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Currently, increasing demands are being placed on agricultural production, presented
with the challenge of finding sustainable ways to meet the needs of the world’s growing
population [1]. Global warming and climate change have become a “wifi” contributing
to agricultural and environmental issues, with rising global temperatures and extreme
weather events leading to crop failures and impacting food security [2]. Furthermore,
intensive agricultural practices and unsustainable land use are causing soil erosion, a loss
of fertility, and reduced productivity [3]. Limited access to water, over-extraction, and
pollution pose major challenges to agriculture, particularly in arid and semi-arid regions [4].
Additionally, the spread of pests and diseases has become increasingly challenging to
control due to factors such as global trade and climate change [5].

Nanotechnology, and particularly the field of nanomaterials, holds the potential to
revolutionize agriculture and the environment [6]. It can be utilized to enhance crop pro-
duction efficiency [7], reduce the use of pesticides and fertilizers [8], and improve food
quality [9]. Nanotechnology can also contribute to the development of novel materials that
enhance irrigation efficiency, crop storage, and various other aspects of farming [10]. More-
over, nanotechnology has the potential to create sensors capable of detecting changes in soil
quality, enabling farmers to make more informed decisions about land management [11].
Encouragingly, significant progress has been made in the field of nano-agriculture and
environmental applications, as highlighted in our Special Issue “Functional Nanoparticles
for Environmental Contaminants Removal and Agricultural Application” in Coatings.

Nanotechnology has played a positive role in agriculture. Guo et al. (2022) observed
that silver nanoparticles outperformed other nanoparticles in terms of final crop seed
germination percentages, and zinc nanoparticles were found to be the most effective in
promoting root length growth during seed germination in a meta-analysis conducted
between 1950 and 2021 [12]. Hexaconazole is a widely used, broad-spectrum, and highly
efficient triazole fungicide, but its extensive use can lead to environmental disasters [13].
In response, Pan et al. (2021) applied azobenzene-modified bimodal mesoporous silica
nanoparticles (BMMs-Azo) in conjunction with β-cyclodextrin to control the release of
hexaconazole, reducing its environmental impact [14]. Biochar is known for its numerous
surface functional groups and porous structure, which can reduce nutrient loss and enhance
nutrient uptake by plants [15]. Combining Methylotrophic bacillus, colloidal biochar
(containing dissolved nanoparticles), and organic fertilizer significantly increased the
contents of lycopene, vitamin C, total sugar, and soluble sugar in tomato fruits by 58.40%,
46.53%, 29.45%, and 26.65%, respectively [16]. Additionally, Yang et al. (2022) demonstrated
that biochar nanoparticles, acting as nanocarriers, substantially increased the fertilizer
utilization of Chinese cabbage and promoted plant growth by over 50% [17]. Copper
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nanoparticles have widespread applications in various industries, but their effects in
agriculture and the environment vary. Yang et al. (2022) observed that 5 ppm copper
nanoparticles caused the slight swelling of epithelial cells in the epididymal duct of Chinese
soft-shelled turtles, while higher copper ion concentrations severely damaged the epithelial
structure of the epididymal tube [18]. Faraz et al. (2022) reported on the foliar application
of 2–16 ppm copper oxide nanoparticles (CuO NPs) on Brassica juncea 25 days after sowing,
whereby 8 ppm resulted in optimal chlorophyll content, net photosynthetic rate, leaf
proline content, and antioxidant enzyme activity [19]. However, the effectiveness of this
concentration may vary for other plants. Surface coating is another factor affecting the
interaction of CuO NPs with plants. Deng et al. (2022) found that the foliar spraying of
300 ppm bare NPs yielded similar results to 75 ppm citric-acid-coated NPs, with Cu NPs
increasing the yield by approximately 170% compared to the control [20]. Interestingly, soil
amendment with both bare and coated NPs did not significantly impact the plant mass
relative to untreated plants. The use of manufactured nano-objects (MNOs), including
carbon nanotubes (CNTs), nanoparticles (NPs), and nanopesticides, raises concerns, as
these substances can impact the life cycle and not only accumulate in soils but also in
other environmental components, negatively affecting the soil biota and processes. MNOs
can interfere with soil physicochemical properties and microbial metabolic activity in
rhizospheric soils [21]. Notably, negatively charged CuO NPs were found to significantly
reduce disease progression and increase biomass, whereas positively charged NPs and a
CuSO4 salt control had little impact on plants [22]. Based on element characteristics, it has
been reported that magnesium nanoparticles (Mg-NPs) are more effective in enhancing the
development of ‘Superior Seedless’ berries during various growth stages (flowering, fruit
set, version, and harvest) compared to sulfate magnesium (MgSO4·7H2O) and magnesium
disodium EDTA (Mg-EDTA) [23]. As we move forward in the realm of coated nanoparticles
for environmental remediation and agricultural use, recent studies have shown promise. It
has been reported that β-carotene-coated chitosan nanoparticles (CNPs) have the potential
to block polycyclic aromatic hydrocarbons (PAHs) and protect crops in PAH-contaminated
soil. Under specific conditions of 20 ◦C, pH 6, and 10 mg/mL TPP, spinach biomass
significantly increased, and the transfer of PAHs from the soil to the roots was reduced [24].
In agricultural activities, insecticides and pesticides can have unintended effects, and the
nanofeature of higher efficiency is utilized to reduce ecotoxicity. Alginate CNPs have
been employed in combination with DMT to reduce insecticide toxicity in zebrafish larvae
while reducing the required dose [25]. Furthermore, CNPs can serve as a core for novel
SnS2 quantum dots with Azadirachta indica leaf extract, with coated CNPs exhibiting
an enhanced removal of crystal violet dye [26]. Overall, our Special Issue reflects the
cutting-edge trends in nanotechnology applications in agriculture and the environment.

Environmental catalysis has garnered significant attention for its clean methods of
producing useful chemicals and facilitating various chemical processes. This approach
can decompose and eliminate organic pollutants from aqueous environments while en-
abling the production of valuable chemicals [27]. Liu et al. (2023) synthesized novel
N-doped biochar nanoparticles through the one-step pyrolysis of algal sludge without
external nitrogen sources, yielding a highly active and cost-effective carbon-based catalyst
capable of activating new oxidants for contaminant removal [28]. Additionally, Liu et al.
(2022) found that Sedum plumbizincicola nanoparticles can effectively remove Bisphe-
nol A (BPA) from complex wastewater, demonstrating stable and efficient reactions [29].
Nanoscale schwertmannite (nano-SWT) was prepared using an indoor temperature syn-
thesis method with the assistance of polyvinylpyrrolidone, and nano-SWT was found to
be effective in reducing sulfamethoxazole in the presence of Fenton-like catalysts using
hydrogen peroxide (H2O2) [30]. Currently, Fenton catalysts are widely employed in con-
junction with nanoparticles for environmental contaminant removal. Manganese tetroxide
(Mn3O4) nanoparticles have been reported to simultaneously degrade estriol and 17α-
ethinylestradiol (E3/EE2) with removal efficiencies of 97.5% and 96.4% for E3 and EE2,
respectively, using Fenton-like catalysts [31]. Copper–iron peroxide nanoparticles (CFp
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NPs) have been designed for tumor-microenvironment-mediated synergistic therapy in a
heterogeneous chemodynamic therapy system. CFp NPs generate oxygen during catalysis
and exhibit a tumor-microenvironment-responsive T1 magnetic resonance imaging contrast
enhancement, aiding in tumor oxygenation and in vivo tumor monitoring [32]. Further-
more, it has been reported that S-doped carbon and Fe7S8 nanoparticles interact effectively
for the high-efficiency removal of antibiotics through a Fenton-like degradation process.
Within 40 min under neutral pH conditions, amoxicillin, norfloxacin, and tetracycline
hydrochloride were removed at rates of 98.9%, 97.8%, and 99.3%, respectively, with the
catalyst demonstrating excellent cycle stability [33]. At the same time, with the oxygen
atoms in the sulfonic acid group cooperating with Ag+ to form a synergistic complexation,
a novel magnetic fluorescent nanoprobe (Fe3O4@ZnS@MPS(MFNPs)) was designed for
Ag+ detection in aquatic media [34]. These findings underscore the significant progress
made in leveraging nanomaterials and catalytic processes for cleaner and more efficient
environmental solutions, offering promise for a sustainable future.

In conclusion, the advancements in nano-agriculture and environmental applications
are evident from the research covered in the Special Issue “Functional Nanoparticles for
Environmental Contaminants Removal and Agricultural Application” in Coatings. Note-
worthy examples include the use of silver nanoparticles to enhance crop seed germination
and the application of azobenzene-modified bimodal mesoporous silica nanoparticles to
control the release of the fungicide hexaconazole, thereby reducing environmental impacts.
While nanotechnology presents exciting prospects, it is crucial to consider its potential
ecological effects and develop responsible applications. Overall, the progress in nanotech-
nology applications in agriculture and the environment underscores the field’s potential to
contribute to a more sustainable future.
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