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Abstract: Chitosan (CS) is a natural cationic polysaccharide obtained via the N-deacetylation of chitin.
It has various outstanding biological properties such as nontoxicity, biodegradability, biocompatibility,
and antimicrobial properties. Minerals can be deposited on the CS template using different methods
to construct composites with structures and functions similar to those of natural bone tissue. These
ideal scaffolds can produce bone via osteogenesis, osteoinduction, and osteoconduction, with good
biocompatibility and mechanical properties, and are thus considered promising novel biomaterials
for repairing hard tissue defects. In the last decade, the field of mineralized CS scaffolds has provided
novel fundamental knowledge and techniques to better understand the aforementioned fascinating
phenomenon. This study mainly focused on the basic structures and properties of mineralized CS
scaffolds to understand the current research progress and explore further development. Further, it
summarizes the types, preparation methods, components, properties, and applications of mineralized
CS scaffolds in bone tissue engineering during the last 5 years. The defects and shortcomings of the
scaffolds are discussed, and possible improvement measures are put forward. We aimed to provide
complete research progress on mineralized CS scaffolds in bone tissue engineering for researchers
and clinicians, and also ideas for the next generation of mineralized CS scaffolds.

Keywords: chitosan; bone tissue engineering; regeneration; scaffold; mineralization

1. Introduction

Bone defects caused by aging, trauma, tumor resection, and osteonecrosis remain a
major concern in clinical research, leading to disability, health loss, and impaired quality
of life, and pose a serious economic burden [1]. At present, the main methods used for
treating large-sized bone defects are autologous and allogeneic bone grafts [2]. Autologous
bone grafts are considered the gold standard for bone tissue repair. However, some
unavoidable defects are encountered, such as infection, inflammation, limited donor bone
transplantation, and donor-site neurovascular injury [3]. Allogeneic bone grafts have been
developed gradually in recent years; unfortunately, some problems occur even with the use
of allogeneic bone grafts, such as immune rejection, blood disease transmission, and poor
osseointegration [4]. Bone tissue engineering (BTE) has attracted immense attention because
of its great potential to treat critical-sized bone defects and related diseases [5]. BTE refers to
the implantation of artificial scaffolds into the site of bone defects, with the synergistic effect
of biomaterial, cell, and factor, inducing new functional bone regeneration and repairing the
bone tissue defects while the scaffold is degraded step by step [6,7]. Researchers have tried

Coatings 2023, 13, 1644. https://doi.org/10.3390/coatings13091644 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13091644
https://doi.org/10.3390/coatings13091644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-9066-4334
https://doi.org/10.3390/coatings13091644
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13091644?type=check_update&version=2


Coatings 2023, 13, 1644 2 of 17

to improve bone regeneration with different biomaterials. This strategy has the advantages
of high controllability, low risk of infection, excellent biocompatibility, and no obvious
complications [8–10]. Designing an ideal artificial scaffold is the core of BTE.

Chitosan (CS) scaffolds have been widely used in the field of BTE [11]. CS, a natural
cationic polysaccharide, is obtained by the N-deacetylation of chitin and composed of
D-glucosamine and N-acetyl-D-glucosamine (Figure 1). It widely exists on earth and is easy
and cheap to prepare as scaffolds. The chemical structure of CS is similar to the extracellular
matrix (ECM) [12,13]. CS has various outstanding biological properties such as nontoxicity,
biodegradability, biocompatibility, and antimicrobial properties [12], while its scaffold is
weak in an aqueous environment and limited by the lack of osteoinduction and osteo-
conduction [14]. However, natural bone is an organic–inorganic complex, comprising of
oriented hydroxyapatite and regular arrangement of type I collagen (Col), which have dif-
ferent effects on cells [15]. The ECM in bone tissue also plays an important role in regulating
the biological behavior of all kinds of bone cells, in which bioactive factors strengthen bone
formation and play a significant role in regulating ossification. Taken together, biomimetic
artificial scaffolds should not only be porous but also include similar components and
other microstructures of bone tissue, as well as the bioactive factors. The minerals are
deposited on the CS template using different mineralization technologies to construct
composites with structures and functions similar to those of natural bone tissue. Previous
studies have shown that chitosan has good biocompatibility combined with inorganic
minerals [16,17]. Due to the unique properties of chitosan, such as nontoxicity, biocompati-
bility, and biodegradability, chitosan prepared by different assembly methods with specific
properties has been widely applied in different tissue regeneration studies [18]. In addition,
modified chitosan derivatives with novel properties, functions, and applications have been
developed and widely applied in drug delivery and gene therapy recently [19]. This ideal
bone-mimetic structural scaffold can produce bone via osteogenesis, osteoinduction, and
osteoconduction, with good biocompatibility and mechanical properties [20].
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Figure 1. Structures for chitin and chitosan.

Mineralized CS scaffolds are feasible and effective in bone repair, and hence serve
as promising scaffolds for bone tissue regeneration. However, the scaffolds are still in
the primary stages of research. This study focused on the construction and properties
of mineralized CS scaffolds, and examined the types, preparation methods, components,
properties, and applications of mineralized CS scaffolds in BTE over the last 5 years
to understand the current research progress and explore the means and ways for its
further development. The defects and shortcomings of the scaffolds are discussed, and
possible improvement measures are put forward. The mineralized CS scaffolds should
aim to promote bone repair, rather than simulating the structure of natural bone tissues
indiscriminately. Natural bone tissues are extremely complex, and the technologies for
artificially synthesizing bone-like scaffolds are limited. Mineralized chitosan scaffolds
should be based on the existing technologies and conditions, aiming at promoting bone
formation rather than pursuing similar natural bone structures. This study aimed to provide
complete research progress to date on mineralized CS scaffolds in BTE for researchers and
clinicians and also ideas for the next generation of mineralized CS scaffolds.
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2. Structure and Properties of Mineralized CS Scaffolds

Composed of a CS organic template and inorganic minerals, the mineralized CS scaf-
folds mimic natural bone tissue to obtain excellent biological performance and mechanical
properties. Hence, we reviewed the construction and properties of the scaffolds from two
aspects: the organic template and the inorganic component.

2.1. Organic Template—CS

CS is a natural cationic polysaccharide obtained via the N-deacetylation of chitin,
which is the most widely occurring biopolymer in nature after cellulose, and can be found
in crustaceans, fungi, tachypleus tridentatus, insects, and so forth [21]. The degree of
acetylation of CS can be characterized by the percentage of acetylation (DA%) [22–24].
When the DA% is less than 50 mol%, chitin is converted to CS. The solubility of CS is
improved due to the presence of a large number of free amine groups [24].

CS is an ideal bone repair material because of its rich source, hydrophilicity, nontox-
icity, biocompatibility, biodegradability, and antibacterial activity [25,26]. It is insoluble
in general solvents but dissolves due to amino protonation in an acidic medium when
pH < 5 [24]. Different assembly methods can be used to prepare CS matrices with dif-
ferent scale structures, such as one-dimensional microspheres, two-dimensional fibers,
membranes, and three-dimensional scaffolds (Figure 2). The significant properties of CS
facilitate its wide use in BTE [27].
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2.1.1. Biodegradability

When CS-based materials are implanted, the β-1,4-glucosidic bonds are broken and
decomposed into low-molecular-weight CS by enzymes, such as lysozyme and hydrolase,
and finally degraded into N-acetyl glucosamine and glucosamine [14]. These two monosac-
charides are harmless to the human body and can be completely absorbed. After a series of
chemical reactions, some reactants are excreted from the respiratory tract in the form of
CO2, while others are used by the human body in the form of glycoproteins [28,29]. The
degradation rate can be controlled by changing the crystallization of CS, which can be
modulated by the degree of deacetylation [30].

2.1.2. Drug Delivery

One of the advantages of chitosan derivatives is their ability to store, deliver, and
release the drugs or chemicals required in tissue regeneration. In addition, they also confer
a sustained release effect and improve drug absorption. Chitosan can be prepared into a
variety of forms such as microspheres, nanoparticles, hydrogels, etc., for ophthalmic, oral,
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nasal, and colon delivery. Moreover, with the delivery of anticancer agents, chitosan has
been applied in cancer treatment by inhibiting the growth of cancer cells. Chitosan is also a
promising biomaterial for gene delivery and vaccine delivery [31,32]. CS contains a large
number of free amino groups and positive charges. Hence, it can wrap drugs and a variety
of bioactive factors by means of chemical cross-linking and electrostatic adsorption and
form a semi-permeable membrane on the surface. This characteristic enables the use of CS
as a carrier to prolong the release duration of drugs and growth factors.

2.1.3. Antibacterial Activity

The electrostatic interaction between the positive charge in CS and the negative charge
in the cell membrane of bacteria leads to the uneven distribution of the negative charge in
the cell membrane, which affects cellular function and disrupts the normal metabolism of
bacteria [33].

2.2. Inorganic Component—Minerals

The inorganic minerals in CS-based mineralized scaffolds are usually calcium phos-
phate (CaP), including hydroxyapatite (HA) [34], β-tricalcium phosphate (β-TCP) [35], their
biphasic calcium phosphate (BCP) composites [36], amorphous calcium phosphate [37,38],
octacalcium phosphate [39], anhydrous dicalcium phosphate [40], and so forth. Addition-
ally, bioactive glass (BG) is a common inorganic component [41].

2.2.1. Hydroxyapatite

Hydroxyapatite [HA; Ca10 (PO4)6 (OH)2] is the major inorganic compound in human
hard tissue. It is abundant and inexpensive and has good biocompatibility. Hence, hydrox-
yapatite was the most common inorganic mineral used in BTE in previous years [42]. HA is
a non-toxic, non-anti-prototype bioactive ceramic material, which has been shown to have
good bioactivity, be osteoconductive, and have hard histocompatibility [43]. In addition, it
can be integrated into bone without provoking an immune reaction because of its grain size
and decomposition of the HA powder [44]. Pure HA is not suitable for clinical application
due to its brittleness, poor strength, and slow degradation.

2.2.2. β-Tricalcium Phosphate

TCP has three polymorphs: β-TCP, α-TCP, and α′-TCP, which are distinguished by
the crystallization phases and sintering temperature. β-TCP is stable below ~1125 ◦C
and is preferred for BTE because of its outstanding mechanical performance and suitable
resorption rate [45]. Its solubility is close to that of bone mineral, and it is not soluble under
physiological conditions, but it is resorbed by osteoclasts. Meanwhile, β-TCP has shown
high osteoinductive potential in addition to its osteoconductive ability [46–48]. In brief,
β-TCP is one of the most promising bone graft substitutes.

2.2.3. Biphasic CaP (BCP)

HA and β-TCP make up BCP by different proportions [49]. The major physicochemical
properties of BCP depend on the different proportions of the two phases, and are usually
similar to the single phase [50]. The main purpose of BCP is to avoid the disadvantages of
single phase, and highlight the advantages to improve the bioactivity, osteoconductivity,
and osteoinductivity of the biomaterials, achieving the formation of bone tissue [51]. By
manipulating the composition ratio of HA and β-TCP, BCP can optimize the biodegrada-
tion rate and enhance the bone repair process, because faster or delayed degradation of
biomaterials is both not conducive to bone formation [52].

2.2.4. Bioactive Glass

Originally, Hench et al. successfully developed Bioglass 45S5 called BG, which is
composed of 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5 [53]. There are two categories
of BG nowadays: Class A BG has both osteoconduction and osteoproduction which leads
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to rapid bonding to bone and soft connective tissue; Class B BG bonds slowly only to
the bone and only osteoconduction occurs on these materials [54,55]. The bioactivity
and osteoinductivity of a class A bioactive material is usually greater than that of class
B materials [56]. Once BG encounters the body fluid, the hydrolysis of the silica groups
leads to the formation of silanol groups (Si–O–H). Si (OH)4 functions as a matrix for HA
to precipitate on the surface [57]. BG has excellent biological activity, biocompatibility,
osteogenicity, and angiogenic potential [58,59].

3. Preparation Techniques of Mineralized CS Scaffolds

Generally, the preparation of mineralized CS scaffolds involves the preparation of CS
organic templates and the deposition of minerals on the organic templates.

The common techniques for preparing CS-based scaffolds are freeze-drying, electro-
spinning, gelation by cross-linking, and layer-by-layer (LBL) self-assembly [60] (Figure 3).
Freeze-drying is one of the most commonly used technologies for preparing CS-based
scaffolds. It involves rapidly freezing the samples to be dried and sublimating them under
a high vacuum to remove frozen water [61]. The freeze-drying method can be used to
prepare layered or columnar pore structures. The radial pore structures can also be ob-
tained by changing the freezing method and conditions, which have been proven to be
beneficial to osteogenesis. Electrospinning is a process of using the electric field to control
the deposition of polymer fibers on the target substrate [62]. Aidun et al. fabricated a
ternary polycaprolactone/CS/Col scaffold with different ratios of graphene oxide using
electrospinning [63]. Gelation by physical or chemical cross-linking is a common way to
prepare CS hydrogels [64]. Ionotropic gelation involves physical cross-linking and is one of
the most widely used techniques for preparing CS nanoparticles. Ahmed et al. used sodium
tripolyphosphate (TPP) as a physical cross-linking agent to prepare CS hydrogels [65]. LBL
self-assembly involves the self-assembly of polyanions and polycations by using electro-
static, hydrogen bonding, hydrophobic, and van der Waals interactions [66]. CS can react
with other materials via electrostatic force, hydrogen bonds, Schiff base linkage, and other
interactions, which theoretically supports the practicability of preparing CS-based com-
posites by LBL manipulation [66]. Mu et al. prepared a multilayer film on a titanium rod
using a spin-coater-assisted LBL approach, which was constructed using cationic CS and
anionic gelatin. The assembled film could continuously release drugs for almost 2 weeks
and promoted bone healing [67]. 3D printing, or additive manufacturing (AM), is a unique
layer-by-layer assembly technology which involves the fabrication of the same or different
materials via an automated process [68]. Mineralized CS 3D scaffolds exhibit an excellent
effect in BTE. 3D printing technology allows the rapid and feasible production of the CS
scaffolds. Chitosan/collagen/nano-hydroxyapatite scaffolds prepared with the 3D print-
ing process confirmed suitable structural properties. Loading of crocin into the scaffolds
showed lower toxicity [69]. Combining an extrusion printing technique with an impreg-
nation method, researchers created composite scaffolds from chitosan/HA/alginate. The
results illustrated that 3D printed scaffolds enhanced the cell viability and attachment [70].
Wei et al. discussed forming quality and mechanical properties of HA/carboxymethyl
chitosan (CMCS) composite ceramic scaffolds. Incorporating CMCS into HA enhanced
the toughness of the scaffolds, while a 5 wt% content of CMCS led to the poor forming
quality [71].
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The deposition of inorganic mineral ions on organic CS templates generally involves
classical and nonclassical crystallization. Classical crystallization indicates that a new
phase appears through the association of monomeric units (e.g., molecules, atoms, or ions).
Nonclassical crystallization is based on dynamic mechanisms, implying that crystalliza-
tion can occur by the attachment of a wide range of species more complex than simple
ions. The higher-order species, including multi-ion complexes, oligomers (or clusters),
and nanoparticles crystalline, amorphous, or liquid, are formed as intermediates between
dispersed particles and true single crystals [73]. Most of the direct ion reaction methods,
including the wet chemical method (WCM) [74], simulated body fluid soaking method
(SBF) [75], and solution-gelatin method [76], are based on classical crystallization. WCM
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is one of the most commonly used methods for mineralized CS scaffolds. Briefly, the
solution containing calcium and phosphorus ions is directly mixed with and soaked in a
CS template to allow the deposition of calcium and phosphorus ions. The simulated body
fluid soaking method refers to soaking CS into an SBF solution for some time to deposit
bone-like minerals on the CS template [77]. Conventional SBF is a solution containing Ca2+,
HPO4

2−, and other components, whose ionic concentrations and pH values are similar
to those of human blood plasma [78]. The sol-gel method has been developed recently
for synthesizing organic/inorganic hybrid polymers. Fine metal oxide particles (SiO2 and
TiO2) are compounded into organic polymers through the hydrolysis and condensation
of alkoxy metal organic compounds [M (OR)4] to obtain organic/inorganic hybrids with
special properties [79]. The polymer-induced liquid precursor (PILP) method [80] and
alkaline phosphatase (ALP) enzyme-induced method [81] are mineralization methods
based on nonclassical crystallization. In the PILP method, calcium carbonate is formed by
the deposition of a liquid-phase mineral precursor [80]. The addition of acidic polypeptide
leads to liquid–liquid phase separation of precursor droplets, and thus, the droplets accu-
mulate on the surface, formulating the films, dehydrating to transform from amorphous to
crystalline [82]. The ALP method involves CS scaffolds that were pre-immersed in ALP
solution, then transferred to phosphate solution, where ALP cleaves phosphate ions from
ß-GP and reacts with calcium ions to realize mineralization [83].

4. Applications of Mineralized CS Scaffolds in BTE

Considering the good biocompatibility and stable properties of CS, various compo-
nents have been added to mineralized CS scaffolds in recent years to further enhance
osteogenesis. The scaffolds are divided into three categories based on different components
that are combined with CS scaffolds: (i) pure mineralized CS scaffolds, (ii) mineralized CS
scaffolds without other organic components, and (iii) mineralized CS scaffolds with other
organic components.

4.1. Pure Mineralized CS Scaffolds

The important properties of different mineralized CS scaffolds without other com-
ponents (such as organic, inorganic, biological factors, and so on) in the field of BTE
are presented in Table 1. Baskar et al. fabricated CMC-HA nanoparticle composite scaf-
folds. The results showed that a 1:5 HA–CMC w/w% concentration resulted in improved
bioactivity, cell viability, and proliferation, in addition to enhanced expression of dentin
sialophosphoprotein, and vascular endothelial growth factor mineralization markers when
tested in vitro [84]. Some scholars modified inorganic minerals and prepared correspond-
ing mineralized CS scaffolds. Chen et al. combined a facile strategy technology with a
biomimetic mineralization process, preparing a superoleophobic film. Chitosan modified
with methacrylic anhydride (CSMA) is prepared by acylation as the scaffold to spread a
layer of calcium carbonate. Due to the uniform structure of the surface, the film has higher
transparency and mechanical properties than general oil-repellent film [85]. Jindal et al.
fabricated mesoporous zinc silicate-fortified CS scaffolds (mZS–CS scaffolds); 0.3 wt% of
mZS loading composite scaffolds showed good biocompatibility and no obvious toxicity.
The addition of mZS also improved the antibacterial activity of scaffolds [86].

Table 1. Applications of different mineralized chitosan scaffolds without other components in BTE.

Chitosan or Its Derivatives Minerals Important Conclusions Reference

Chitosan HA
The scaffolds promoted osteogenic differentiation of
pre-osteoblasts in vitro and demonstrated excellent

tissue integration in vivo.
[83]

Carboxymethyl chitosan (CMC) HA

Human dental pulp stem cells (hDPSCs) on 1:5
HA-CMC scaffolds displayed increased cell

viability/proliferation and enhanced DSPP as well as
VEGF expressions.

[84]
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Table 1. Cont.

Chitosan or Its Derivatives Minerals Important Conclusions Reference

Chitosan Mesoporous zinc silicate (mZS)

The 0.3 wt% of mZS loading composite scaffolds
showed good biocompatibility and no obvious toxicity.

Addition of mZS also improved the antibacterial
activity of scaffolds.

[86]

Chitosan HA 75/25 w/w HA/CS scaffolds provided an effective
space for new bone formation. [87]

Water-soluble phosphate
functionalized chitosan (CSMAP) Strontium phosphosilicate (SPS)

The bioactive Sr, P and silicon were released from
CSMAP-SPS hydrogels in a sustained and controlled

manner at a non-toxic level.
[88]

Chitosan LaPO4; β-TCP
The scaffolds showed no obvious toxicity or effects on
cell morphology, and they accelerated bone generation

in a rat cranial defect model.
[89]

Chitosan

Zinc-containing
nanoparticle-decorated ultralong

hydroxyapatite nanowires
(Zn-UHANWs)

The scaffold can enhance the osteogenic differentiation
of rBMSCs and facilitate new bone formation in the

bone defect region.
[90]

Chitosan HA; Whitlockite (WH)

The WH-CS scaffolds had a better biocompatibility,
enhancing proliferation and osteogenic differentiation

ability of human bone mesenchymal stem cells
(hBMSCs) than HA/CS scaffolds.

[91]

4.2. Mineralized CS Scaffolds without Other Organic Components

The important properties of scaffolds with other inorganic components in the field of
BTE are depicted in Table 2. CS is the only organic template; different inorganic components
or bioactive molecules constitute the scaffolds with CS. Gritsch et al. combined copper
and strontium into HA–CS scaffolds [92]. The results showed that copper and strontium
exhibited different release rates in the scaffold. In the initial stage of material implanta-
tion, copper was released explosively to achieve an antibacterial effect, while strontium
was released slowly with material degradation to promote bone repair (Figure 4). Bala-
gangadharan et al. fabricated HA–CS–nZrO2 biocomposite scaffolds [93]. The scaffolds
showed osteoinductive properties, and adding bioactive molecules, such as miR-590-5p
(a kind of microRNA), to the scaffolds further enhanced osteoblast differentiation. PLGA
nanospheres were used to load bioactive factors rhBMP-2 and p24 and combined with HA–
CS scaffolds. The results showed that the composite vehicle had good biocompatibility and
osteoinduction. Yang et al. fabricated magnetic mesoporous calcium silicate–CS (MCSC)
scaffolds, which were made of M-type ferrite particles (SrFe12O19), mesoporous calcium
silicate (CaSiO3), and CS [94]. The MCSC loaded with doxorubicin (DOX) showed robust
antitumor and bone regeneration properties under photothermal therapy (PTT). Among the
methods, the CaSiO3 microspheres were used to enhance drug delivery, and the SrFe12O19
particles were used to improve the efficiency of PTT. Scaffolds containing CS, calcium
polyphosphate (CaPP), and pigeonite (Pg) particles was prepared for bone regeneration.
The results showed that CS/CaPP scaffolds containing Pg particles at 0.25% concentration
enhanced the proliferation and osteoblast differentiation of mouse mesenchymal stem cells
in vitro [95]. Yildizbakan et al. prepared a controlled release of antibacterial agents from CS
scaffolds combined with iron-doped dicalcium phosphate dihydrate (Fe-DCPD) minerals
and cerium oxide nanoparticles. All scaffolds exhibited inhibitory effects on bacterial
growth against Staphylococcus aureus and Escherichia coli strains [96].

Table 2. Applications of mineralized scaffolds which chitosan is the only organic template in BTE.

Chitosan or Its
Derivatives Minerals Other Inorganic

Componets Bioactive Molecule Important Conclusions Reference

Chitosan HA Strontium; Copper None
The release of copper and strontium followed

significantly different profiles due to the
different nature of the loading.

[92]

Chitosan HA Nano-zirconium
dioxide (nZrO2)

MicroRNA
(miRNA)-miR-590-5p

CS/HA/nZrO2 scaffolds promoted osteoblast
differentiation, and this effect was further
increased in the presence of miR-590-5p in

C3H10T1/2 cells.

[93]
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Table 2. Cont.

Chitosan or Its
Derivatives Minerals Other Inorganic

Componets Bioactive Molecule Important Conclusions Reference

Chitosan Mesoporous calcium
silicate (MCS) SrFe12O19 particles Doxorubicin (DOX)

The MCS scaffolds possessed the excellent
anti-tumor efficacy via the synergetic effect of
DOX drug release and hyperthermia ablation.

[94]

Chitosan Pigeonite (Pg) Calcium polyphosphate
(CaPP) None

The inclusion of iron-containing Pg particles at
0.25% concentration in CS/CaPP scaffolds
showed enhanced bioactivity by protein

adsorption and biomineralization, compared
with that shown by CS/CaPP scaffolds alone.

[95]

Chitosan Silica ZnO Mangiferin With the higher amount of nano-ZnO, the
compressive strength and modulus increased. [97]

Chitosan HA None p24; rhBMP-2
This research showed that the composite
vehicle could exhibit sustained release of

osteogenic factors.
[98]

Chitosan HA None Bone Morphogenetic
Protein (BMP-2)

The BMP-2-TAK1-p38-OSX signaling pathway
may play an important role in bone repair
mediated by rhBMP-2 loaded hollow HA

microspheres/CS composite.

[99]

Chitosan Mesoporous calcium
silicate (MCS) Gadolinium (Gd) None

The scaffolds supported the cell spreading and
proliferation, and stimulated the new bone

in-growth toward scaffold interiors.
[100]

Chitosan Calcium phosphate
cement (CPC)

Iron oxide nanoparticles
(IONP) None

CPC with 3% IONP doubled its flexural
strength and had the greatest promotion of
osteogenic differentiation of the stem cells.

[101]

Chitosan Silicoalumino
phosphates (SAPO-34) Fe; Ca None

Fe-Ca-SAPO-34/CS scaffold possessed
excellent cytocompatibility, and supported the
adhesion, spreading, and proliferation of cells.

[102]
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difference in release can be clearly observed. While copper is characterized by burst release, the
release of strontium is uniform over time. Adapted with permission from Ref. [92]. Copyright 2019,
Royal Society of Chemistry.

4.3. Mineralized CS Scaffolds with Other Organic Components

Nowadays, researchers also combine CS with other polymers to prepare multi-organic-
component mineralized scaffolds. The important properties of these scaffolds in the field
of BTE are presented in Table 3. Dasgupta et al. compared the efficacy of gelatin-CS-based
bone scaffolds after incorporating three different bioactive nanoparticles, including HA,
β-TCP, and 58S BG (58BG), by evaluating its physicochemical, mechanical, and osteogenic
properties [103]. The results demonstrated that the prepared scaffolds (30 wt% 58BG) might
serve as better bone substitute materials because of their higher bioactivity in bone tissue
regeneration. Zhao et al. evaluated the bone regeneration potential of the nanohydroxyap-
atite/CS/gelatin (HA–CG) three-dimensional porous scaffolds with transplanted human
periodontal ligament stem cells (hPDLSCs) [15]. The results showed that the hPDLSCs
adhered well to the scaffolds and significantly improved the bone formation. Other than,
Col and gelatin, many other polymers such as PLGA [104] and silk fibroin [105] were also
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applied in the CS scaffolds as components. Deng et al. prepared a temperature-sensitive
chitosan hydrogel loaded with rhBMP-2 using chitosan and β-glycerophosphate, which
could effectively control the early burst release of rhBMP-2. After the outer layer of the chi-
tosan scaffold was slowly degraded, rhBMP-2 microspheres in the scaffold were slowly and
steadily released. Sustained-release administration ensures long-term activity of rhBMP-2,
and the pattern is more similar to that of cytokine release in vivo, allowing better forma-
tion of bone tissue [104]. Ji et al. prepared hydroxyapatite/tannic acid/chitosan/sodium
alginate scaffolds with different curcumin-loaded silica microspheres by 3D printing for
bone regeneration. The scaffolds had high biomineralization capability and a good degra-
dation rate, which can enhance the proliferation of bone marrow mesenchymal stem cells
significantly [106]. Cross-linking agents may affect the biological properties of the CS-
based scaffolds. Using ammonium hydroxide to generate physical entanglements and
prepare scaffolds had been proved to be non-cytotoxic [107]. Bioglass/chitosan/alginate
(BCA) composite scaffolds prepared by the freeze-drying method have potential appli-
cations in BTE. With the adding alginate of BCA, the mechanical strength of BCA and
the mineralization ability of Bioglass were effectively enhanced [108]. Chitosan scaffolds
incorporated with calcium hydroxide (CH-Ca) and simvastatin (SV) promoted an increase
in bioactivity [109].

Table 3. Applications of multi-organic-component mineralized scaffolds in BTE.

Chitosan or Its
Derivatives Minerals Other Organic

Componets
Other Inorganic

Componets
Bioactive
Molecule Important Conclusions Reference

Carboxymethyl
chitosan
(CMC)

HA Collagen (Col) None None

Synergistic mineralization can increase the
mechanical strength and decrease the

degradation rate of collagen scaffolds at the
same time such that the BMC scaffolds can

better promote the regeneration of bone tissue
in defects.

[38]

Chitosan HA;
β-TCP; BG Gelatin None None

The gelatin-chitosan scaffold with 30 wt% of
synthesized 58S bioactive glass (GCB30) showed

higher capacity to proliferate MSCs cultured
onto it as compared to other

composite scaffolds.

[103]

Chitosan HA
Polylactic-

coglycolic acid
(PLGA)

None

Recombinant
human bone

morphogenetic
protein 2

(rhBMP-2)

PLGA/HA/CS/rhBMP-2 scaffold complex
effectively controlled the early burst effect

of rhBMP-2.
[104]

Chitosan HA
Polyvinyl-

alcohol
(PVA)

None

Platelet-rich
plasma (PRP);
Mesenchymal

stem cells
(MSCs)

The in vivo results demonstrated that in the
animals implanted with PVA-chitosan-HA, the

defect was repaired to a good extent, but in
those animals that received MSCs-seeded

PVA-chitosan-HA, the defects were
almost filled.

[110]

Chitosan BG Vanillin None None
The 3D porous chitosan-vanillin-BG (CVB)

scaffold had improved mechanical properties,
anti-microbial ability, and osteoconductivity.

[111]

Chitosan HA
Phoenix

dactylifera
seeds (PD)

None None
The PD-CS scaffold is a potential candidate to

promote osteoblast cell growth and
osteogenic differentiation.

[112]

Chitosan

Halloysite
nanotubes
(mHNTs):

aluminosilicate

β-
Glycerophosphate

(GP)
None Icariin (IC)

IC/mHNTs led to the improved mechanical
strength of chitosan hydrogel and enhanced

differentiation of encapsulated human
adipose-derived stem cells (hASCs) into

bone tissue.

[113]

Chitosan CuMn-HA
Polyvinyl

pyrrolidone
(PVD)

None None

10, 20, 30 wt% of CuMn-CS-HA biocomposite
exhibited great material characteristics where
30% (BC-3) displayed the minimum swelling.

BC-3 has improved mechanical properties,
physiochemical characteristics and

apatiteforming capabilities.

[114]

Chitosan

Zeolitic
imidazolate

framework-8
nanoparticle

(ZIF-8)

Catechol(CA) None None
The 30 mg/1.2 mg CA/ZIF-8 hydrogel and
bone powders showed the largest new bone

formation area and thickness.
[115]
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Table 3. Cont.

Chitosan or Its
Derivatives Minerals Other Organic

Componets
Other Inorganic

Componets
Bioactive
Molecule Important Conclusions Reference

Hydroxyethyl
chittosan
(HECS)

BCP Polyvinyl
alcohol(PVA) None None

The reinforced HECS/PVA/BCP hydrogel with
promising mechanical and biological properties

has the potential for application in
bone regeneration.

[116]

Chitosan Halloysite (HAL)
Alkaline

phosphatase
(ALP); collagen

None None

Mineral was formed in both CS and
Collagen-CS scaffolds with HAL-ALP, the

process was more effective for
collagen-containing hydrogels. Collagen-CS

scaffolds containing 30% of HAL-ALP have the
highest potential as bioactive material for

bone regeneration.

[117]

Lactose-
modified

chitosan (CTL)
HA Alginate None None

The scaffolds showed remarkable stability up to
60 days of aging. CTL-coating did not affect cell
proliferation, but stimulated cell differentiation.

[118]

Chitosan HA Poly (lactic
acid) Au; Pt; TiO2 None

The highest bioactivity in contact with cells
exhibited samples modified with HA and
amorphous titanium dioxide NPs, while

scaffolds containing nanogold showed highest
positive impact on DC-stimulated

in vitro biomineralization.

[119]

Chitosan BG Chondroitin
sulfate None None

The scaffold facilitates enhanced ALP activity,
biomineralization and collagen type I

expression of cells and thereby
chitosan/chondroitin sulfate/BG might be a

suitable candidate for bone tissue engineering.

[120]

Chitosan

Calcined
diatomite;
Polyhedral
oligomeric

silsesquioxanes
(POSS); Si-HA

Na-
carboxymethyl

cellulose
(Na-CMC)

None None

All inorganic reinforcements increased the
mechanical strength, enhanced the water uptake
capacity and fastened the degradation rate. The

nanocomposite scaffolds did not show any
cytotoxic effect and enhanced the surface

mineralization in osteogenic medium.

[121]

Chitosan HA Collagen (Col)
Functionalized

multiwalled
carbon nanotube

None

The Col/f-MWCNT/CS scaffolds had higher
in vitro bioactivity, large surface area, and a

good pore volume, interconnected
porous microstructure.

[122]

Carboxymethyl
chitosan
(CMC)

HA Poly(dopamine)
(PDA) None None

HA/PDA/CMC composite scaffolds could
promote more osteogenic differentiation of

mouse bone marrow stromal cells (mBMSCs)
than scaffolds without PDA in vitro and the

effect was not hindered by the
photothermal process.

[123]

Chitosan HA Ursolic acid None None
The HA-CS-UA scaffolds had good
anti-inflammatory, osseointegration,

osteo-inductivity, and bone regeneration.
[124]

Although numerous mineralized CS scaffolds with low biotoxicity and good bioost-
eogenic effects had been developed in recent years, a lack of standardized study protocols
and approaches make it a challenge to compare different study outcomes and promote the
further development of mineralized CS scaffolds for BTE. The composition and preparation
methods of the composite scaffolds will have different effects on the mechanical properties,
biotoxicity, degradability, and bone promotion of the scaffolds. At the same time, there is
still a long way to go for mineralized chitosan scaffolds from bench to bed, and the clinical
study results of different mineralized chitosan scaffolds in the future are exciting.

5. Conclusions

A review of the literature revealed that a large number of researchers combined min-
eralized CS scaffolds with other components (organic, inorganic, and biological factors)
to develop a variety of scaffolds for BTE; most of these scaffolds were proven to be osteo-
conductive and osteoinductive. Researchers can prepare scaffolds, provide more powerful
means for bone regeneration, and investigate the mechanism of bone regeneration with
the development of manufacturing technology. However, the existing scaffolds have some
defects: (i) Bone healing is a phased, dynamic, and orderly process. The simple compos-
ites of scaffolds cannot adapt to different stages of bone healing. At present, although a
variety of composite scaffolds have been developed, intelligent and controllable scaffolds
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still need to be further explored. Future research should aim at safe and effective bone
regeneration by realizing a highly controllable drug sustained release system or regulating
the release of organic, inorganic, and growth factors in an organized manner. (ii) The
existing scaffolds are in the primary research stage, with few scaffolds that can be used
in a clinical setting. The effect of scaffolds on the human body needs further discussion.
(iii) Recent studies show numerous mineralized CS scaffolds with good osteogenic effects.
However, researchers have not standardized their experimental study protocols and have
employed different approaches for characterizing scaffolds and reporting their findings.
Hence, comparing different study outcomes is extremely difficult. Moreover, the lack of
further research on the mechanism of osteogenesis may be the direction that the researchers
should explore in the future.
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