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Abstract: In this research, developed linseed mucilage (M)-based films loaded with E. cardamom
(MCA), C. officinalis (MCO), and co-loaded with both compounds (MCACO) were evaluated. The
incorporation of the active compounds modified the color (redness–greenness, and yellowness);
however, the thickness remained constant in all treatments (0.0042–0.0052 mm). In addition, the
solubilization time of the films (in artificial saliva) to release the active compounds fluctuates between
9 and 12 min. Furthermore, the incorporation of bioactive compounds increased the total phenolic
content and antioxidant activity (DPPH and ABTS, respectively), mainly in MCA (inhibition of 81.99
and 95.80%, respectively) and MCACO (inhibition of 47.15% and 39.73%, respectively). In addition,
the incorporation of these compounds also decreased the hardness (39.50%–70.81%), deformation
(49.16%–78.30%), and fracturability (39.58%–82.95%). On the other hand, it did not modify the
adhesiveness, except in MCO. Moreover, SEM micrographs showed a more homogeneous structure
in the MCO films among the films that contained CA in the formulation (heterogeneous structure with
the presence of protuberances). Finally, due to the previously reported pharmacological properties
of E. cardamomun and C. officinalis, the films developed in this study could have an application as a
wound dressing in dentistry.

Keywords: films; linseed mucilage; cardamom; copaiba; physicochemical properties; antioxidant
activity; texture analysis; dentistry

1. Introduction

Nowadays, there is a growing global trend towards developing new natural products,
such as therapeutic options for the prevention and treatment of various diseases [1,2]. Due
to this, numerous researchers have determined the properties of multiple natural products
with active properties of interest to the medical area [3]. In addition, recent research has
focused on studying phytotherapeutic products of interest to dentistry [4–6].

Cardamom (Elettaria cardamomum; CA) is a perennial, aromatic, herbaceous plant
belonging to the Zingiberaceae family, whose use is culinary, domestic, and medicinal. It is a
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species native to southwest Asia (India, Sri Lanka, Malaysia, and Indonesia), Tanzania, and
Guatemala, which has been used since ancient times due to its wide variety of antimicrobial,
antifungal, antioxidant, analgesic, anti-inflammatory, and anticancer properties associated
with the presence of components such as phenols, tannins, terpenoids, flavonoids, and
sterols, among others [7–9]. Further, in dentistry, it has been reported that CA possesses anti-
bad breath, anticaries, antiseptic, and antimicrobial properties [10]. Multiple studies have
shown that CA has been effective against microorganisms that cause infections and dental
cavities [11], such as Streptococcus mutans, Candida albicans, and Lactobacillus casei [12–15].
Additionally, it has been shown that the use of CA in combination with other extracts (black
pepper/black cumin/cardamom and black pepper/black cumin/cardamom/cinnamon)
has a high antibacterial susceptibility against microorganisms from oral isolates [16]. Fi-
nally, some reports indicated the potential therapeutic benefits of CA for periodontal
infections [17].

Moreover, C. officinalis is a plant belonging to the Fabaceae family, distributed mainly
in Latin America (Brazil, Bolivia, Colombia, Peru, and Venezuela) and West Africa [18–20].
The main uses of CO include medical applications, nutrition, cosmetics, fuels, and wood,
among others [1]. CO has been widely used in folk medicine through topical and oral
administration due to its antimicrobial, antifungal, antiseptic, anti-inflammatory, and
antioxidant properties, among others [3,6,20]. Regarding dental applications, various
studies have demonstrated the antibacterial activity of CO against Streptococcus spp.,
S. mutans [21–23], and other oral pathogens [4]. Likewise, it has been recognized that
CO has anti-inflammatory and healing activity in the oral cavity [6] and for acting as
a dentin biomodifier [19]. Finally, some studies in animal models report that CO oleo-
resin is a safe and effective alternative therapy for inflammation and tissue repair in oral
wounds [24].

On the other hand, biopolymer-based delivery systems (e.g., nano-composites, mi-
crocapsules, emulsions, hydrogels, films, or membranes, among others) have been widely
used for the incorporation of bioactive compounds [6,9,20,25–28]. Additionally, membranes
or biodegradable films have been designed as controlled-release systems (e.g., would dress-
ing) for various applications in the medical area [6,20,27,29,30]. A biodegradable film is a
multi-component system made from polymers (e.g., polysaccharides, lipids, and proteins),
which contain in their polymer matrix a plasticizing agent (e.g., glycerol, polyethylene
glycol, and sorbitol, among others) and some active compounds of interest. The most
widely used polymers for the development of these biomaterials are polysaccharides, such
as cellulose and its derivatives, chitosan, pectin, alginate, and recently the use of plant
mucilages, among others [31].

Linseed mucilage (Linum usitatissimum) is a natural polysaccharide composed of an
acidic fraction of pectic-like material (L-galactose, L-fucose, L-rhamnose, and D-galacturonic
acid) and a neutral fraction (arabinoxylan, D-galactose, L-arabinose, and D-xylose) [32].
This polymer has been used to produce biodegradable films in various applications,
either as an individual polymer [33] or in combination with other polymers, such as
chitosan [34,35], pectin [36,37], and polyvinyl alcohol [38]. Likewise, this mucilage has
been used to produce active biodegradable films incorporated with carvacrol [39] and
Hamamelis virginiana extract [31].

Finally, various studies have focused on the production of membranes or active films
based on chitosan [20,27,30,40], poly (L-co-D, L lactic acid), and poly (lactic acid)/poly
(vinyl pyrrolidone) [6] incorporated with CO for applications in the medical area, mainly
as wound dressing. Furthermore, films based on mung bean protein-apple pectin [41] and
soy protein isolate loaded with CA [42] have been developed, mainly for applications in
the food area.

However, as far as we know, there are no reports of linseed mucilage-based films
incorporated with CO and CA for dental applications. Therefore, in this context, this
research aimed to produce and characterize films based on linseed mucilage (M) loaded
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with E. cardamomun (MCA), C. officinalis (MCO), and co-loaded with both compounds
(MCACO) for future application in the dentistry area.

2. Materials and Methods
2.1. Vegetal Material

Linseed was purchased at a local supermarket (Mty NL, Mexico). On the other hand,
the seeds of E. cardamomum (SKU: 209740-01) were purchased from Starwest Botanicals
(Sacramento, CA, USA). Finally, C. officinalis essential oil was purchased from Young Living
Essential Oils, LC Company (Lehi, UT, USA).

2.2. Obtaining the Extract of E. cardamomum

The extract was obtained by cold maceration without stirring [43]. Vegetable material
(100 g) was placed in a flask containing 400 mL of absolute ethanol (99.5%, CTR Scientific,
Mty NL, Mexico; extraction solvent). The sample was left to rest for a period of 24 h, filtered
(Whatman™ qualitative filter paper, grade 1), and then placed in a rotary evaporator (IKA
RV10, Hayward, CA, USA). Finally, the yield of the extract (% Yield = [final weight of dry
extract/initial weight of the plant] × 100) was determined, and the product was stored in a
dark container under refrigerated conditions (4.0 ± 2.0 ◦C) until its later use.

2.3. Linseed Mucilage Extraction

The linseed mucilage was extracted according to the methodology reported by Treviño-
Garza et al. [31]. Briefly, the flaxseeds (300 g) were placed in distilled water (1000 mL) and
kept under constant agitation (250 rpm, 25 ± 2 ◦C for 2 h). Next, the linseeds were removed
with a strainer. Subsequently, ethanol (96%, 2000 mL; CTR Scientific, Mty N.L., Mexico)
was added to the resulting aqueous suspension for mucilage precipitation. Finally, the
precipitated mucilage was recovered with the help of a strainer and subsequently dried
(55 ± 2 ◦C for 24 h), pulverized, and stored until later use.

2.4. Phytochemical Tests of Plant Material

The phytochemical profile of plant material was carried out according to the method-
ology reported by Guillén-Meléndez et al. [44] and Rodríguez-Garza et al. [45]. In these
determinations, the presence (+) or absence (−) of compound groups was analyzed using
the following tests: Lieberman–Buchard (sterols, triterpenes), Shinoda (flavonoids), Bal-
jet (sesquiterpene-lactones), sulfuric acid (quinones), ferric chloride (tannins), potassium
permanganate (unsaturations), 2,4-dinitrophenylhydrazine (carbonyl group), Dragendorff
(alkaloids), sodium hydroxide (coumarins, lactones), Molish (carbohydrates), and foam
test (saponins).

2.5. Production and Preliminary Characterization of Films Based on Linseed Mucilage Loaded with
CA and CO

Four film-forming solutions based on linseed mucilage and loaded with E. cardamom
(MCA), C. officinalis (MCO), and co-loaded with both compounds (MCACO) were designed.
Glycerol (99.50% purity, CTR Scientific, Mty N.L., Mexico) was used as a plasticizer and
tween 20 (polyoxyethylene-20-sorbitan monolaurate; Sigma Aldrich, St. Louis, MO, USA)
as a surfactant agent. The formulations were prepared with the concentrations indicated in
Table 1 in distilled water and by constant mechanical stirring (500 rpm, 25 ± 2 ◦C) until
complete dissolution of all the components was achieved. Subsequently, the films were
prepared by the casting method; the film-forming solutions (~10 mL) were placed in plastic
boxes (60 mm × 15 mm) to be later subjected to a drying process (55 ± 2 ◦C for 24 h).
Finally, the films were manually retrieved and characterized, as indicated in the following
sections.
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Table 1. Film-forming solutions based on linseed mucilage (M) and incorporated with E. cardamomum
(CA) and C. officinalis (CO).

Formulation Linseed Mucilage
(%)

Glycerol
(%)

Tween 20
(%)

E. cardamomum
(%)

C. officinalis
(%)

M 3.0 0.5 1.0 - -
MCA 3.0 0.5 1.0 2.0 0.0
MCO 3.0 0.5 1.0 - 2.0
MCACO 3.0 0.5 1.0 1.0 1.0

2.5.1. Color Determination

The color analysis of the films was performed using a colorimeter (Hunterlab model,
Colorflex® EZ, Reston, VA, USA), based on the CIE L*a*b* color space (CIELAB; L* coordi-
nate or lightness, 0 black—100 white; coordinate a*, (−) green and (+) red; coordinate b*,
(−) blue and (+) yellow) [27,42].

2.5.2. Thickness Measurement

Thickness determinations were carried out using a digital micrometer (Quickmike
Model Mitutoyo, Kawasaki, Japan); measurements were made at three random positions
on each film, and the results were expressed in millimeters (mm) [40,42].

2.5.3. Solubility Tests in Artificial Saliva

For the solubility analysis, the films were cut into discs (20 mm in diameter) and placed
in beakers containing 50 mL of artificial saliva (Viarden brand, 25 ± 2 ◦C). Subsequently,
the solubilization time of the complete films (minutes, min) was determined [31].

2.5.4. Antioxidant Activity (DPPH, 1,1-Diphenyl-2-picrylhydrazyl, and ABTS,
2,2’-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid) and Total Phenolic Content

The antioxidant activity was calculated by using the DPPH and ABTS free radical
(Sigma Aldrich, St. Louis, MO, USA) methods based on previous studies with some
modifications [31,46,47]. For sample preparation, films (1 cm × 1 cm) were cut, weighed,
and placed in 1 mL of distilled water and vortexed until complete solubilization. Later, the
samples were centrifuged (Spectrafuge 6C Labnet International, Inc., Edison, NJ, USA) at
6500 rpm for 10 min to recover the supernatant.

For the DPPH method, the sample (0.75 mL) was placed in conical tubes containing
2.25 mL of the DPPH ethanolic solution (0.039 mg/mL, absorbance = 1.0 ± 0.005). The
samples were incubated at 25 ◦C in the dark for a period of 90 min to allow for the reaction.
Subsequently, the samples were centrifuged (Spectrafuge 6C, Labnet International, Inc.,
6500 rpm for 5–10 min), and the absorbance was determined with a UV-VIS spectropho-
tometer (Genesys 5, Thermo Spectronic, Rochester, NY, USA) at 517 nm. A calibration curve
was made (y = −0.0052x + 0.7161, R2 = 0.99) using Trolox (Sigma Aldrich, St. Louis, MO,
USA) as a standard.

For the ABTS method, the sample (0.30 mL) was added to conical tubes containing
2.70 mL of the ABTS radical solution (ABTS, 7.00 mM, and potassium persulfate, 2.45 mM,
1:1 ratio, absorbance = 0.7 ± 0.005). The samples were incubated at 25 ◦C in the dark for
a period of 7 min to allow for the reaction. Subsequently, the samples were centrifuged
(Spectrafuge 6C, Labnet International, Inc., 6500 rpm for 5–10 min), and the absorbance was
determined with a UV-Vis spectrophotometer (Genesys 5, Thermo Spectronic, Rochester,
NY, USA) at 734 nm (ABTS). A calibration curve was made (y = −0.0024x + 0.577, R2 = 0.99)
using Trolox (Sigma Aldrich, St. Louis, MO, USA) as a standard.

Finally, the results were expressed as µM Trolox equivalents (TE)/g of film for both
methods. Additionally, the antioxidant activity was also determined by the percentage
of inhibition, according to the following equation: inhibition scavenging activity (%) =
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(absorbance of the radical solution − absorbance of the sample/absorbance of the radical
solution) × 100.

The total phenolic content of the films was calculated using the Folin–Ciocalteu (Sigma
Aldrich, St. Louis, MO, USA) technique with some modifications [48,49]. The samples
(1.6 mL) were placed in conical polypropylene tubes (15 mL). Subsequently, the Folin–
Ciocalteu reagent (0.1 mL) and sodium carbonate (20% w/v, 0.3 mL, CTR Scientific, Mty
N.L., Mexico) were added, and the solutions were homogenized in a vortex (Mixer Labnet
International, Inc., Edison, NJ, USA). The samples were kept at rest in dark conditions
(90 min at 25 ◦C) and then were centrifuged (Spectrafuge 6C Labnet International, Inc., Edi-
son, NJ, USA; 6500 rpm for 10 min) and analyzed at 760 nm in a UV-Vis spectrophotometer
(Genesys 5, Thermo Spectronic, Rochester, NY, USA). Finally, a calibration curve was made
using gallic acid (Sigma Aldrich, St. Louis, MO, USA) as a standard (y = 0.07x − 0.2533
R2 = 0.9958), and the total phenolic content was expressed as µg of gallic acid equivalents
(GAE)/g of film.

2.5.5. Texture Profile Analysis (APT)

The texture analysis of the films was carried out with the help of a texturometer
(Brookfield, CT3, Middleboro, MA, USA). The films (60 mm in diameter) were placed in the
equipment and analyzed with the TA44 probe (cylinder 4 mm diameter), with an activation
load of 0.070 N, a test speed of 0.50 mm/s, and a load range of 1000 g. The parameters
evaluated were hardness (N; newtons), percentage deformation (%), adhesiveness (mJ;
millijoules), and fracturability (N; newtons).

2.5.6. Field Emission Scanning Electron Microscopy (FE-SEM)

Film microscopy (10 × 10 mm) was performed with a field emission scanning electron
microscope (Zeiss Sigma 300 VP, Jena, Germany) under high vacuum conditions, with
a secondary electron detector considering a voltage of 5 kV, and at a working distance
of 6 mm. Prior to analysis, the films were coated with gold (sputtering) to obtain better
imaging conditions. Finally, micrographs were taken at 200× and 1500× magnification.

2.6. Statistical Analysis

The results of color, thickness, solubility, antioxidant activity, total phenols, and texture
profile were analyzed by analysis of variance (ANOVA) and Tukey’s test, with a significance
level of p ≤ 0.05, using the SPSS software (IBM version 22, SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Phytochemical Analysis of Plant Extracts

In the first place, the yield of the CA extract was 5.80%, in agreement with that re-
ported by Cárdenas-Garza et al. [2]. Moreover, the phytochemical analysis showed that the
plant material contains a complex mixture of various components [45]. Table 2 shows that
E. cardamomum and linseed mucilage were positive for eight of the phytochemical tests,
except for quinones, coumarins, and saponins. Additionally, the chemical composition of
the cardamom extract (α-terpinyl acetate, mainly) has been reported in previous studies by
our working group [2]. In addition, C. officinalis was positive only for six tests performed
(sterols and triterpenes, flavonoids, unsaturations, carbonyl group, alkaloids, and carbo-
hydrates). These results agree with what was reported by Hanaa et al. [50] and Yasmeen
et al. [51], who have found some of these components in the linseed. In addition, the
presence of some of these phytochemical compounds has also been reported in the essential
oil of C. officinalis [52] and natural extracts of E. cardamomum [2,53,54]. Finally, this type
of phytochemical compound has been characterized by having multiple pharmacological
properties, among which stand out anti-inflammatory, anticancer, antiseptic, antimicrobial,
and antioxidant activities, among others [2,4]. Likewise, due to its composition, copaiba oil
has been characterized by reducing the formation of dental biofilm [21], thus counteracting
some oral pathogens [4], presenting an anti-inflammatory effect and healing in the oral
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cavity [55], and acting as a dentin biomodifier [19]. On the other hand, cardamom is
efficient in reducing the levels of microbial viability in the dental biofilm [15], having a
potential therapeutic effect on periodontal infections [17], and improving oral hygiene [16].

Table 2. Partial phytochemical screening of plant extracts.

Tests Phytoconstituents Reaction CA CO M

Liebermann-Burchard Sterols, triterpenes Reddish-brown ring + + +
Shinoda Flavonoids Reep red + + +
Baljet Sesquiterpene-Lactones Orange color + − +
Sulfuric acid (H2SO4) Quinones Red color − − −
Ferric chloride (FeCl3) Phenols, tannins Green color + − +
Potassium permanganate
(KMnO4) Unsaturations Brown precipitate + + +

DNPH
(2,4-dinitrophenylhydrazine) Carbonyl group Orange color + + +

Dragendorff Alkaloids Orange precipitate + + +
Sodium hydroxide (NaOH) Coumarins, lactones Yellow color − − −
Molish Carbohydrates Purple ring formation + + +
Foam Saponins Presence of stable foam − − −

3.2. Development and Partial Characterization of Films Based on Linseed Mucilage Loaded with
CA and CO
3.2.1. Film Production

The control films and those incorporated with the extracts (MCA, MCO, MCACO)
were successfully produced (Table 3). The films obtained (60 mm in diameter) were thin
and slightly flexible, with an opaque appearance, a light brown hue (control and MCO),
and a more intense brown color (MCA and MCOCA). These results are similar to those
reported in previous studies [30,31,42].

Table 3. Macroscopic characteristics of films based on linseed mucilage (M) and incorporated with
E. cardamomum (CA) and C. officinalis (CO).

Formulation Representative Image Homogeneity Appearance

MCA
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Molish  Carbohydrates Purple ring formation + + + 
Foam  Saponins Presence of stable foam − − − 

3.2. Development and Partial Characterization of Films Based on Linseed Mucilage Loaded with 
CA and CO 
3.2.1. Film Production 

The control films and those incorporated with the extracts (MCA, MCO, MCACO) 
were successfully produced (Table 3). The films obtained (60 mm in diameter) were thin 
and slightly flexible, with an opaque appearance, a light brown hue (control and MCO), 
and a more intense brown color (MCA and MCOCA). These results are similar to those 
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slightly flexible

Control
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the luminosity values between the different treatments, whose values fluctuated between
25.33 and 32.93 (Figure 1). This finding agrees with the literature since Hajirostamloo
et al. [42] reported that the L* values remain constant at a concentration of 1% CO but
increase at a concentration of 5% in protein isolate films containing cardamom essential oil.
Likewise, Rodrigues et al. [56] indicated that the addition of CO oil (10%) does not affect
the luminosity of starch-based films incorporated with copaiba oil. On the contrary, for the
values of a* and b*, a significant difference (p < 0.05) was found between the treatments;
the values in both coordinates were highest for MCA (a* = 1.60 ± 0.98 and b* = 5.93 ± 1.25)
and MCOCA (a* = 1.14 ± 0.19 and b* = 6.27 ± 0.76), while the lowest values were for
MCO (a* = −0.40 ± 0.03 and b* = 1.05 ± 0.88) and the control (a* = −0.31 ± 0.02 and
b* = 1.31 ± 0.68) (Figure 1). According to what was reported by Hajirostamloo et al. [42],
the incorporation of CO into the films affected the optical attributes, increasing the values
of a* and b* coordinates, as observed in the MCO and MCACO treatments. On the other
hand, Rodrigues et al. [56] reported that the color of the films was directly related to the
color of the polymer and the oil or extract incorporated into the formulation. In addition,
they also reported that the CO oil provided a slightly yellowish coloration to the films,
which was more accentuated as the concentration of CO in the polymer matrix increased.
Therefore, it is likely that, since the color of CO is similar to that of linseed mucilage, the
MCO and control films are very similar in the a* and b* coordinate values.
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Figure 1. Color properties (a) luminosity, (b) blueness (−)—yellowness (+), and (c) redness
(−)—greenness (+) of films based on linseed mucilage (M) and incorporated with E. cardamomum
(CA) and C. officinalis (CO). Different letters (a,b) indicate significant differences (p < 0.05) between
treatments.

The thickness is an important parameter since thin films tend to be less uncomfortable
for the patient. In the thickness parameter, no significant difference (p < 0.05) was found
between the treatments, and the values fluctuated between 0.0043 and 0.0052 mm (Figure 2).
These results agree with those found by Herrera Brandelero et al. [57] and Rodrigues
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et al. [56], who reported that the incorporation of CO oil did not modify the thickness of
films made from starch/PVOH/alginate and starch, respectively. Moreover, Hajirostamloo
et al. [42] reported an increase in the thickness of the films when incorporating CA; this
parameter increases with the increase in the amount of extract (5–20%) in a polymeric
matrix of soy protein isolate.
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Figure 2. Thickness of films based on linseed mucilage (M) and incorporated with E. cardamomum
(CA) and C. officinalis (CO). Letters (a) indicate no significant differences (p > 0.05) between treatments.

Solubility Tests in Artificial Saliva

In the case of the solubility of the films, although the values were higher for MCO
(12.00 ± 2.65 min) and MCA (9.00 ± 1.73 min), no significant difference (p < 0.05) was found
between the treatments (MCOCA = 12.33 ± 1.15 and control = 8.67 ± 0.58), indicating that
the incorporation of the extracts into the polymeric matrix does not modify this property
(Figure 3).
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Figure 3. Solubility in artificial saliva of films based on linseed mucilage (M) and incorporated with
E. cardamomum (CA) and C. officinalis (CO). Letters (a) indicate no significant differences (p > 0.05)
between treatments.

According to what was reported by Puligundla and Lim [32], linseed mucilage shows
a high degree of swelling and solubility in aqueous solutions. The water absorption leads
to swelling and solubilization of the films, allowing the complete release of the active
compounds incorporated within the polymeric matrix towards the artificial saliva. This
behavior is directly associated with the hydrophilic nature of the polysaccharide and with
the slightly branched structure of the linseed mucilage, which leads to the film dissolving
and losing its structure over time [37]. In addition, the difference in the solubility time of
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the MCO and MCACO films could be related to the low solubility of the CO oil in water
(the main component of artificial saliva) [3,26,30]. Likewise, Rodrigues et al. [56] reported
that the addition of CO oil decreased the hydrophilic character of the films, leading to
lower solubility. This behavior can be attributed to the fact that the interaction between the
hydroxyl groups of the polymeric matrix and the oil components makes the -OH groups
less available and, consequently, the solubility time of the films in artificial saliva increases.

Antioxidant Activity (DPPH and ABTS) and Total Phenolic Content

Regarding the antioxidant activity of the films, significantly higher values (p < 0.05) were for
MCA (DPPH = 5781.38 ± 92.10 µm TE/g, 81.99 ± 3.56% inhibition and
ABTS = 11,855.82 ± 1159.46 µm TE/g, 95.80± 3.98% inhibition), followed by MCACO treatment
(DPPH = 4345.29 ± 150.87 µm TE/g, 47.15 ± 1.46% inhibition and
ABTS = 5598.14 ± 1051.41, 39.73 ± 7.77% inhibition). The lowest values were for MCO
(DPPH = 1740.18± 236.51µm TE/g, 21.78± 4.83% inhibition and ABTS = 5174.77 ± 1487.98 µm
TE/g, 35.38 ± 6.22% inhibition) and the control (DPPH = 2132. 39 ± 229.87 µm TE/g,
23.85 ± 2.57% inhibition and ABTS = 4615.74 ± 154.00 µm TE/g, 34.04 ± 1.66% inhibition)
(Figure 4).
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Figure 4. (a,b) DPPH and (c,d) ABTS radical scavenging activity and inhibition (%) of films based on
linseed mucilage (M) and incorporated with E. cardamomum (CA) and C. officinalis (CO). Different
letters (a,b,c) indicate significant differences (p < 0.05) between treatments.

These results agree with what was found by Hajirostamloo et al. [42], who reported
that the incorporation of CA significantly increased the antioxidant activity of the films,
which is accentuated by the increase in the concentration of CA in the polymeric matrix (%
of inhibition of 9.10–63.61% with concentrations of 1–20% of CA, respectively), as we found
in the MCA and MCACO films (Figure 4). Furthermore, the antioxidant activity provided
by CO has also been previously reported in other applications [58], similar to that found in
MCO films. Finally, the antioxidant activity reported in the control films is higher than that
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reported in other films made from linseed mucilage [31]; this behavior could be related to
the polymer extraction processes, as well as the variety of seeds used for its recovery.

In the case of the total phenolic content (Figure 5), the highest values were for MCA
(8076.49 ± 297.66 µg GAE/g), followed by MCACO (3985.25 ± 213.21 µg GAE/g), while
the lowest values were for MCO and the control (3270.18 ± 243.99 and 2831.16 ± 392.69 µg
GAE/g, respectively). These results agree with what was found in the DPPH and ABTS an-
tioxidant activity analyses (Figure 4), which reflect a higher activity in MCA and MCACO,
which can be associated with a higher total phenolic content in CA. In general, the antiox-
idant properties of the films developed in this study can be attributed to the content of
antioxidant compounds present in the extract, oil, and linseed mucilage, such as sterols,
triterpenes, flavonoids, tannins, phenols, and alkaloids, among others (Table 1), which have
been reported in previous studies [2,18,52,59,60]. In addition, the mechanism for the action
of these compounds is associated with the donation of a hydrogen atom and/or electrons to
free radical chemical species to prevent cell damage by reducing oxidative stress, reactive
oxygen species (ROS) and nitrogen (RON), oxidation of lipids, proteins, and DNA [58,61].
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Figure 5. Total phenolic content of films based on linseed mucilage (M) and incorporated with
E. cardamomum (CA) and C. officinalis (CO). Different letters (a,b,c) indicate significant differences
(p < 0.05) between treatments.

3.3. Texture Profile Analysis (TPA)
Hardness, Deformation, Adhesiveness and Fracturability

The textural properties of the films provide information to understand the behavior of
materials. Regarding the texture analysis of the films, it was observed that the incorporation
of CA or CO decreased (p < 0.05) the hardness of the films (Figure 6a). Hardness refers
to the maximum force required to compress the films between the molars, the tongue,
or the palate [62]. The control film presented the highest hardness value (8.86 ± 1.54 N),
and the MCA film had the lowest value (2.59 ± 0.35 N). In addition, the MCOCA and
MCO films presented similar values, fluctuating between 4.78 and 5.35 N. According to
the report by [31], the incorporation of extracts and essential oils into the films provides
them a plasticizing effect since they reduce the interchain interaction forces of the polymer,
increasing the mobility of the chains and providing greater flexibility. Consequently, the
film has a less rigid and more malleable structure; this behavior can be attributed to the
presence of hydroxyl groups (-OH) that form H bonds with the mucilage, increasing the
mobility and decreasing the hardness of the polymeric matrix.
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films based on linseed mucilage (M) and incorporated with E. cardamomum (CA) and C. officinalis
(CO). Different letters (a,b,c) indicate significant differences (p < 0.05) between treatments.

Furthermore, it was found that the incorporation of CA and CO significantly decreased
(p < 0.05) the deformation of the films (Figure 6b). In general, the deformation of the film
occurs when the applied compressive stress changes the internal structure of the material,
which prevents it from returning to its structural or dimensional original. The highest
deformation values were found in MCACO and control treatments (11.93 ± 0.83% and
12.20 ± 0.00%, respectively). The lowest deformation values were obtained for MCA and
MCO (2.59 ± 0.35% and 6.07 ± 0.49%, respectively). The improvement in this property
could be related to the ability of the essential oil or extract to induce the reorganization of
the polymeric network in the film matrix, which leads to the formation of films with a more
stable structure [63].

The adhesiveness parameter refers to the work required to overcome the attractive
force between the film and a surface [62]. The lowest value (p < 0.05) was obtained for the
MCO treatment (−0.01 ± 0.00 mJ). The control, MCA, and MCO films presented similar
values that fluctuated between 0.05 and 0.07 mJ (Figure 6c). In general, most of the films
(MCA, MCOCA, and control) showed very similar adhesiveness values; the low values
found for MCO could be related to the characteristics of the CO oil, which influence the
final properties of the film.

Finally, fracturability refers to the force necessary to fracture the film [62]. In this
parameter, it was found that the incorporation of the extracts decreased the fracturability
of the films. The highest values were for the control (8.86 ± 1.54 N), followed by MCOCA
(5.35 ± 1.05 N), MCO (4.78 ± 0.28 N), and MCA (1.51 ± 0.75) (Figure 6d). As previously
mentioned, the incorporation of essential oils and extracts into the film matrix can cause a
rearrangement of the polymer chains, as well as a plasticizing effect that provides a film
with a more stable and fracture-resistant polymer structure [63].
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3.4. Microscopic Analysis

The FE-SEM analysis is an essential tool for analyzing the films at the microscopic level.
Regarding the microscopic analysis of the control and MCO, the films presented a more
homogeneous microstructure, as well as a smooth (with few bulges) and continuous surface,
similar to that reported by Karami et al. (chitosan-linseed mucilage films) [35], Debone et al.
(chitosan/copaiba oleoresin films) [27], Norcino et al. (pectin films loaded with copaiba oil
nanoemulsions) [36], and Pinto et al. (copaiba essential oil loaded-nanocapsules films) [40].
Otherwise, the MCA and MCACO films presented a more heterogeneous microstructure, a
rough surface with the presence of discontinuous matter (bulges) in the polymer matrix
associated with the presence of components of the CA extract; this effect has also been
reported in protein isolate films containing cardamom essential oil [42] (Figure 7).
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Figure 7. Surface micrographs (200× and 1500×) of films based on linseed mucilage (M) and
incorporated with E. cardamomum (CA) and C. officinalis (CO); control (a,b), MCA (c,d), MCO (e,f),
and MCOCA (g,h).

4. Conclusions

In their composition, E. cardamomum and C. officinalis compounds had evidence of
the presence of phytochemicals, such as sterols, triterpenes, flavonoids, alkaloids, tannins,
and phenols, among others. Moreover, it was possible to produce linseed mucilage-based
films incorporated with E. cardamomun, C. officinalis, and co-loaded with both bioactive
compounds. The addition of the active compounds in the films modified the color (redness–
greenness and yellowness). However, the thickness parameter remained constant in all
treatments (0.0042–0.0052 mm). In addition, the solubility time was higher for films con-
taining CO (~12 min). Furthermore, the addition of the bioactive compounds increased
the antioxidant activity and the total phenolic content, mainly in the films incorporated
with CA. Regarding the texture analysis, the incorporation of the active ingredients de-
creased the hardness (39.50%–70.81%), deformation (49.16%–78.30%), and fracturability
(39.58%–82.95%); however, it did not modify the adhesiveness, except in MCO. On the other
hand, the FE-SEM micrographs showed a more homogeneous structure for the MCO films
with respect to the films that contained CA in the formulation (heterogeneous structure with
the presence of protuberances). Finally, due to the previously reported pharmacological
properties of E. cardamomun and C. officinalis (anti-inflammatory, antimicrobial, antioxidant,
among others), the films developed in this research could have a potential application in
the area of dentistry as a wound dressing. However, it is necessary to continue with this
research to evaluate the mechanical (tensile strength and elongation at break), antimicrobial,
anti-inflammatory, and cytotoxic properties, as well as consider the development of in-vivo
studies to broadly understand the properties of the films.
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