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Abstract: Magneto-plasmonic nanoparticles were fabricated using a 1064 nm picosecond-pulsed laser
for ablation of Fe/Au and Fe/Au/Fe composite thin films in acetone. Nanoparticles were charac-
terized by electron microscopy, ultraviolet-visible (UV-VIS) absorption, and Raman spectroscopy.
Hybrid nanoparticles were arranged on an aluminum substrate by a magnetic field for application in
surface-enhanced Raman spectroscopy (SERS). Transmission electron microscopy and energy disper-
sive spectroscopy analysis revealed the spherical core-shell (Au-Fe) structure of nanoparticles. Raman
spectroscopy of bare magneto-plasmonic nanoparticles confirmed the presence of magnetite (Fe3O4)
without any impurities from maghemite or hematite. In addition, resonantly enhanced carbon-based
bands were detected in Raman spectra. Plasmonic properties of hybrid nanoparticles were probed by
SERS using the adsorbed biomolecule adenine. Based on analysis of experimental spectra and density
functional theory modeling, the difference in SERS spectra of adsorbed adenine on laser-ablated
Au and magneto-plasmonic nanoparticles was explained by the binding of adenine to the Fe3O4

structure at hybrid nanoparticles. The hybrid nanoparticles are free from organic stabilizers, and
because of the biocompatibility of the magnetic shell and SERS activity of the plasmonic gold core,
they can be widely applied in the construction of biosensors and biomedicine applications.

Keywords: magneto-plasmonic nanoparticles; laser ablation; SERS; thin film; magnetite; gold;
core-shell nanoparticles

1. Introduction

Magneto-plasmonic nanoparticles are composites that combine magnetic and plas-
monic materials in a confined nanoscale area and simultaneously exhibit magnetic and
plasmonic properties [1–4]. They typically use Fe, Co, or Ni-based magnetic materials.
The most popular among them are iron and magnetite. Fe3O4 is known to be nontoxic,
biocompatible, and possesses an inducible magnetic moment; thus, it can be used for hy-
perthermia, targeted drug delivery, extraction of biomolecules, lab-on-a-chip construction,
and other biomedical applications [5–8]. A noble metal (Au, Ag, or Pt) that separately
could be used for resonance energy processes such as nanometal surface energy transfer
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(NSET), fluorescence resonance energy transfer (FRET), cascade energy transfer (CET),
metal-enhanced fluorescence (MEF), plasmon-induced resonance energy transfer (PIRET),
and surface-enhanced Raman scattering (SERS) [9,10], adds to the system plasmonic com-
ponents that could expand the application field of these nanostructures to stable molecule
detection using SERS [11]. Such nanoparticles may consist of a noble metal layer/magnetic
core or form an inverse structure [1]. Magneto-plasmonic nanoparticles are one of the
new multifunctional materials for medical applications [3,4]. Nanocomposites of various
combinations are used for phototherapy [12], as contrast agents in magnetic resonance imag-
ing [13], brain disease treatment [14], cancer therapy and diagnostics [15], drug delivery,
and hyperthermia applications [16]. For applications in diagnostics and even therapeutic
fields, the plasmonic properties of these nanoparticles are of the utmost importance. The
plasmonic nature of these nanoparticles leads to high molecular sensitivity in cases of
application in SERS or high photothermal efficiency, while magnetic properties ensure
control of the spatial position of nanoparticles.

Laser irradiation has proven to be a versatile tool for nanoparticle synthesis [17].
Laser ablation is a method for producing nanoparticles, nanowires, quantum dots, and
core-shell nanoparticles [18–21]. Laser can be used to form nanoparticles by melting thin
metal coatings or targets [19,20,22], ablation of metal granules [23], forming noble metal
surfaces [24], or Si substrates that could later be covered with SERS active metal [25,26].
During the ablation process in gas, nanoparticles are created by the nucleation and growth
of laser-evaporated species in a background gas. The ultra-fast vapor quenching is helpful
for the production of high-purity nanoparticles in the quantum size range (<10 nm) [18].
One of the most commonly used methods for generating laser nanoparticles is pulsed laser
ablation in liquids [27,28]. In this method, a pulsed laser beam is focused onto a solid
target placed in a liquid medium that could be acetone, water, methyl methacrylate, or
others [29]. Pulsed laser ablation in liquids is an attractive technique as it is chemically clean
and requires no additional chemicals that, in some cases, may even be toxic [30,31]. This
method is also attractive as the available target and fluid materials are extensive, including
various metals and their alloys, semiconductors, oxides, alloys, and carbon allotropes.

Magneto-plasmonic Fe/Au alloy nanoparticles can be successfully ablated using solid
Au-Fe targets in ethanol [32] and acetone [33]. Laser-induced generation of alloy and core-
shell nanoparticles by ablation of multilayer films was previously investigated by Amen-
dola et al. [34,35]. Alternatively, alloys of plasmonic/magnetic or plasmonic/plasmonic
metals could also be used [25,29,36]. Nanosecond laser ablation yields higher relative con-
centrations of core-shell nanoparticles than picosecond ablation due to differences in laser
radiation-plasma plume interaction time frames [35]. In the reference [34], nanoparticles
were formed using a nanosecond laser of 1064 nm wavelength. Experiments were carried
out with water and ethanol. Alloy nanoparticles were synthesized by ablation of Fe/Au
layers of different thicknesses and compositions. Using ethanol as an ablation medium,
alloy nanoparticles were formed with sizes of 7–8 nm with a standard deviation of 4–6 nm,
whereas core-shell nanoparticles with a Fe core were achieved using water. Their results
proved successful in the synthesis of alloy nanoparticles from films of 100–200 nm order
thickness. Recently, authors demonstrated the formation of Fe/Au nanoparticles using laser
ablation of bulk alloy targets [32]. Ablated nanoparticles or surface structures could later be
decorated with chemically synthesized structures [24,37,38] or could be used as reductors
of metal salts [22,39]. The produced nanoparticles were applied for rat blood analysis [23],
detection of explosives [22,24,40], pyrromethene [41], antibiotics [26], pesticides [24,36,39],
and many other molecules [38].

In our work, picosecond-laser ablation experiments for nanoparticle generation were
carried out in acetone. It acts as a medium for the growth and stabilization of the nanoparti-
cles. Acetone has been widely used in nanomaterial synthesis due to its ability to solubilize
various metal precursors and provide a controlled environment for nanoparticle formation.
The targets for ablation were created as composite coatings of varying thicknesses and
layers of Fe/Au and Fe/Au/Fe. Various parameters were altered and optimized for the
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synthesis of stable, plasmonic nanoparticles that also possess magnetic properties. These
nanoparticles were applied for SERS analysis of the adenine molecule. The obtained results
were compared to DFT-calculated spectra and showed that biological molecules preferably
adsorb on magnetite surfaces.

2. Materials and Methods
2.1. Materials

Iron and gold targets for laser ablation were obtained from Micro-to-Nano (Haarlem,
The Netherlands). Acetone (≥99.9%), used for the ablation procedure, was purchased
from Honeywell (Charlotte, NC, USA). Adenine (≥99%), D2O (99.9 atom% D), and ethanol
(99.5%) were purchased from Sigma-Aldrich (St. Louis, MO, USA), and deionized water
(18.2 MΩ·cm) was obtained from the Direct-Q 3UV purification system (St. Louis, MO,
USA). 4-mercaptobenzoic acid (4-MBA) for SERS was from Thermo Scientific (Loughbor-
ough, UK).

2.2. Target Preparation

Gold and iron coatings (Fe/Au and Fe/Au/Fe) were prepared on a soda-lime glass
substrate with a thickness of 1 mm using magnetron sputtering machine Q150T ES (Quo-
rum, Laughton, UK) at room temperature in an Ar atmosphere of 10−3 bar with a deposition
rate of 0.27 and 0.22 nm/s for gold and iron films, respectively. Gold and iron targets with
a purity of 99.99% (Au) and 99.95% (Fe) were used. The thickness of thin metal films was
controlled by varying the sputtering time. During deposition, the sample holder was rotat-
ing at 8 rpm. Before deposition, the soda-lime glass substrates were cleaned by washing
with deionized water and holding for 2 h in concentrated H2SO4. After that, substrates
were washed with water and sonicated two times in ethanol for 20 min. Finally, substrates
were dried under nitrogen flow. The coating types and layer thicknesses are presented in
Table 1.

Table 1. Composition of tested Fe/Au and Fe/Au/Fe layered coatings used in laser ablation experi-
ments.

Denotation
1st Layer

Fe Layer Thickness
(nm)

2nd Layer
Au Layer Thickness

(nm)

3rd Layer
Fe Layer Thickness

(nm)

Fe50/Au150 50 150 -
Fe100/Au150 100 150 -

Fe50/Au150/Fe25 50 150 25
Fe50/Au150/Fe50 50 150 50

2.3. Laser Ablation Procedure

A picosecond laser Atlantic (Ekspla, Vilnius, Lithuania) was used to generate magneto-
plasmonic nanoparticles. A Galvoscanner hurrySCAN (ScanLab, Puchheim, Germany)
with a 160 mm focal distance focusing objective was used for beam control. The pulse
duration was 10 ps, the laser irradiation wavelength was 1064 nm, and the pulse repetition
rate was 100 kHz. The laser beam was focused on a sample target inside the chamber, filled
with acetone. The whole coated sample area was scanned with a laser beam using a hatch
pattern. The distance between adjacent lines was 50 µm, scanning speed was 500 mm/s.
The average laser irradiation power was 5 W, and the laser fluence was ~1.3 J/cm2. The
chosen fluence was similar to other authors’ works: 1 J/cm2 [42], 0.8 J/cm2 [43], and
2.5 J/cm2 [44]. The setup for laser ablation experiments is shown in Figure 1.
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Figure 1. Experimental setup for the generation of magneto-plasmonic nanoparticles by laser ablation
procedure.

Pure gold nanoparticles for comparison were also obtained using laser ablation. Gold
targets were placed in a chamber filled with deionized water with 0.024 mM KCl. The final
volume of the liquid was 19 mL. Ablation was conducted for 5 min, using 5 W of laser
power.

2.4. Sample Characterization and Preparation for SERS Measurements

Ablated nanoparticles were characterized using UV-VIS-NIR, TEM, and SEM equip-
ment. For extinction spectra measurements, a UV-VIS-NIR Lambda 1050 spectrometer
(Perkin Elmer, Waltham, MA, USA) was employed (in the range 300–800 nm). Nanoparti-
cles were imaged using scanning electron microscopy (SEM) using a dual-beam system,
Helios Nanolab 650 (Thermo Scientific, Eindhoven, The Netherlands), and a transmis-
sion electron microscope, FEI Tecnai G2 F20 X-TWIN (Thermo Scientific, Eindhoven, The
Netherlands).

The preparation of SERS substrates was performed as follows: The Nd magnet was
wrapped in aluminum foil, cleaned with ethanol, dried, and immersed in a colloid of
generated Fe/Au or Fe/Au/Fe nanoparticles for 60 s. The extracted magnet was washed
with deionized water and dried. For comparison, pure gold nanoparticles were prepared
by simply dropping a few drops of generated solution on aluminum foil and drying. The
plasmonic properties of the generated nanoparticles were verified by measuring the SERS
spectra of the test molecules (adenine and 4-mercaptobenzoic acid). The enhancement
factor (EF) was calculated using 4-mercaptobenzoic acid. A 0.1 mM adenine solution in
water was selected to evaluate the SERS performance for the analysis of biomolecules.
One drop (25 µL) of a 0.1 mM adenine solution was dripped on the previously prepared
SERS substrate. Spectra were measured by focusing a laser beam on the substrate with
magneto-plasmonic nanoparticles in the presence of a water solution containing adenine.

The SERS spectra were measured using a MonoVista CRS+ spectrometer (S&I, Warstein,
Germany) with an integrated optical microscope with a 100×/0.80 NA objective. An ex-
citation wavelength of 632.8 nm was used, and the laser beam was focused on an area
of approximately 1 µm2 on the sample. The Raman spectra of the magneto-plasmonic
nanoparticle substrate were recorded at a power of 0.8 mW. SERS spectra of the adsorbed
adenine were acquired with a power of 2.5 mW. Raman spectra of adenine in solid state
and 7.0 mM H2O and D2O solutions were recorded with the Raman spectrometer Hyper-
Flux PRO Plus (Tornado Spectral Systems, Mississauga, ON, Canada), equipped with a
thermoelectrically cooled fiber-optic cable and a 785 nm wavelength laser source. The
powder sample was probed using 30 mW power and 10 s accumulation, while the adenine
solutions were probed with 495 mW and 600 s. SERS enhancement factors at excitation
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wavelengths 632.8, 785, and 830 nm were evaluated by using an inVia Raman spectrometer
(Renishaw, Wotton-under-Edge, Gloucestershire, UK).

2.5. Density Functional Theory Modelling

Optimized geometry and numerical frequencies of adenine and adenine complexes in
a vacuum were calculated using Orca 5.0.1 software [45] at the B3LYP theory level using
the def2-TZVPP basis set. No imaginary frequencies were obtained.

3. Results

Laser ablation procedures for layered structures were conducted in deionized water,
acetone, and isopropanol. In deionized water, the obtained nanoparticles aggregated in a
few minutes after laser ablation and were not suitable for further investigation. Nanoparti-
cle stability in isopropanol was moderate; however, the best results were obtained using
acetone, so this solvent was chosen.

3.1. Structural and Magnetic Characterization of Magneto-Plasmonic Nanoparticles

The magneto-plasmonic nanoparticles ablated in acetone possessed magnetic proper-
ties, which can be confirmed by SEM images (Figure 2) of nanoparticles on aluminum foil
substrates, oriented according to the magnetic field lines. From the images, different-sized
nanoparticles are seen up to a few hundred nanometers.
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Figure 2. SEM image of magneto-plasmonic nanoparticles (Fe50/Au150/Fe25) concentrated by a
magnetic field on an aluminum foil substrate. Two magnifications are presented: a scale bar of 5 µm
(A) and 2 µm (B).

Figure 3 displays TEM measurements of the magneto-plasmonic nanoparticles gen-
erated from the Fe50/Au150/Fe25 and Fe50/Au150 targets. TEM imaging revealed the
formation of spherical core-shells and homogeneous nanoparticles with a wide size distri-
bution. The ImageJ program was used to calculate the size distribution of nanoparticles.
The nanoparticles’ diameter in samples Fe50/Au150/Fe25 was 46 ± 12 nm, while samples
Fe50/Au150 showed 59 ± 28 nm. The energy dispersive spectroscopy (EDS) analysis
(Figure 4B) confirmed that the core is composed of Au and is covered with a shell contain-
ing Fe and O. The high overall amount of oxygen in the sample is due to its abundance
in the atmosphere and on the sample; however, a slightly higher percentage of O on the
nanoparticles, especially at the sides of them, indicates the formation of magnetite. Thus,
from the TEM images, the darker nanoparticles are composed of gold, while the lighter ones
are iron oxide. The separately distributed homogeneous gold and iron nanoparticles are
also registered. The amount of carbon in the sample is high due to the sample preparation
for TEM; a copper mesh with a carbon layer was used for visualization, so detection of
carbon in the ablated sample is hardly possible.
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Figure 3. TEM images of magneto-plasmonic nanoparticles generated from Fe50/Au150/Fe25
targets at different magnifications: 50 nm scale bar (A) and 5 nm scale bar (B) and nanoparti-
cles from Fe50/Au150 target (C). The size distribution of nanoparticles is presented below: for
Fe50/Au150/Fe25 (D) and for Fe50/Au150 (E).

Figure 4. TEM image of the analyzed nanoparticle (A); EDS analysis of the composition of magneto-
plasmonic core-shell nanoparticles generated from Fe50/Au150/Fe25 targets (B).

The magnetization of the sample was tested with an external magnet attached to
the side of the bottle with the laser-ablated sample. The result is presented in Figure S1.
In part B, the majority of nanoparticles are attracted to the side of the bottle. However,
some nanoparticles remain in solution. These might be separate gold nanoparticles or very
small iron oxide nanoparticles that are not affected by an external magnetic field. The
magnetization of the sample was measured as described in our previous work [46]. The
experimental results and Brillouin function approximation are presented in Figure S2. It
revealed that the sample is weakly magnetic. Obtained parameters: coercivity ~26 mT;
saturations of mass magnetization ~2.7 emu/g; remanent magnetization ~1 emu/g. The
magnetization is divided by the mass of the sample, which includes the gold part as
well, resulting in weak residual magnetization. High coercivity is obtained due to larger
(200–300 nm) nanoparticles.

3.2. UV-VIS Spectroscopic Analysis

The extinction spectra of the nanoparticle solution obtained from two-layered
(Figure 5A) or three-layered (Figure 5B) systems show a distinct plasmon resonance band
characteristic for gold nanoparticles, with the maximum at a 509–528 nm interval. The
optical extinction spectrum corresponds to the absorption of spherical Au nanoparticles
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of size 10–60 nm [47,48]. In addition to this, the general rise of the background going
to the shorter wavelengths is visible. It can be attributed to the scattering effect of the
nonplasmonic iron nanoparticles. This rise was also clearly observed in our previous
work related to the synthesis and analysis of magneto-plasmonic nanoparticles [46]. The
plasmonic peaks in a two-layer system are more distinguished from the background in
comparison to a three-layered system (Figure 5). This could be due to a larger amount
of Fe nanoparticles produced from a three-layer target that creates a higher background
and hides part of the plasmonic band. The slight shift of the plasmonic resonance band
to a lower wavelength in the case of nanoparticles prepared from three-layered coatings
might be related to the smaller diameter of the nanoparticles and/or, to some extent, the
formation of AuFe nanoalloys [34].
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Figure 5. UV-VIS extinction spectra of magneto-plasmonic nanoparticles obtained by ablation of
two-layer (A) and three-layer (B) metal films in acetone in the wavelength range 350−800 nm.

3.3. SERS of Magneto-Plasmonic Nanoparticles

Prior to the analysis of the adsorbed probe biomolecule adenine, we recorded SERS
spectra of bare magneto-plasmonic nanoparticles (Figure 6). The SERS spectra show broad
spectral features in the vicinity of 1586–1591 and 1328–1360 cm−1 which are characteristic
of carbon material G and D vibrational bands, respectively [49–52]. The intensity of these
bands is resonantly enhanced; therefore, even a small amount of carbon material may
result in relatively intense Raman features. This carbon material was most likely created
during the laser-ablation process in acetone. Similar bands were previously observed in the
Raman spectra of magneto-plasmonic nanoparticles prepared by laser ablation in organic
solvents [53]. We found that the relative intensity of these bands varied from sample
to sample. We were not able to connect the relative intensity of carbon bands with the
composition of films used for laser ablation. The clearly defined band at 667–674 cm−1

signifies the presence of magnetite (Fe3O4) at the surface of hybrid nanoparticles [54,55].
This band was assigned to the A1g symmetry mode associated with the symmetric stretching
vibration of Fe-O bonds [32]. Importantly, no bands characteristic of maghemite (γ-Fe2O3,
broad peaks at 350, 500, and 700 cm−1) or hematite (α-Fe2O3, strong and narrow bands
at 412 and 290 cm−1) structures are visible in the spectrum, indicating the presence of the
pure magnetite phase [56]. One can see that the relative intensity of the magnetite band
compared with carbon features is slightly higher in the case of a sample prepared with
a higher amount of Fe in the initial coating (a three-layer film) (Figure 6). The discussed
spectral features are distinct for all synthesized nanoparticles, irrelevant to the ablation
target used. Only subtle variations appear in the parameters of carbon compounds and
magnetite bands.

The enhancement factor (EF) for these nanoparticles was calculated using the SERS
reporter molecule 4-MBA [57,58]. The obtained value for the 632.8 nm excitation wave-
length is 5.8 (±2.8)× 104; the calculation procedure is presented in Supporting Information.
More than ten times lower EF was obtained for the 785 and 830 nm excitation wavelengths
(Figure S3). Shumskaya et al. indicated that an EF of the order of 104 is sufficient for SERS
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applications in the construction of chemo- and biosensors [59]. Such an EF was estimated
for Ni/Au core-shell magneto-plasmonic nanoparticles by using Methylene Blue dye as
a test analyte [59]. Li et al. reported an EF of 1.1 × 105 for Fe3O4/Au nanostructures by
analysis of SERS spectra from malachite green dye [60]. The magneto-plasmonic Fe3O4/Au
composites prepared by the solvent-thermal method exhibited SERS analytical EF exceed-
ing 2 × 105 for the analysis of 4-nitrothiophenol [61]. Ye et al. developed silicon-based
substrates with microarrays where magneto-plasmonic Fe3O4/Au nanoparticles were as-
sembled for SERS analysis of rhodamine 6G dye [62]. Such structures gave SERS EFs higher
than 106. Hu et al. reported on the possibility of tuning SERS EF from 104 to 107 by using
liquid substrates containing suspensions of Fe3O4 /Au nanoparticles [63]. It was found
that magneto-plasmonic Fe2O3/Au nanoparticles are able to provide SERS EF around 105

by using 2-naphthalenethiol as a probe molecule [64].
The structure of magneto-plasmonic nanoparticles obtained in this work is differ-

ent compared with laser-ablation synthesized nanoparticles in acetone from bulk Fe-Au
tar-get [29]. Wagener et al. demonstrated the solvent-controlled phase structure of nanopar-
ticles; an iron-gold core-shell structure was obtained in acetone [29]. The mechanism of
the laser ablation process in liquids is very complex and still under extensive develop-
ment [65,66]. The difference might be associated with the laser treatment of thin coatings
in our study and the application of a picosecond-pulsed laser instead of the femtosecond-
pulsed radiation employed in our work [65]. TEM images (Figure 4) clearly show lower
electronic contrast for the shell of nanoparticles compared with the core, which has a lower
electronic density typical for iron oxides [53].
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band near 674/666 cm−1. The excitation wavelength is 632.8 nm (0.8 mW).

3.4. SERS of Adenine Adsorbed at Magneto-Plasmonic Nanoparticles

Plasmonic properties of nanoparticles were verified by employing SERS spectroscopy
of adsorbed adenine (Ade) as a probe biomolecule [67]. For this, SERS spectra of adenine
adsorbed from a 0.1 mM water solution on a magneto-plasmonic nanoparticle substrate
were measured. Further detailed SERS studies using adenine solution revealed that the
highest SERS signal was obtained using the SERS substrate prepared with laser ablation
synthesized from Fe100/Au150 and Fe50/Au150 coatings. This might be due to the
composition of the obtained nanoparticles. In both of these samples, the amount of gold
was relatively higher than that of iron. Figure 7 shows the SERS spectra of adsorbed
Ade on magneto-plasmonic nanoparticles with the SERS spectra of this probe ligand on
laser-ablated Au nanoparticles. For comparison, Raman spectra of the solid-state form
and aqueous solutions of Ade prepared with H2O and D2O solvents as well as an acidic
water solution are demonstrated in Figure 8. Two bands marked by the star at 981 and
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1051 cm−1 are associated with stretching vibrations of solution SO4
2− and HSO4

− ions,
respectively [68]. The positions of vibrational bands and assignments are listed in Table 2.
The clearly resolved band at 683 cm−1 visible in SERS spectra (Figure 7) belongs to Fe3O4.
The presence of this band confirms the preservation of magnetite structure upon adsorption
of the probe biomolecule. Adenine possesses multiple adsorption sites (ring π system,
ring nitrogens, and NH2 group) (Figure 9) and can be positively or negatively charged
depending on protonation at the N1 site (pK1 = 4.1) or ring deprotonation (pKa = 9.8) [69,70].
The most intense band in the SERS spectra at 736 cm−1 corresponds to adenine ring
breathing vibration [71–76]. The corresponding band in the Raman spectrum of adenine
powder appears at a considerably lower frequency (723 cm−1). Such a shift is characteristic
of adsorbed adenine on the Au surface [69,71]. This mode downshifts to 707 cm−1 upon
labile hydrogens’ exchange to deuterons in D2O solution (Figure 8). Comparison of Ade
solution spectra at pH 6.2 and 1.5 reveals a shift of the 1486 cm−1 band to 1408 cm−1,
the 1332 cm−1 band to 1312 cm−1, the absence of the 1251 cm−1 band, and a shift of the
623 cm−1 band to 617 cm−1 (Figure 8). In SERS spectra, the bands at 1454–1464 cm−1 (which
corresponds to the Ade solution band at 1486 cm−1), 1342–1348 cm−1 (the solution band
at 1332 cm−1), 1236–1240 cm−1 (the solution band at 1251 cm−1), and 627–629 cm−1 (the
solution band at 622 cm−1) are visible, indicating a neutral form of the adsorbed Ade ring.
DFT modeling suggested an increase in the frequency of ring breathing mode from 725 to
743 cm−1 upon bonding of the N3 site with the Au+ ion, while an upshift of only 2 cm−1

was demonstrated upon metal binding to the N7 site [69]. Thus, our experimental SERS
data are consistent with the strong interaction of the Ade ring with the surface through the
N3 atom. However, the involvement of the N9 atom with surface bonding is also possible,
as was suggested previously [71].

Figure 7. SERS spectra of adenine adsorbed from 0.1 mM aqueous solution on magneto-plasmonic
nanoparticle substrate and on gold nanoparticle substrate produced by laser ablation of (a)
Fe100/Au150, (b) Fe50/Au150, and (c) bulk Au target. The excitation wavelength is 632.8 nm
(2.5 mW).
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A comparison of SERS spectra from adsorbed Ade on laser-ablated Au and magneto-
plasmonic nanoparticles reveals considerable differences in the relative intensities and
frequencies of prominent bands (Figure 7). The higher relative intensity of ring breathing
mode near 736 cm−1 is consistent with a more perpendicular orientation of the ring plane
with respect to the surface for Ade adsorbed on laser-ablated Au nanoparticles. The band at
964–966 cm−1 was assigned to the rocking NH2 vibrational mode coupled with stretching
of the N1-C6 bond and deformation of the N7-C8-N9 group (r(NH2) + ν(N1-C6) + δ(N7-
C8-N9)) (Table 2). An increase in the relative intensity of this band indicates an increase
in the angle between the Ade ring plane and the surface normal. The clearly defined
SERS band 1454–1464 cm−1 was assigned to the ν(N1-C6) + β(C2H) + ν(C2-N3) + δ(NH2)
vibrational mode (Table 2). In the Ade solid-state spectrum, this band appears at 1483 cm−1

and shifts to 1476 cm−1 in D2O solutions (Figure 8). The frequency of this band differs
considerably when comparing SERS spectra on Au (1454 cm−1) and magneto-plasmonic
(1464 cm−1) nanoparticles. Such a frequency shift suggests the involvement of the NH2
group in the interaction of Ade with a surface of magneto-plasmonic nanoparticles. Similar
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intensification of high-frequency bands in the vicinity of 1300–1400 cm−1 compared with
ring breathing mode at 735 cm−1 was observed in the SERS spectra of Ade adsorbed on
Ni and Ni-Ag nanoparticles [77]. Based on density functional theory (DFT) analysis and
the similarity of spectra observed at Ni and Ni-Ag surfaces, it was suggested that Ade
primarily interacts with Ni adsorption sites [77].

Table 2. Experimental and calculated vibrational frequencies of adenine and model surface complexes
and assignments of the bands.

Solid
State

Solution
H2O

(D2O)

SERS
Au

SERS
Au-Fe3O4

Calc.
Ade (N7H)

Calc.
Au3-

Ade(N7H)

Calc.
Fe3O4-

Ade(N7H)
A

Calc.
Fe3O4-

Ade(N7H)
B

Assignments

1483 m 1486 m
(1476 m) 1454 m 1464 s 1509 1488 1495 1503

β(C2H),
ν(N1-C6),
ν(C2-N3),
δ(NH2)

1371 w 1364 m
(1378 w) 1399 w 1402 w 1405 1383 1396 1390 ν(C4-C5),

β(CH2)

1332 s 1332 s
(1329 vs) 1342 m 1348 1365 1337 1342 1334

ν(C2-N3),
ν(C8-N9),
β(C2H)

1248 m 1251 m
(1189 m) 1236 1240 1226 1226 1228 1240

ν(C2-N3),
β(C8H),
ν(C8-N9)

941 m 947 m
(953 m) 966 w 965 m 948 979 985 981

δ(N7-C8-N9),
ν(N1-C6),

r(NH2)

723 vs 723 vs
(707 vs) 736 vs 736 vs 726 732 725,

736 715 ring breathing,
ν(Fe-O)

622 m 623 m
(603 m) 627 sh 629 sh 618 621 627 686 ν(C5-C6), β(R1),

β(R2)

371 ν(Fe-N10)

295 m, br 243, 263
ν(Fe-N3),
ν(Fe-N9),
ν(Fe-O)

218 w, br 151, 208,
216

ν(Fe-N3),
ν(Fe-N9)

200 m, br 187 ν(Au-N3),
ν(Au-N9)

Abbreviations: ν, stretching; δ, deformation; β, in-plane bending; R1, six-membered ring; R2, five-membered ring;
vs, very strong; m, middle, w, weak; br, broad; sh, shoulder.

Analysis of low-frequency SERS spectra reveals insights into the bonding of Ade to
laser-ablated Au and magneto-plasmonic nanoparticles (Figure 10). Spectrum from bare
magneto-plasmonic nanoparticles before adsorption of Ade does not show any clear low-
frequency vibrational mode. However, the broad low-frequency band at 200 cm−1 is visible
in the spectrum of Ade adsorbed on laser-ablated Au nanoparticles (Figure 10a). A different
SERS spectrum was observed for Ade adsorbed on a substrate prepared from magneto-
plasmonic nanoparticles; a broad band centered at 295 cm−1 became clearly visible along
with another lower intensity feature near 218 cm−1. We suggest these low-frequency modes
are related to the bonding of Ade nitrogens with Fe3O4 structures.



Coatings 2023, 13, 1523 12 of 17
Coatings 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 10. SERS spectra in the low-frequency region (130–850 cm−1). (a) adenine adsorbed at Au NPs 
prepared by laser ablation, (b) adenine adsorbed at Fe-Au nanoparticles prepared by laser ablation 
of Fe50/Au150/Fe25 film, and (c) SERS spectrum of bare Fe-Au nanoparticles prepared by laser 
ablation of Fe50/Au150/Fe25 film. The excitation wavelength is 632.8 nm. 

Table 2. Experimental and calculated vibrational frequencies of adenine and model surface 
complexes and assignments of the bands. 

Solid  
State 

Solution 
H2O 

(D2O) 

SERS 
Au 

SERS 
Au-Fe3O4 

Calc. 
Ade (N7H) 

Calc. 
Au3-

Ade(N7H) 

Calc. 
Fe3O4-

Ade(N7H) 
A 

Calc. 
Fe3O4-

Ade(N7H) 
B 

Assignments 

1483 m 1486 m 
(1476 m) 

1454 m 1464 s 1509 1488 1495 1503 β(C2H), ν(N1-C6), ν(C2-N3), 
δ(NH2) 

1371 w 1364 m 
(1378 w) 

1399 w 1402 w 1405 1383 1396 1390 ν(C4-C5), β(CH2) 

1332 s 1332 s 
(1329 vs) 

1342 m 1348 1365 1337 1342 1334 ν(C2-N3), ν(C8-N9), β(C2H) 

1248 m 
1251 m 

(1189 m) 1236 1240 1226 1226 1228 1240 ν(C2-N3), β(C8H), ν(C8-N9) 

941 m 
947 m 

(953 m) 966 w 965 m 948 979 985 981 
δ(N7-C8-N9), ν(N1-C6), 

r(NH2) 

723 vs 
723 vs 

(707 vs) 736 vs 736 vs 726 732 
725, 
736 715 ring breathing, ν(Fe-O) 

622 m 
623 m 

(603 m) 627 sh 629 sh 618 621 627 686 ν(C5-C6), β(R1), β(R2) 

       371 ν(Fe-N10) 
   295 m, br   243, 263  ν(Fe-N3), ν(Fe-N9), ν(Fe-O) 

   218 w, br   151, 208, 
216  ν(Fe-N3), ν(Fe-N9) 

  200 m, 
br 

  187   ν(Au-N3), ν(Au-N9) 

Abbreviations: ν, stretching; δ, deformation; β, in-plane bending; R1, six-membered ring; R2, five-
membered ring; vs, very strong; m, middle, w, weak; br, broad; sh, shoulder. 

3.5. DFT Modelling of SERS Spectra 
To gain more insights into the interaction of adenine with magneto-plasmonic 

nanoparticles, DFT modeling of the Raman spectra of adsorption complexes was 
conducted. Figure 11 shows optimized structures of Ade (tautomer N7H) and adsorption 
complexes of Ade with the Au3 cluster and Fe3O4. Two adsorption sites, through N3/N9 

Figure 10. SERS spectra in the low-frequency region (130–850 cm−1). (a) adenine adsorbed at Au NPs
prepared by laser ablation, (b) adenine adsorbed at Fe-Au nanoparticles prepared by laser ablation
of Fe50/Au150/Fe25 film, and (c) SERS spectrum of bare Fe-Au nanoparticles prepared by laser
ablation of Fe50/Au150/Fe25 film. The excitation wavelength is 632.8 nm.

3.5. DFT Modelling of SERS Spectra

To gain more insights into the interaction of adenine with magneto-plasmonic nanopar-
ticles, DFT modeling of the Raman spectra of adsorption complexes was conducted.
Figure 11 shows optimized structures of Ade (tautomer N7H) and adsorption complexes
of Ade with the Au3 cluster and Fe3O4. Two adsorption sites, through N3/N9 atoms and
N10/N7H, were modeled for interaction with the magnetite surface. The calculated Raman
spectra are shown in Figure 12. In the case of the Au3-adenine complex, the prominent
ring breathing mode shifts to higher wavenumbers, from 726 cm−1 (free Ade) to 732 cm−1.
Such a frequency upshift agrees very well with the experimental SERS spectrum (Figure 7).
A similar increase in frequency of the ring breathing mode was predicted by the Fe3O4-
adenine (A) complex. In this case, two bands associated with ring breathing mode coupled
with Fe-O stretching are visible at 725/736 cm−1. However, ring breathing mode was
found at considerably lower wavenumbers (715 cm−1) in the case of the Fe3O4-adenine
(B) complex. Thus, the bonding of Ade with N10/N7H sites does not predict the exper-
imentally observed shift of this mode, suggesting that the major interaction site of Ade
with Fe3O4 corresponds to the bonding of Fe with N3/N9 atoms. DFT calculations predict
a considerably stronger interaction of Fe3O4 with the N3 site compared with N9 because
of the noticeably shorter Fe-N3 bond length (201.3 pm) compared with Fe-N9 (208.1 pm)
(Figure 11).

The DFT calculations predict the downshift of the high-frequency band at 1509 cm−1

(free Ade) to 1488 and 1495 cm−1 upon bonding adenine with the Au3 cluster or Fe3O4
through the N3/N9 sites, respectively (Table 2), while only a small shift (6 cm−1) is predicted
for the Fe3O4-Ade (B) complex. In experimental spectra, a significant decrease (19–29 cm−1)
in frequency was detected (Table 2). The band at 941 cm−1 (solid-state Ade spectrum)
was found to be sensitive to the interaction between the Ade rings. The frequency of this
band increased by 6 cm−1 in the solution spectrum (Figure 8, Table 2). A high upshift
(24–25 cm−1) frequency of this band was detected in SERS spectra (Table 2). In agreement
with experimental data, DFT modeling predicts an upshift frequency of this mode of
31–37 cm−1 upon the formation of surface complexes.
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DFT analysis of low-frequency vibrational modes predicts the position of the metal-
adsorbate Au-N3 vibrational mode at 187 cm−1 (Table 2). This confirms the origin of
the experimentally observed broad SERS band near 200 cm−1 from adenine adsorbed on
laser-ablated Au nanoparticles as associated with Au-N stretching vibration (Figure 10).
Peak position coincides well with previously reported DFT analysis of stretching vibration
of the Au-N3 bond (196 cm−1) for the adsorption complex Ade-Au+ [69]. In the case of
hybrid magneto-plasmonic nanoparticles, the broad low-frequency bands were observed
at different wavenumbers, i.e., 218 and 295 cm−1. DFT modeling suggests that these bands
originate from Fe-N stretching vibrations associated with N3 and N9 atoms (Table 2).

4. Conclusions

In this work, we have obtained chemically clean magneto-plasmonic nanoparticles
from layered Fe/Au and Fe/Au/Fe thin film coatings by applying 1064 nm picosecond laser
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ablation in acetone. The magnetic properties of nanoparticles were used to extract them
from acetone and arrange them on an aluminum substrate for SERS applications. Based on
TEM, EDS, and Raman spectroscopy data, we demonstrated that hybrid nanoparticles con-
sisted of a plasmonic (Au) core and a magnetic (Fe3O4) shell. Hybrid magneto-plasmonic
nanoparticles exhibited distinct plasmon resonance bands characteristic of spherical gold
colloids, with a maximum at 509–528 nm. SERS spectra revealed that the probe molecule-
adenine, adsorbs on the magnetite site instead of gold, suggesting that the magnetic shell is
sufficiently compact to prevent penetration of adenine into the gold core. The interaction
of adenine with magnetite was also confirmed by DFT calculations. A strong SERS signal
from adsorbed adenine demonstrated that the magnetic shell does not markedly diminish
the electromagnetic enhancement provided by the plasmonic core. A magnetic shell can
serve for manipulation and arrangement of nanoparticles at a chosen surface, while a
plasmonic core can ensure vibrational spectroscopy sensing of nucleic acid bases and other
biomolecules. Because the magnetic shell (magnetite, Fe3O4) is biocompatible, hybrid
nanoparticles can be employed in biomedicine applications [78].

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/coatings13091523/s1. Figure S1: Solution of ablated
magneto-plasmonic nanoparticles in acetone (A) just prepared and (B) in 15 min after exposure
to a permanent magnet; Figure S2: Hysteresis loop of the laser ablated magneto-plasmonic nanoparti-
cles (Fe50/Au150/Fe25) (black) and approximation with the Brillouin function (red); description of
enhancement factor calculations; Figure S3: (A) SERS spectra of a 4-MBA molecule obtained using
magneto-plasmonic nanoparticles at 633, 785, and 830 nm laser radiations. Shaded areas represent the
standard deviation from nine measurements. (B) SERS enhancement factors calculated for different
laser excitations.
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