-based carbon fiber composites changed from shiny gray
to dark after activation with AC [35]. This result is consistent with previous studies that
reported the effects of AC on the color properties of particleboards [12]. AC also has a dark
color that influences the appearance of particleboards. Therefore, a trade-off between the
functional and aesthetic properties of particleboards should be considered when using AC
as an additive.

The microstructures of the particleboards were examined using a scanning electron
microscope (SEM) at ×500 magnification, as shown in Figure 3.
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SEM analysis of AC-reinforced particleboards revealed that the AC was uniformly dis-
tributed within the particleboard matrix and the adhesive (Figure 3a–d). As the percentage
of AC increased, the AC particles began to fill the gaps among the chips (Figure 3d). How-
ever, there was no agglomeration due to the amount of AC used, and it did not affect the
mechanical performance of the particleboards. Adding fillers to the composite enhanced
the mechanical properties and the surface quality of the composites by filling the voids in
the polymer chains [36].

3.3. Mechanical Properties of Particleboards

The statistical analysis for the mechanical properties of particleboards produced with
different ratios of AC addition is given in Table 4, where the letters (a and b) are used to
indicate that groups of samples with similar significance are clustered together.
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Table 4. MOR, MOE, and IB results of AC-reinforced particleboards.

Codes MOR
(N/mm2)

MOE
(N/mm2)

IB
(N/mm2)

%0 AC 15.47 a ± 3.49 2022.06 a ± 404.13 0.70 a ± 0.11
%1.5 AC 16.83 a ± 1.86 2173.61 ab ± 249.19 0.73 a ± 0.16
%4.5 AC 17.81 ab ± 1.62 2183.58 ab ± 143.99 0.97 b ± 0.15
%7.5 AC 19.80 b ± 1.24 2438.92 b ± 131.07 0.99 b ± 0.09

a,b Letters indicate Duncan’s homogeneity groups in the column.

The results show that the IB of the particleboards increased with AC content. The IB
values ranged from 0.65 N/mm2 for 0% AC to 0.90 N/mm2 for 7.5% AC. AC improved
the bonding between the particles and the resin and enhanced the mechanical properties
of the particleboards. A comparison with previous studies revealed that the IB values of
the particleboards with AC were higher than those of some conventional particleboards
made from wood or other waste materials. The IB values of particleboards made from
wood particles and UF-sodium carboxymethyl cellulose ranged from 0.28 to 0.63 N/mm2,
depending on the sodium carboxymethyl cellulose concentration [37]. The IB values of
particleboards made from bamboo chips with UF ranged from 0.26 to 0.28 N/mm2 [38].
Istek et al. (2023) found that the IB values of particleboards produced from wood particles
and UF ranged from 0.59 to 0.82 N/mm2 [39]. The IB of rice straw-based particleboard
was determined to be 0.16 N/mm2 with the addition of 4% AC [40]. AC improved the IB
value of particleboards by enhancing the bonding between the particles and the resin. AC
provided additional sites for chemical interactions between the resin and the carbon atoms,
such as dispersion forces, electron transfer, and surface functional groups [41]. AC also
increased the contact area between the particles and the resin by filling the gaps and voids
in the particleboard structure [42].

The highest values of MOR and MOE were obtained for the particleboard with 7.5%
AC, which were 28% and 21% higher than those without AC, respectively. When the effect
of AC addition on the mechanical properties of the particleboards was examined statistically,
it was understood that there were significant differences in the MOR, MOE, and IB values
(p < 0.05). AC improved the strength and stiffness of the particleboard by reinforcing the
composite material. The increase in the MOR and MOE values due to the addition of AC
may be attributed to the covalent bonding between the AC and the UF resin [12]. On the
other hand, oxygen-rich groups present on the surface of AC enhance mechanical strength
by forming hydrogen bonds with wood fibers and adhesives [20]. Previous studies have
reported different effects of AC on the mechanical properties of particleboards or other
biocomposites. Maciá et al. (2016) found that AC from Posidonia oceanica fibers increased the
MOR and MOE of biocomposites by 20% and 25% [43], respectively. However, Kibet et al.
(2022) found that AC from leather waste decreased the MOR and MOE of particleboard by
10% and 12% [44], respectively. MDF with 1% AC added resulted in approximate 25% and
30% increases in the MOR and MOE values, respectively [21]. On the other hand, Basta et al.
(2017) found the opposite trend for the MOR and MOE values [40] compared to our results.
Some factors, such as the raw material type, chip size and geometry, amount and type of
adhesive, mat moisture, board density, and the pressing conditions used in particleboard
production, affect the physical and mechanical properties of wood-based boards [45,46].

3.4. Thermal Properties of Particleboards

The low thermal conductivity of particleboards is one of the important features desired
in indoor applications. The KEM QTM 500 was utilized to obtain the thermal conductivity
of particleboards using the transient hot wire method. The thermal conductivity of AC-
reinforced particleboards is shown in Figure 4.
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The results show that the thermal conductivity of the particleboard decreased with
increasing AC content. The lowest thermal conductivity value (0.2155) was obtained for
the particleboard with 4.5% AC, which was about 38% lower than without AC (0.3479).
These results show that AC improved the insulation performance of the particleboards
by reducing the heat transfer through the material. The thermal conductivity of the
particleboard with 7.5% AC (0.2177) was higher than the particleboard with 4.5% AC. The
thermal conductivity of a material is directly proportional to its density [47]. Previous
studies have reported similar trends for other particulate composites with different types
of fillers, such as graphite [48], aluminum nitride [49], and aluminum [50]. However, the
thermal conductivity values of particleboards with AC in this study are lower than those
reported for other composites with similar filler contents [49,50]. AC is a good thermal
isolator with macro- and micro-porous structures [51]. The thermal conductivities of AC
varied between 0.05 W/mK and 0.10 W/mK [52]. The thermal conductivities of wood-based
panels are influenced by various factors, such as the bulk density of the chips, chip size and
orientation, raw material wood species, panel density, moisture content, number of layers,
and porosity [53]. Furthermore, factors such as the testing method and ambient temperature
also impact the obtained values when determining thermal conductivity [54]. Hence, it
was expected that commercially produced layered particleboards would exhibit different
thermal conductivity values compared to single-layer particleboards manufactured in a
laboratory, resulting in a more homogenous structure. In this study, the effect of AC was
investigated by comparing it with particleboard without AC.

The thermal characteristics of particleboards were investigated to compare their prop-
erties with and without the inclusion of activated carbon. The analysis used the TG
(Figure 5a) and DTG (Figure 5b) techniques under a nitrogen atmosphere. The findings are
given in Table 5. T10% indicates the temperature at which the initial 10% mass loss occurred,
whereas T50% represents the temperature at which 50% mass loss happened in the sample.

Table 5. T10% and T50% of thermal degradation and the mass loss (%) after thermogravimetric analysis
of AC-reinforced particleboards.

Codes T10% (◦C) T50% (◦C) Mass Loss (%)

%0.0 AC 251 336 84.51
%1.5 AC 253 332 81.45
%4.5 AC 253 332 80.11
%7.5 AC 255 330 78.36
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The analysis showed that T10% was present between the temperatures of 251 ◦C and
255 ◦C, and T50% ranged from 336 ◦C to 330 ◦C. At a thermal degradation temperature of
600 ◦C, the particleboard without AC (0.0% concentration) exhibited the highest mass loss
of 84.51%. In contrast, the particleboard with a 7.5% AC concentration had the lowest mass
loss of 78.36%. These results indicate that the addition of AC had a positive effect on the
thermal stability of the particleboard. AC, consisting of graphitized carbon layers, could
act as a physical barrier, limiting the diffusion of heat and oxygen during the combustion
process [55].

TGA and DTG analyzed the compositional and thermal properties of different materi-
als, such as particleboards made from wood particles bonded together with adhesives [56].
Particleboards had different thermal degradation kinetics depending on the type and
amount of adhesive used, the particle size and distribution, the pressing conditions, and the
presence of additives or fillers [57]. The thermal decomposition of particleboards involved
three main stages: moisture evaporation, degradation of hemicellulose and cellulose, and
degradation of lignin and resin. The first stage occurred below 100 ◦C, the second stage
occurred between 200 ◦C and 400 ◦C, and the third stage occurred above 400 ◦C [58].
The TGA/DTG curves of the particleboards showed different peak positions, shapes, and
intensities depending on the composition and structure of the boards. Particleboards manu-
factured from natural rubber latex-based bio-adhesive showed a single DTG peak at around
300 ◦C, while particleboards made from phenol-formaldehyde resin showed two DTG
peaks at about 345 ◦C and 435 ◦C [59]. As the amount of AC added to the particleboards
increased, the burning rate of the material decreased, which can be observed in the peaks
in the DTG analysis (Figure 5b).

In our study, the utilization of activated carbon demonstrated improvements, particu-
larly in the mechanical and thermal properties. With its high surface area, rich functional
groups, and porous structure, activated carbon’s incorporation into the production of
wood-based panels holds significance in enhancing the in-service performance of these
panel products. Moreover, the potential utilization of low-value or waste lignocellulosic
materials in the panel industry, facilitated by AC, adds further importance. This approach
has implications for supplementing the raw material base for the panel industry.

4. Conclusions

The incorporation of AC in particleboards demonstrated various effects on their
properties. Our analysis revealed that an optimal AC concentration of 4.5% led to the
best result of enhanced physical properties, including water resistance and dimensional
stability. The addition of AC caused a total color change (∆E) of up to 7.72%, so care must
be taken when applying AC in situations where aesthetics are important. There were no
statistical differences between the 4.5% AC addition and the 7.5% AC addition in the IB,
MOR, and MOE properties. Compared to the reference particleboards, the addition of 7.5%
AC improved the IB, MOR, and MOE values of the particleboards by approximately 41%,
28%, and 21%, respectively. The thermal properties of the particleboard enhanced with
increasing AC content.
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All results show that an optimal AC concentration existed for achieving a balance
among improved physical, mechanical, and thermal properties while considering aesthetic
changes. The particleboard containing 4.5% AC consistently demonstrated favorable
outcomes across multiple properties. The addition of 4.5% AC could be considered an
optimal concentration to achieve a synergistic enhancement in the overall performance of
particleboards for indoor applications.
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