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Abstract: Degradation of industrial machinery through wear can be mitigated with the deposition
of protective coatings to reduce maintenance costs and prolong their service lifespans. Electroless
nickel-based composite coatings is one possible method used to provide this protection. The addition
of Tribaloy (CoMoCrSi alloy) particles has been found to produce composite coatings with high
toughness. In this work, electroless Ni-P-Tribaloy composite coatings were plated on AISI 1018 steel
substrates and subjected to low-stress abrasion tests following ASTM G65 standards to investigate
the abrasion of the coating. The test was performed at 10 revolution increments, with a 45 N applied
load, until coating failure was observed and the measured abrasion was reported as volume loss.
The two Ni-P-Tribaloy coating samples lasted for 90 and 100 revolutions, exhibiting a wear rate
of 0.170 mm3 per revolution, compared to 0.135 mm3 per revolution for the Ni-P coatings. The
abrasive wear mechanism in the Ni-P-Tribaloy coating was found to be plowing of the matrix around
the Tribaloy particles, followed by the removal of the particles once they are protruding, which
subsequently contributes to the three-body wear of the coating. The particle removal was accelerated
at the coating particle-matrix interface. It is concluded that the size of the Tribaloy is a major factor,
and we recommend that further studies be carried out using finer particles to improve the wear
resistance of the Ni-P-Tribaloy coating.

Keywords: electroless nickel; Ni-P-Tribaloy coating; abrasive wear; metal matrix composites (MMC);
wear mechanisms; ASTM G65

1. Introduction

Wear plays a major role in the degradation of machinery across various industries.
Most engineering failures initiate from the surface; therefore, the application of protective
coatings is vital to prolong the components’ lifespan and minimize the associated service
and maintenance costs [1–3]. For many years, electroless nickel-phosphorus (Ni-P) coatings
have been utilized as protective coatings in the oil and gas, aerospace, and automotive
industries, among others, due to the technique’s ease of application and the unique re-
sulting properties of the coatings including high wear and corrosion resistance, hardness,
lubricity, and adhesion [4,5]. Electroless nickel is a coating technique involving the chemical
reduction of nickel in an aqueous solution driven by a reducing agent, typically sodium
hypophosphite, supplying the driving force for this autocatalytic process [6,7]. Several
Ni-P-based composite coatings have been developed through the co-deposition of second-
phase particles, such as WC and SiO2, within the metallic Ni-P matrix [8,9]. Developing
composite coatings has been proven to alter selective properties of the Ni-P coating, based
on the type of particles used. For example, soft particles like Polytetrafluoroethylene (PTFE)
lower the coefficient of friction and provide good lubrication while sacrificing hardness,
in contrast to hard particles like SiC, which provides the opposite for use in applications
where high hardness is required [10–12].

The focus of this work is Ni-P-Tribaloy composite coatings which consist of an electro-
less Ni-P matrix with Tribaloy as second-phase reinforcement particles. Tribaloy alloys are
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a series of Co-based alloys composed of CoMoCrSi. These alloys possess excellent wear and
corrosion resistance as a result of their unique composition. The main alloying elements
are Cr, Mo, and Si, with each element influencing the alloy’s properties. The inclusion of
Mo and Si is vital for wear resistance, and Cr enhances the corrosion resistance [13,14].
Tribaloys consist of Laves intermetallic phases dispersed in a solid solution of Co, and
the fraction of the Laves phase is dictated by the composition of the alloy. Mo and Si are
added in excess of their respective solubility limits to promote the precipitation of the
Laves phase [15–17]. Tribaloy T-800 is one of the most common commercial compositions,
consisting of 28.5 wt.% molybdenum, 17.5 wt.% chromium, 3.4 wt.% silicon, and balance
cobalt. It exhibits the largest content of the Laves phase, imparting it with high wear resis-
tance and hardness [18]. Previous work by the authors has established Tribaloy particles
as a promising candidate to be deposited by electroless plating, creating Ni-P-Tribaloy
composite coatings [19].

Abrasion is damage to a solid surface that is in sliding contact with a harder material.
There are two forms of abrasive wear: two-body wear occurs when asperities on a harder
or rougher surface slides against a softer surface, and three-body wear occurs when loose
hard particles are trapped between two sliding surfaces [20,21]. Plowing and cutting are
two of the main wear mechanisms that result from abrasive wear. Cutting refers to a
harder asperity cutting the softer material forming a chip that is removed as wear debris.
Plowing refers to the sideways displacement of the material from the surface forming a
groove with a ridge on both sides [20,22]. In an ideal case, micro-plowing due to a single
pass of one hard particle does not result in material removal from the surface; however,
material loss will occur through multiple abrasive particles acting simultaneously [23].
Low-stress abrasion testing, using the ASTM G65 standard [24], is a dry sand/rubber
wheel abrasion test that is often used to simulate wear in different applications [23–25].
In low-stress abrasion, there is low applied contact pressure between the test specimen
and the abrasive particles, and the particles remain unbroken during the wear process,
as opposed to high-stress abrasion, where they are crushed. Higher contact pressure is
associated with deeper indentations and promotes the cutting mechanism [21,23]. The
ASTM G65 test is a standardized abrasion test that allows for the comparison of materials
based on their measured volume loss following this test procedure. This test is essential
when investigating the abrasive wear of the coating, in order to evaluate its suitability for
applications where abrasion wear resistance is required, namely in the oil and gas industry,
where the lifespan of pipelines could potentially be prolonged by this protective coating.

Previous work by the authors [19], investigating the scratch and indentation behavior,
reported positive results for the Ni-P-Tribaloy composite coating regarding its properties in
comparison with the Ni-P coating, especially its enhanced toughness. This work aims to fill
the research gap regarding use of Tribaloy as reinforcement particles in electroless coatings,
combining the advantages of the electroless plating method over other techniques and
the high wear resistance of the alloy. The objective of this study is to assess the low-stress
abrasion of the Ni-P-Tribaloy coating to further understand the coating’s wear behavior.
The ASTM G65 test is useful to determine the abrasion wear mechanisms. This present
work will examine the wear scar, determine the operative wear mechanisms, and quantify
the wear rate.

2. Materials and Methods
2.1. Coating Preparation

The substrates employed in this study were rectangular AISI 1018 steel specimens
with dimensions of 25.4 mm by 76.2 mm and a thickness of 12.7 mm, in accordance with
the size specified in the ASTM G65 standard. Table 1 shows the composition of AISI 1018.
CoCrMoSi powder acquired from Nanoshel was employed as reinforcement particles in this
composite coating. The composition of the powder was 29% molybdenum, 17% chromium,
3.5% silicon, and balance cobalt. The powder size distribution is shown in Figure 1. The
powder analysis reveals a bimodal distribution. The major sizes found were 3 and 40 µm.
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The values of the distribution D10, D50, and D90 were revealed as 1.65, 7.21, and 54.8 µm,
respectively. The morphology of the as-received powder by scanning electron microscopy,
or SEM, is shown in Figure 2.

Table 1. AISI 1018 steel chemical composition.

Element C Mn Cu Cr Si P Fe

wt.% 0.182 0.754 0.186 0.181 0.095 0.04 Bal.
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Figure 2. Tribaloy powder SEM image.

Prior to coating, the pre-treatment process consisted of grinding the steel specimens
with 240, 320, 400, and 600 SiC abrasive papers, then polishing them with 9 µm diamond
solution, followed by immersing in an alkali solution for 5 min at 80 ± 5 ◦C, and finally
immersing in sulfuric acid (20 vol.%) for 15 s for surface activation. The alkali solution had
the following ingredients: 30 g/L Na3PO4, 50 g/L NaOH, and 30 g/L Na2CO3. Rinsing of
the specimens was carried out between every step with distilled water.

The prepared specimens were suspended inside a 1 L monolithic Ni-P plating bath
for 40 min in order to deposit a thin pre-coating Ni-P layer for the purpose of improving
the coating adhesion with the steel specimen. Then, the specimens were suspended in
the composite 1 L plating bath containing Ni-P plating solution and 0.1 g/L powder
concentration for 4.5 h at 88 ± 2 ◦C. Ammonium hydroxide was added as needed to
maintain a pH of 4.7 ± 0.2. The plating duration of the monolithic Ni-P samples produced
for comparison was 3 h.
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2.2. Coating Characterization

The surface of the coating and its cross-section were inspected by confocal laser
scanning microscopy (Keyence Corporation, Osaka, Japan), or CLSM, as well as scanning
electron microscopy (Hitachi High-Tech, Tokyo, Japan). The composition of the coating
was analyzed via energy dispersive spectroscopy employed by the SEM (EDS).

The microhardness values of the coatings were taken, in GPa, utilizing a PB 1000
mechanical tester from NANOVEA (NANOVEA Inc., Irvine, CA, USA). Microhardness
tests were carried out on the polished surfaces of the coatings using a Vickers indenter with
6N of applied load. The repeatability of the recorded values was ensured by performing
repeating the indents on both samples.

2.3. Low-Stress Abrasion Test

Low-stress abrasion tests were carried out according to ASTM G65 standards in order
to evaluate the abrasion resistance using a dry sand/rubber wheel apparatus. The tests
performed in this study followed procedure D as outlined in the ASTM G65 standard,
which is a relatively lighter load variation of the test. This procedure is appropriate for thin
coatings such as the coatings being tested here.

The force applied against the specimen in this test was 45 N, and the test was per-
formed at 10-revolution increments, at 200 RPM, until coating failure was observed, which
was indicated by the exposure of the substrate underneath the coating layer. The sam-
ples were weighed between each step (10 cycles) and recorded to express the abrasion
rate in terms of material loss. A schematic diagram of the test apparatus is shown in
Figure 3. A rubber wheel of 221.4 mm diameter and 12.84 mm width was used, along with
semi-rounded silica sand having an average particle size of 212–300 µm. The particle size
distribution is provided in Figure 4. The sand flow rate was between 300–400 g/min.
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3. Results
3.1. Coating Characterization

Composite Ni-P-Tribaloy coatings were successfully deposited on AISI 1018 steel
substrates. A representative portion of the coating cross-section is shown in Figure 5,
exhibiting excellent bonding at the substrate-coating interface and successful incorporation
of the Tribaloy particles within the coating matrix. The thickness of the coating varies
across the surface ranging from approximately 32 to 50 µm, including an 8 µm pre-coating
layer for adhesion with the substrate. The variation in thickness is due to the presence of
the Tribaloy particles in the coating as the larger particles themselves are being coated with
Ni-P, as seen in Figure 5, resulting in thicker layers over large particles compared to areas
with smaller particles. This occurrence has resulted in a rough surface of the composite
Ni-P-Tribaloy coatings. The surface roughness value (Sa) was found to be 35 µm. SEM
images of the surface and cross-section revealing the roughness of the coating surface is
shown in Figure 6.
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To determine the chemical composition of the coating, EDS analysis was carried out
on its surface. Table 2 provides the Ni-P-Tribaloy composition by weight %. The existence
of the four elements of the Tribaloy was confirmed in the coating: Co, Mo, Cr, and Si. Based
on this composition, the coating is reported to consist of 16.5 wt.% of Tribaloy, or 15.7 vol.%
Tribaloy, in the Ni-P matrix.
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Table 2. Composition of Ni-P-Tribaloy.

Element Ni P Cr Mo Si Co

wt.% 74.62% 8.88% 3.94% 2.81% 1.42% 8.33%

The Vickers microhardness of the Ni-P-Tribaloy was determined as an average of four
measurements and compared to monolithic Ni-P coating for comparison. Figure 7 graphi-
cally presents the average values for both types of coatings, with error bars that represent
the measurements’ standard deviation. The microhardness of the monolithic Ni-P coating
is 5.36 GPa, falling within range of the microhardness in the literature: 5–6.5 GPa [26].
While the microhardness of the Ni-P-Tribaloy composite coating was found to be 6.00 GPa,
which is 12% higher. The high hardness of the composite coating is ascribed to the presence
of the much harder Tribaloy alloy particles in the Ni-P coating. Furthermore, AISI 1018
steel typically exhibits a microhardness of 1.7 GPa [22], significantly lower than that of
both coatings.
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3.2. Abrasion Wear Scar

Low-stress abrasion tests were performed on Ni-P-Tribaloy coating samples, as well
as Ni-P coatings samples, until the steel substrates were first exposed and detected using
visual inspection after each step. The resulting wear scars on both coatings are shown in
Figure 8. The wear scars were rectangular in shape, fitting the description of an even and
uniform scar as described in the ASTM G65 standard. This confirms the proper alignment
of the apparatus setup and the accuracy of the test. The dimensions of the wear scars were
roughly 25.4 mm long and 12.7 mm wide.

The 3D topographic scanning of the CLSM was utilized to analyze these wear scars.
For each wear scar, a 3D scan was generated and the average profile across the scar width
was produced by the averaging of 1500 horizontal lines at intervals of 5.3 µm across the
middle, covering 7.95 mm of the middle of each scar, provided in Figure 9. It should be
noted that the scar profile of the Ni-P coating is smoother as expected, because of the
roughness of the Ni-P-Tribaloy coating surface prior to the abrasion leading to a rougher
wear scar.



Coatings 2023, 13, 1647 7 of 16

Coatings 2023, 13, x FOR PEER REVIEW 7 of 17 
 

 

3.2. Abrasion Wear Scar 

Low-stress abrasion tests were performed on Ni-P-Tribaloy coating samples, as well 

as Ni-P coatings samples, until the steel substrates were first exposed and detected using 

visual inspection after each step. The resulting wear scars on both coatings are shown in 

Figure 8. The wear scars were rectangular in shape, fitting the description of an even and 

uniform scar as described in the ASTM G65 standard. This confirms the proper alignment 

of the apparatus setup and the accuracy of the test. The dimensions of the wear scars were 

roughly 25.4 mm long and 12.7 mm wide. 

 

Figure 8. Pictures of wear scars on (a) Ni-P-Tribaloy and (b) Ni-P coating samples. 

The 3D topographic scanning of the CLSM was utilized to analyze these wear scars. 

For each wear scar, a 3D scan was generated and the average profile across the scar width 

was produced by the averaging of 1500 horizontal lines at intervals of 5.3 μm across the 

middle, covering 7.95 mm of the middle of each scar, provided in Figure 9. It should be 

noted that the scar profile of the Ni-P coating is smoother as expected, because of the 

roughness of the Ni-P-Tribaloy coating surface prior to the abrasion leading to a rougher 

wear scar. 

 

Figure 9. Shape and average profile of wear scars for (a) Ni-P-Tribaloy and (b) Ni-P. 

Figure 8. Pictures of wear scars on (a) Ni-P-Tribaloy and (b) Ni-P coating samples.

Coatings 2023, 13, x FOR PEER REVIEW 7 of 17 
 

 

3.2. Abrasion Wear Scar 

Low-stress abrasion tests were performed on Ni-P-Tribaloy coating samples, as well 

as Ni-P coatings samples, until the steel substrates were first exposed and detected using 

visual inspection after each step. The resulting wear scars on both coatings are shown in 

Figure 8. The wear scars were rectangular in shape, fitting the description of an even and 

uniform scar as described in the ASTM G65 standard. This confirms the proper alignment 

of the apparatus setup and the accuracy of the test. The dimensions of the wear scars were 

roughly 25.4 mm long and 12.7 mm wide. 

 

Figure 8. Pictures of wear scars on (a) Ni-P-Tribaloy and (b) Ni-P coating samples. 

The 3D topographic scanning of the CLSM was utilized to analyze these wear scars. 

For each wear scar, a 3D scan was generated and the average profile across the scar width 

was produced by the averaging of 1500 horizontal lines at intervals of 5.3 μm across the 

middle, covering 7.95 mm of the middle of each scar, provided in Figure 9. It should be 

noted that the scar profile of the Ni-P coating is smoother as expected, because of the 

roughness of the Ni-P-Tribaloy coating surface prior to the abrasion leading to a rougher 

wear scar. 

 

Figure 9. Shape and average profile of wear scars for (a) Ni-P-Tribaloy and (b) Ni-P. Figure 9. Shape and average profile of wear scars for (a) Ni-P-Tribaloy and (b) Ni-P.

3.3. Abrasion Rate

All specimens were weighed at the start of the abrasion test and continuously after
each 10-revolution step to track the material loss due to abrasion. The tests results were
expressed as volume loss in mm3 in accordance with the ASTM G65 standard to allow
for comparison with other materials. The cumulative abrasion volume loss is plotted in
Figure 10 against the number of wheel revolutions for the Ni-P-Tribaloy and Ni-P coatings.
The test was replicated on a separate sample for each material to ensure the repeatability of
the results, and the average values were plotted with the standard deviation represented by
error bars. The measurements for the Ni-P samples were extremely close in value; therefore,
their error bars are too small to appear on the Ni-P curve.
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Figure 10. Abrasion volume loss against wheel revolutions.

One Ni-P-Tribaloy specimen was deemed to fail after 100 revolutions upon visual
inspection and noticing the initial exposure of the steel. The second sample failed after
90 revolutions. On the other hand, both Ni-P specimens failed after only 50 revolutions.
The number of revolutions is directly proportional to the degree of wear that the surface
experiences. The volume loss for each case increases as wear is progressing, as expected,
which follows the general model of abrasion [27]. It was revealed that the Ni-P-Tribaloy
composite coating had experienced more volume loss compared to the monolithic Ni-P
at any given point, under the exact same conditions. After 50 revolutions where the Ni-P
coatings failed, the total volume loss of the Ni-P-Tribaloy and the Ni-P coatings were 13.0
and 6.80 mm3, respectively. The high amount of volume loss in the Ni-P-Tribaloy coating
is a result of the Tribaloy particles becoming detached as the surrounding Ni-P matrix is
worn away, leaving holes in the coating surface, and subsequently, being caught under the
rubber wheel and pushed against the test surface, adding to the three-body wear effect, that
heavily influences the wear rate when the hard alloy particles are further sliding against
the surface of the coating, wearing it out [28]. Studies have shown that the size of abrasive
particles relative to the reinforcing particles in a metal matrix composite has an influence
on wear, such that particle pull-out or plough-off becomes prominent during ASTM G65
testing when the abrasive particles are larger than the reinforcing particles, which is the
case in this present study (Sections 2.1 and 2.3), as opposed to wear being primarily caused
by the loss of matrix when the abrasive particles are small [29,30].

It is important to note that the Ni-P-Tribaloy coating specimens lasted longer in this
test despite more material loss due to the discrepancy in the initial thicknesses. The Ni-P
coatings tested in this study had a thickness of 33 µm, which is thinner than that of the
composite coating discussed in Section 3.1. The Ni-P-Tribaloy wear scar was deeper and it
was subject to more abrasion.

The abrasion wear rate was taken as the slope of the linear portion of the volume loss
curve in mm3 per revolution. It can be seen that the wear rate decreased with progressing
wear for the Ni-P-Tribaloy coating, as the rough surface was flattened, while the wear rate
of Ni-P remained constant throughout the experiment. The wear rate of the Ni-P-Tribaloy
coating was calculated to be 0.170 mm3 per revolution. In comparison, the Ni-P coating had
a lower wear rate of 0.135 mm3 per revolution. This can be attributed to the considerably
higher roughness of the composite coating, as reported in several studies correlating higher
wear rates to higher surface roughness [31–33].
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3.4. Wear Scar Analysis

Upon the examination of the wear scar on the Ni-P-Tribaloy coating surface using SEM,
the first feature observed at low magnification was the flattening of the coating surface.
The rough coating surface prior to the test is due to some of the Tribaloy particles on the
surface being coated over by the Ni-P around them, as discussed in Section 3.1, resulting in
a high roughness by creating the asperities on the surface seen in Figures 5 and 6. The SEM
images in Figure 11 illustrate the flattening that occurs at the edge of the abrasion wear
scar, indicating their location on the scar. The insert images in the upper right corners are
where the larger images were taken relative to the wear scar. It can be seen in Figure 11b
that the surface at the edge of the wear scar is relatively smooth compared to the coating
surface in Figure 6a using the same image scale, as the roughness is being flattened (rather
than polished) due to the sliding. As the specimen was inspected further towards the
middle of the scar, it was found that the surface is even smoother, as the asperities are
being further flattened and pressed in. This is due to the nature of the contact between
the rubber wheel and test specimen and their respective orientations as illustrated by the
diagram in Figure 12 showing the contact area between the wheel and the specimen. There
is less/shallower contact between the two at the edge of the wear scar and it undergoes
less abrasion, whereas inside the scar there is deeper contact, thus more flattening of
the material.
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Figure 13 shows representative images of the abrasion from inside the wear scar. It was
found that plowing is the dominant wear mechanism in the abrasion of this Ni-P-Tribaloy
coating. Material is being is squeezed out and pushed to the sides to form ridges, which
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is typical of the plowing mechanism. The coating is deformed by plastic deformation as
each abrasive particle is extruding the surface and sliding over it. Large and semi-angular
abrasive particles slide on the surface and cause wide and shallow grooves, as seen here,
as opposed to deeper grooves and a cutting mechanism that would occur in the case of
sharp abrasive particles with sharp corners, resulting in more damage. An instance of a
deep groove, likely due to a sharp corner on an abrasive particle, is shown in Figure 14.
Although some deep grooves that are indicative of a cutting mechanism were found, they
were not significant, and they cannot be considered the dominant mechanism. It should
be noted that the ridges formed do not slide in one direction; particles are being pushed
against the surface and they slide in different directions, and the grooves intersect as seen in
Figure 13a. The hardness of the Ni-P-Tribaloy coating also contributes to its wear resistance,
as studies have shown that the penetration depth on the worn surface by the abrasive
particles is proportional to the ratio of hardness to applied force [34,35].

Coatings 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 12. Illustrative diagram of the wheel–specimen contact area. 

Figure 13 shows representative images of the abrasion from inside the wear scar. It 

was found that plowing is the dominant wear mechanism in the abrasion of this Ni-P-

Tribaloy coating. Material is being is squeezed out and pushed to the sides to form ridges, 

which is typical of the plowing mechanism. The coating is deformed by plastic defor-

mation as each abrasive particle is extruding the surface and sliding over it. Large and 

semi-angular abrasive particles slide on the surface and cause wide and shallow grooves, 

as seen here, as opposed to deeper grooves and a cutting mechanism that would occur in 

the case of sharp abrasive particles with sharp corners, resulting in more damage. An in-

stance of a deep groove, likely due to a sharp corner on an abrasive particle, is shown in 

Figure 14. Although some deep grooves that are indicative of a cutting mechanism were 

found, they were not significant, and they cannot be considered the dominant mechanism. 

It should be noted that the ridges formed do not slide in one direction; particles are being 

pushed against the surface and they slide in different directions, and the grooves intersect 

as seen in Figure 13a. The hardness of the Ni-P-Tribaloy coating also contributes to its 

wear resistance, as studies have shown that the penetration depth on the worn surface by 

the abrasive particles is proportional to the ratio of hardness to applied force [34,35]. 

 

Figure 13. SEM images of grooves formed by plowing on Ni-P-Tribaloy at (a) lower and (b) higher 

magnification. 
Figure 13. SEM images of grooves formed by plowing on Ni-P-Tribaloy at (a) lower and (b) higher
magnification.

Coatings 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 14. An example of a cutting deep groove on Ni-P-Tribaloy. 

Furthermore, there is also compaction that occurs, along with plowing, arising from 

the applied load and the contact between the rough surface and the rubber, where the 

material is pressed in by that contact. Areas where the rough surface is being pressed in 

can be seen in the SEM image provided in Figure 15, while in the Ni-P samples in Figure 

16, mainly plowing is present. The compaction in the Ni-P-Tribaloy abrasion can be at-

tributed to the hardness of the Tribaloy particles. They cannot be easily removed from the 

coating by plowing, the coating is plowed over them and they are compressed in. This is 

also evident in Figure 17, showing the cross-section, where the Tribaloy particles are pro-

truding from the Ni-P matrix while the material around them is removed by plowing, and 

subsequently the particles are removed. 

 

Figure 15. SEM image of Ni-P-Tribaloy abrasion wear scar. 

Figure 14. An example of a cutting deep groove on Ni-P-Tribaloy.

Furthermore, there is also compaction that occurs, along with plowing, arising from
the applied load and the contact between the rough surface and the rubber, where the
material is pressed in by that contact. Areas where the rough surface is being pressed in
can be seen in the SEM image provided in Figure 15, while in the Ni-P samples in Figure 16,
mainly plowing is present. The compaction in the Ni-P-Tribaloy abrasion can be attributed
to the hardness of the Tribaloy particles. They cannot be easily removed from the coating by
plowing, the coating is plowed over them and they are compressed in. This is also evident
in Figure 17, showing the cross-section, where the Tribaloy particles are protruding from
the Ni-P matrix while the material around them is removed by plowing, and subsequently
the particles are removed.
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4. Discussion

Based on the findings presented in this work, the wear mechanism of the Ni-P-Tribaloy
composite coating can be described as follows: the Ni-P matrix above and around the
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Tribaloy particles is plastically deformed by the plowing mechanism while the particles are
held in the matrix. Once the matrix around the particles is worn out and the particles are
protruding, the particles are then pulled out, leaving large gaps as they are large particles.
The continuous plowing carries on removing the matrix material until the entire coating
thickness is worn out. This mechanism is illustrated in the schematic given in Figure 18.
The four steps are plowing of the matrix, protrusion of reinforcement particles, particle
pull-out, and removal of the rest of the matrix while the trapped reinforcement particles
contribute to the three-body abrasive wear. A similar wear mechanism was reported by
Surzhenkov et al. [36], who observed the wear process happening in two stages in which
the matrix was first destroyed and then the loose reinforcement particles (WC-Co) were lost.
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Figure 18. Schematic diagram of MMC wear mechanism during dry sand/rubber wheel abrasion.

Instances of this mechanism were captured with SEM in the abraded cross-section of
the composite, verifying the existence of this wear mechanism. Figure 19a points out a
Tribaloy particle, in the worn-out matrix, that is slightly protruding and on the verge of
being exposed as the Ni-P matrix around it continues to undergo further wear. This particle
would then protrude out of the matrix enough to be pulled out of the matrix. Figure 19b
reveals areas of particle removal where the pulled out Tribaloy particles leave gaps in
the matrix where they were once situated. It should be noted that these images are from
different locations in the coating; however, they depict the steps outlined here as they are
in different stages of the wear mechanism and they would follow the same steps under
further wear.
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Regarding the particle removal process itself within the described wear mechanism,
consider the microscopic image given in Figure 20. It can be seen that the Tribaloy particle
is beginning to detach from the matrix, likely accelerated by delamination. Delamination
occurs under loading where the cracks develop beneath the surface at maximum shear stress
and extend parallel to the surface, ultimately causing delamination. When reinforcement
particles are present, delamination will occur at the interface between the matrix and the
particle as it is a weaker area compared to the matrix and the particles. Researchers have
reported that the interface plays an important role in this delamination mechanism. The
particle-matrix interface has been established in the literature as a favorable area for crack
formation and propagation during sliding wear of metal matrix composites (MMC), and
that interfacial bond is stronger when the reinforcement particles are nano-sized over micro-
sized [37–39]. Thus, the Tribaloy particle in Figure 20 is exhibiting detachment caused by
delamination at the coating particle–matrix interface.
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Figure 20. Tribaloy particle detachment from Ni-P matrix.

Hence, the controlling parameters influencing the wear mechanism of the Ni-P-
Tribaloy coating are the sizes of the reinforcing particles and abrasive particles, and the
hardness of the overall coating matrix, the reinforcing particles, and abrasive particles.

Reddy et al. [40] suggested that the integrity of a Ni-P composite coatings can be
improved with smaller particles, as they are easier to be held by the matrix in a study that
ascribed worse wear resistance to larger second-phase particles. The higher wear rate of
the Ni-P-Tribaloy compared to the monolithic Ni-P coating in the results (Section 3.3) was
mainly attributed to the high surface roughness and particle pull-out; both are directly
linked to the large Tribaloy particle size. Moreover, studies comparing micro- and nano-
sized particles in MMCs have shown that micro-sized particles exhibit higher wear loss
due to delamination, while nano-sized particles provided better resistance to delamina-
tion due to having stronger bonding at the particle-matrix interface where delamination
occurs [37,39]. Additionally, larger particles leave larger gaps when they are pulled out;
hence, the measured wear loss will be higher.

Particle pull-out was also linked to the abrasive particles size in the results presented
earlier. The larger the abrasive particles, the more prominent particle pull-out becomes over
wear by loss of matrix. Additionally, the more rounded the abrasive particles are, the more
dominant plowing becomes over cutting, which is more severe and leads to deeper grooves
when the abrasives have sharp edges [41]. Some micro-cutting was observed here, because
the abrasive particles used are semi-angular. The literature suggests that micro-cutting is
present when the hardness of the abrasives are higher than the hardness of the abraded
surface [36]. The composite coating hardness is 6.00 GPa, and the Ottawa silica sand used
in this test typically has hardness values of around 10.7–13.0 GPa [42,43].

The overall hardness of the composite coating matrix influences the wear resistance
positively such that depth of the wear grooves on the abraded surface is shallower when
the surface of the material is harder. The hardness of the Tribaloy particles themselves



Coatings 2023, 13, 1647 14 of 16

makes it more difficult for them to be pulled out from the matrix from plowing. Wear
loss from particle pull-out is discussed extensively in this study; however, as long as the
particles are embedded in the matrix and not protruding out of it, they are able to resist
plowing. The hardness of the Tribaloy particles is also evident in all the provided figures
where none of particles were fractured at different stages of wear.

5. Conclusions

Electroless Ni-P-Tribaloy composite coatings were prepared on AISI 1018 steel and
tested under low-stress abrasion according to ASTM G65 standards to investigate their
abrasion wear thoroughly. The composite coating had a composition of 15.7 vol.% Tribaloy
and a thickness of 32–50 µm, with high surface roughness associated with this variation in
thickness. The microhardness was measured to be 6.00 GPa with a Vickers indenter.

Uniform and even wear scars were observed on the test surfaces after the abrasion
tests were carried out. The Ni-P-Tribaloy tests lasted 90 and 100 revolutions before failure,
defined as the first appearance of the steel substrate, while the thinner Ni-P coating samples
lasted 50 revolutions. The volume loss after 50 revolutions were 13.0 and 6.80 mm3 for
Ni-P-Tribaloy and the Ni-P, respectively. Additionally, the wear rates were calculated to be
0.170 and 0.135 mm3 per revolution, respectively. The composite experienced higher loss
of volume because of the large size of Tribaloy particles being pulled out of the track and
amplifying the three-body wear.

Flattening of the roughness was noted by examining the edge of the wear scar and
comparing areas inside and outside of the scar. The plowing mechanism was determined
to be the dominant wear mechanism in the low-stress abrasion of the Ni-P-Tribaloy coating.
The coating surface was plastically deformed as the material was extruded to the sides by
the round abrasive particles sliding over it, creating wide and shallow grooves. Compaction
was also observed in the wear scar as the coating matrix was pressed over the Tribaloy
particles, indicative of the high hardness of the particles.

The wear mechanism of the composite Ni-P-Tribaloy coating has two main stages:
plowing of the Ni-P matrix, followed by the removal of the Tribaloy particles. The particle
removal process is caused by delamination that occurs at the coating particle–matrix
interface. The controlling parameters of the wear mechanism are the sizes of the reinforcing
particles and abrasive particles, and the hardness values of the overall coating matrix,
the reinforcing particles, and abrasive particles. The large size of the Tribaloy contributes
significantly to the wear of the composite coating as it increases the roughness, leaves large
gaps, and enhances the delamination at the particle–matrix interface bonding. Further
studies are needed using finer (nano-sized) Tribaloy particles in an effort to improve the
wear resistance of the composite coating.
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