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Abstract: The present study investigated the surface morphology, phase composition, mechanical
properties, and corrosion resistance of Ni-W alloy coatings prepared under current densities of
1–5 A/dm2, after undergoing heat treatment at 400 ◦C, 600 ◦C, and 900 ◦C. The grain size of the
as-plated Ni-W alloy coating was below 10 nm. After heat treatment at different temperatures,
the grain size increased, reaching a maximum value of around 30 nm at 900 ◦C. Heat treatment
crystallized and altered the structure of the coating. Different heat treatment temperatures yielded
different precipitates, including Ni4W, Ni6W6C, and WC. The highest coating hardness (820–940 Hv)
was achieved at 400 ◦C, while the best corrosion resistance was achieved at 600 ◦C. The precipita-
tion hardening phase can be obtained by proper heat treatment temperature, yielding the desired
properties of the composite coating.

Keywords: nanocrystalline alloys; electrodeposition; high tungsten content; grain growth

1. Introduction

Cemented carbide is a high-hardness, wear-resistant composite material made from
tungsten carbide particles bonded with a metal binder such as cobalt or nickel, primarily
used in cutting tools and wear-resistant components. Its main component is refractory
metal carbide (WC, TiC) micron powder with high mechanical strength, with molybdenum
(Mo), nickel (Ni), and cobalt (Co) as binders [1]. Cemented carbide has excellent properties,
including high hardness, good strength and toughness, wear resistance, corrosion resis-
tance, and heat resistance. As a result, it is widely used in the military industry, aerospace,
mechanical processing, metallurgy, petroleum drilling, mining tools, electronics communi-
cations, construction, and other areas. Demand for cemented carbide is increasing due to
the development of downstream industry [2]. Recently, some researchers have focused on
Ni-W alloy coating since its wear resistance, hardness, and corrosion resistance are similar
to cemented carbide [3,4].

Heat treatment could improve the hardness and abrasion resistance of Ni-W alloy
coating, which could improve the performance of Ni-W alloy coating [5]. Vamsi et al. [6]
found that heat treatment affects the microstructure and mechanical properties of pulse
electrodeposited Ni-W alloy coatings by inducing amorphous phase crystallization and
second-phase precipitation. Additionally, they found that heat treatment improves the
coating hardness due to the diffusion reinforcement of precipitation and the barrier effect
of grain boundary on dislocation. Some studies have also found that carbon impurities are
common contaminants in Ni-W alloy preparation and that carbon plays a key role in the
thermal stability of nanocrystalline Ni-W alloy [7–9]. Therefore, the common Ni-W alloy
coating was Ni-W-C ternary alloy. The carbide could be precipitated from the coating by
heating the Ni-W alloy under certain parameters. WC has been synthesized in situ by laser
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cladding, improving the properties of Ni coating and Co alloy coating [10,11]. Su et al. [12]
found that the high-frequency induction heat treatment of Ni-W alloy coating yielded Ni4W
and Ni6W6C precipitates, achieving a 1100 Hv coat hardness. Lee et al. found that Ni4W
and Ni6W6C were obtained by irradiating Ni-W alloy at room temperature and annealing
at 850 ◦C [13].

Hard particles, such as WC [14], TiN [15], TaC [16], SiC [17], Al2O3 [18], and ZrO2 [19],
were added to the Ni-W electrolyte to prepare composite coatings, improving the mechan-
ical properties and corrosion resistance of Ni-W alloy. However, composite plating has
several drawbacks, such as high equipment requirements and complex operations. Addi-
tionally, increasing the quantity of composite particles in the coating is also challenging.
In a study by Yuan [20] et al., WC grains were synthesized in the W-Fe-Ni-C alloy system
by an in situ metallurgical reaction. The mechanism underlying the growth of the WC
grains was analyzed. Studies have predicted that, to a certain extent, when the appropriate
process parameters are used in the Ni-W-C alloy system, the second phase particles, such
as Ni6W6C and WC, precipitate from the coating and improve the hardness and wear
resistance of the composite coating.

Currently, the influence of carbon element in Ni-W alloy coatings is often overlooked,
and the impact of carbon element on the heat treatment of Ni-W alloy coatings is even less
addressed. Therefore, this study aims to investigate the phase analysis and mechanical
corrosion resistance of Ni-W alloy coatings prepared at various current densities under
different heat treatment temperatures, with a particular emphasis on examining the role of
carbon element in the Ni-W-C ternary system.

2. Materials and Methods

The electrodeposition experiment was performed using the DC supplied by a trans-
former rectifier (4–8 V), where the stainless steel was the anode, while the Q235 steel
plate with the size of 200 mm × 10 mm × 2 mm was the cathode. Before the experiment,
the steel plate was unoiled using an organic alkaline solution, and then the surface was
activated using a 10 wt.% H2SO4 solution. As shown in Table 1, the Ni-W alloy coatings
were prepared by applying pulse current with different pulse parameters at 65ºC from
aqueous electrolytes. Next, the plated samples were washed and dried with deionized
water. For better phase analysis, the coating was stripped from the substrate to obtain the
coating powder sample, eliminating the influence of interdiffusion between the coating and
the substrate during heat treatment. The deposited sample and coating powder samples
were placed in a vacuum tube furnace and protected by Ar gas. The temperature was
increased to 400 ◦C, 600 ◦C, and 900 ◦C at 10 ◦C/min and retained for 2 h. The specimens
were furnace cooled to room temperature and then removed for testing. The composition
of the bath and operating conditions are shown in Table 1.

Table 1. Ni-W alloy electrolyte and electroplating parameters.

Electrolyte Content (g/L) Function

NiSO4·6H2O 25 Ni source
Na2WO4 ·H2O 50 W source

Na3C6H5O7 ·2H2O (Trisodium
citrate) 45 Complexing agent

C6H8O (Citric Acid) 5.5 Complexing agent
C7H5NO3S (Saccharin) 0.8 Softener

Parameters Value
Temperature (◦C) 65

Current density (A/dm2) 1,2,3,4,5
pH 8

Cathode Q235
Anode Stainless steel

Stirring speed (rpm) 400
Heat treatment temperature (◦C) 400,600,900



Coatings 2023, 13, 1651 3 of 17

The surface morphology and microstructure of Ni-W alloys were studied using the
scanning electron microscope (SEM FEI Quanta 200, Hillsboro, OR, USA) and transmission
electron microscope (TEM JEOL JEM-2100, Tokyo, Japan). The composition of the coating
was analyzed using an X-ray energy dispersive spectrometer (EDS Oxford Instruments X-
Max N 80, Oxford, UK), while the Ni-W alloy coating was analyzed using X-ray diffraction
(XRD Bruker D8 Advance, Shanghai, China) with Cu Kα radiation wavelength, a 2θ
angle range of 30◦ to 100◦, and a scanning speed of 3◦/min. The energy changes and
reaction of the coating in response to the changes in temperature were measured using
differential scanning calorimetry (DSC TA Instruments Q200, New Castle, PA, USA). The
heating rate was 10 ◦C/min. The electrocatalytic stability of Ni-W alloy coatings was
tested using an HXS-1000A(Shanghai, China) microhardness tester under a 50 g load by
monitoring the electrode reaction for 10 s. The average five-point values were obtained as
the microhardness of the coating. The wear and friction coefficient (COF) of Ni-W samples
was evaluated using ball-disk friction and a wear tester(UT-3000 AEP, Hillsboro, OR, USA),
and Al2O3 balls with a diameter of 3 mm were the grinding materials for the coating.
The wear tests were conducted under dry conditions (25 ◦C, 35% relative humidity, no
lubricant) at a 5 N load and 5 cm/s sliding speed. Sample mass loss was calculated by
weighing the mass of the sample before and after the friction and wear testing using a
thermal analytical balance.

Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were
used to determine the corrosion resistance of the coating before and after heat treatment.
Measurements were performed in 5wt.%NaCl solution using a three-electrode system and
an electrochemical system (Autolab PGSTAT302N, Herisau, Switzerland). The platinum
electrode was used as the auxiliary electrode, and the saturated calomel electrode (SCE)
was used as the reference electrode. The potentiodynamic curve was recorded in the
potential range of an open-circuit potential ±100 mV to achieve a rate of av = 1 mV/s.
Electrochemical impedance spectroscopy measurements were performed for the anode, the
cathode, and the AC signal at an open-circuit potential. The amplitude of AC signal used
in these measurements was 10 mV. The frequency range of 100 kHz to 0.01 Hz covered
12 points per 10 octaves, and all electrochemical tests were carried out at 25 ◦C.

3. Results and Discussion
3.1. Surface Morphology and Composition

Figure 1 shows the Ni-W alloy coating micro-morphology at different current densities
and heat treatment temperatures. The surface morphology of as-deposited Ni-W alloy
coating depends on the current density. For example, the crystal of the coating is needle-like
when the current density is 1 A/dm2. However, the crystal of the coating changes from
being needle-like to being a mixture of needle-like and cellular crystals when the current
density increases to 2 A/dm2. The crystallization changes completely to cellular crystal
when the current density exceeds 3 A/dm2. The cellular crystal is a cluster composed of fine
grains grown or formed in a certain group or cluster. Moreover, the cluster increases with a
high current density since the low current density benefits the slow discharge of metal ions
in the cathode [21]. Therefore, the grain growth rate is faster than the nucleation rate of
new grains. Generally, the high current density promotes grain refinement. Increasing the
current density leads to a higher over potential which increases the nucleation rate, leading
to the needle-like transformation of grains into cell assembly. These results are consistent
with the results of Popczyk [22]. The high current density motivated a strong hydrogen
evolution reaction, which increased the surface roughness of the coating. The W content in
Ni-W alloy coating increased from 23 wt.% at 1 A/dm2 to 44.9 wt.% at 5 A/dm2 with high
current density (Figure 2). The Ni-W alloy coating was completely amorphous when the W
content was more than 40 wt.%.
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Figure 1. The Ni-W alloy coating micro-morphology under different current densities (a—1 A/dm2,
b—2 A/dm2, c—3 A/dm2, d—4 A/dm2, e—5 A/dm2) and heat treatment temperature (as-deposited
400–400 ◦C, 600–600 ◦C, and 900–900 ◦C).
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Therefore, the surface morphology of the cellular crystals in the shape of broccoli
clusters with high current density [23]. Figure 1 shows the coating morphology with
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acicular crystals at low current density were replaced by cellular crystals after heat treatment
at 400 ◦C, indicating that the solid solution of W in Ni was more uniform under 400 ◦C
heat treatment. In addition, the square particles precipitated in 5 A/dm2 (Figure 1e-400).
The coating surface was smooth and no longer showed the surface morphology of cellular
crystals after heat treatment at 600 ◦C, increasing with a high current density. Spherical
particles precipitated at 2−5A/dm2. Great changes occurred in the surface morphology of
Ni-W alloy coating at various current densities after heat treatment at 900 ◦C, and several
spherical particles precipitated on the coating surface.

Figure 3 shows the mapping of the Ni-W alloy coating at different treatment temper-
atures. The distribution of elements on the surface of the coating was still uniform after
heat treatment at 400 ◦C. The uniform distribution of Ni and W elements in the coating
decreased, and the carbon elements began to aggregate in a small range under high tem-
peratures, indicating that the originally uniformly dispersed carbon elements reacted with
metals to form carbides. The W-rich and Ni-rich phases were formed on the surface of the
coating at 900 ◦C. The carbon elements were concentrated in the position of the W-rich
phase, indicating the possibility of forming Ni-W-C or intermetallic compounds of the
W-C system. As shown in Figure 4, the analysis of the precipitated phase on the coating
surface using EDS revealed a cubic crystal Ni4W at 400 ◦C. According to the description of
the Ni-W alloy phase diagram [8], it is possible to yield Ni4W after heat treatment when
the W content in Ni-W alloy coating is 28 wt.%. The precipitated phase of Ni6W6C in the
heat-treated sample at 600 ◦C was cubic crystal, which is consistent with the research results
of Marvel [7]. Some carbon impurities are inevitably added to the coating due to organic
complexing agents such as citrate. The precipitated phase of Ni6W6C is often ignored. The
hexagonal WC precipitated on the coating surface after heat treatment at 900 ◦C for two
hours, growing into particles of 50–500 nm size during the heat treatment and distributed
uniformly in the coating similar to that of the composite coating.
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and schematic diagram of the crystal structure of Ni4W, Ni6W6C, and WC (d).

3.2. Phase Analysis

The phase composition of the as-deposited Ni-W alloy cladding was found to be
independent of current density. Figure 5a shows the XRD spectra of the electrodeposited
Ni-W alloy at different current densities. The Ni (W) solid solution and Ni (fcc) had
similar characteristic peaks. The Ni diffraction peak was sharp at low current density.
The diffraction peak broadened, and its intensity decreased with the high current density.
Thus, the grain size of the coating gradually decreased and transitioned to an amorphous
state [24,25]. Due to the addition of W atoms with a larger atomic radius in the Ni matrix,
the characteristic peak of the Ni (W) solid solution shifted to a lower angle compared with
the standard peak of Ni (fcc), resulting in a larger lattice constant. Figure 5b–d shows the
XRD patterns of Ni-W alloy coatings with different current densities after heat treatment
at 400 ◦C, 600 ◦C, and 900 ◦C, respectively. The coating revealed a sharper peak after
heat treatment at 400 ◦C, indicating the coating crystallization, especially at 600 ◦C and
900 ◦C. The characteristic peak of the Ni (W) solid solution gradually shifted to a high
angle with the high heat treatment temperature, finally approaching the standard peak
of Ni (fcc). Thus, the segregation of the W element in the coating increased with a high
heat treatment temperature. In addition, high heat treatment temperature yielded Ni4W,
Ni6W6C, and WC in XRD patterns, which was consistent with the results in Figure 4.
Moreover, the precipitated phase was related to the heat treatment temperature and not the
current density. However, the deposited layer of 1 A/dm2 yielded no WC peak after heat
treatment at 900 ◦C, and the W content was too low.
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Figure 5. XRD patterns of coatings (exfoliated phase) at different current densities before heat
treatment (a) and after heat treatment at 400 ◦C (b), 600 ◦C (c), and 900 ◦C (d).

Figure 6 shows the grain size of each coating phase calculated before and after heat
treatment using the Scherrer formula. High currency density reduced the grain size of the
as-deposited layer. The (111) crystal plane of the coating increased a little in their grain
size after heat treatment at 400 ◦C, all of which were nanocrystals of 10nm, and the growth
slope increased with high current density. The as-deposited samples with different current
densities were analyzed using DSC to explain this phenomenon further since the (111)
crystal plane of the Ni-W alloy coating is dominant. As shown in Figure 7, endothermic
peaks exist in the thermal spectra of all coatings. The overall reaction was endothermic.
Thus, the coating crystallized, and the grains grew continuously at high temperatures. The
first endothermic peak for all coatings was in the range of 145.8–154.5 ◦C. Several organic
complexing agents enter the coating during the deposition process and are thus regarded
as the decomposition of organic matter [26]

Crystallization begins at the second endothermic peak (337.3–414.5 ◦C), and the peak
shifts to the left under high current density, indicating that the phase transition temperature
decreases with high current density. This may be because the W content increases with
high current density. High W content promotes grain boundary segregation during heat
treatment, which in turn reduces the grain boundary energy γ. The lower grain boundary
energy γ promotes the grain growth of Ni (W) solid solution [27,28], which is in agreement
with the results of Figure 6. However, a too-high W content affects the thermal stability
of the Ni-W alloy. Following heat treatment at 600◦C, the grain size of the Ni (W) solid
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solution was observed to increase, further increasing to 20–50 nm after heat treatment at
900 ◦C, yet the coating was still nanocrystalline. High heat treatment also increases the
grain size of Ni4W and Ni6W6C. WC precipitates only at 900 ◦C, and the grain size of the
deposited layer with different current densities is 25–30 nm.
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Figure 7. DSC thermal analysis diagram of Ni-W alloy coating prepared with different current densities.

The phase proportion of the deposit before and after heat treatment was further
analyzed using the semi-quantitative analysis of the RIR value [29] as shown in Formula (1):

RIRA = IA/Icol (1)
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IA and Icol are the integral strengths of the strongest peaks of phase A and reference
material (α-Al2O3), respectively. In the case of N phases in a system, the appropriate
fraction of phase i is given by the RIR value of each phase as shown in Formula (2):

Wi =
Ii/RIRi

∑N
i=1 Ii/RIRi

(2)

As shown in Figure 8, the proportion of the (111) crystal plane of the deposition layer
decreased with high heat treatment temperature and was not affected by current density.
The phase proportion of other crystal planes of Ni (W) solid solution fluctuates, with the
(200) crystal plane fluctuating the most. The proportion of Ni4W in the coating is low,
not exceeding 5 wt.% at different heat treatment temperatures, indicating that Ni6W6C is
preferentially precipitated at higher heat treatment temperatures. The Ni6W6C precipitation
is highest at 600 ◦C when the current density is 1–2 A/dm2 and highest at 900 ◦C when the
current density is 3–5A/dm2. Therefore, Ni6W6C formation is more favorable under high
tungsten. Otherwise, the formation reaction reaches equilibrium at a high temperature.
WC was produced, and its proportion increased from 0% (1 A/dm2) to 5%(5 A/dm2) only
during heat treatment at 900 ◦C. Therefore, a high W content in Ni-W alloy coating makes
it easier to form WC.
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5A/dm2 (e).

Figure 8 shows that the content of each crystal plane in Ni (W) solid solution varied
with the heat treatment temperature. We calculated the relative texture coefficient for each
crystalline plane of the coating using Formula (3) [30] to further quantify the change of
each crystal plane with the heat treatment temperature, characterizing the relative degree
of preferred orientation between all the crystal planes.

RTC(hkl) =
R(hkl)

∑n
1 R(hkl)

× 100%; R(hkl) =
Is(hkl)

Ip(hkl)
(3)
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where Is (hkl) and Ip (hkl) are the diffraction intensities of the (hkl) plane measured by the
deposition layer and the standard sample of Ni powder (JCPDSno.04–0850), respectively.
Table 2 shows that the Ni-W alloy coating had a preferred orientation in the as-deposited
state, and the RTC (111) decreased after heat treatment at 400 ◦C. However, the crystal plane
still had a growth advantage. The growth of the (111) crystal plane was further inhibited,
while the growth of the (200), (220), and (311) crystal planes was promoted, especially for
the (200) crystal plane, when the heat treatment temperature was 600 ◦C. The (111) and
(200) crystal planes were dominant growth planes. The relative texture coefficients of each
crystal plane of the coating were average and without the preferred orientation after heat
treatment at 900 ◦C. Therefore, the change of RTC was greatly affected by temperature and
not current density.

Table 2. The effects of heat treatment temperature on the relative texture coefficient of each crystal
plane of Ni-W alloy coating.

Current Density
(A/dm2)

RTC
(111) (200) (220) (311)

As-deposited
1 0.501 0.152 0.210 0.135
2 0.414 0.002 0.002 0.001
3 0.479 0.001 0.002 0.001
4 0.597 0.001 0.002 0.001
5 0.574 0.001 0.002 0.001

400
1 0.450 0.108 0.247 0.194
2 0.436 0.150 0.243 0.170
3 0.476 0.085 0.257 0.181
4 0.580 0.081 0.207 0.131
5 0.609 0.094 0.174 0.122

600
1 0.317 0.243 0.239 0.200
2 0.328 0.285 0.225 0.160
3 0.458 0.303 0.151 0.087
4 0.455 0.178 0.208 0.157
5 0.380 0.277 0.203 0.138

900
1 0.199 0.215 0.301 0.284
2 0.281 0.231 0.252 0.235
3 0.367 0.274 0.187 0.171
4 0.313 0.221 0.258 0.208
5 0.249 0.223 0.292 0.236

3.3. Mechanical Properties

The hardness of the Ni-W alloy coating decreased with large grain size, which accords
with the Hall–Petch relation. That is, small grain size increases grain boundary volume, hin-
dering the movement of dislocations and increasing the coating hardness [31,32]. Figure 9a
shows that the as-deposited sample tally with the Hall–Petch relation in the range of 1–
4A/dm2. In addition, the coating hardness decreased at 5 A/dm2 due to the transition of
the coating to nanocrystalline–amorphous at high current density. Studies have revealed
that when the grain size of Ni-W alloy coating is smaller than that of 10 nm, the hardness no
longer increases with small grain size, and there is no tally with the Hall–Petch relation [6].
The coating hardness greatly increased after heat treatment at 400 ◦C.
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Moreover, the grain size does not change much after heat treatment at 400 ◦C. There-
fore, grain size is unlikely to be the key to changing hardness. Ni4W may be uniformly
distributed in the coating after precipitation. On the one hand, Ni4W plays the role of
pinning, restraining grain growth, while on the other hand, it plays the effect of dispersion
strengthening similar to that of the composite coating. Some studies attribute this phe-
nomenon to the relaxation of grain boundaries, which annihilates the excess dislocations at
the grain boundaries, increasing the critical shear stress needed to trigger slip [33]. Heat
treatment at 600 ◦C also increased coating hardness, but not as good as at 400 ◦C due to
the large grain size. The coating hardness after heat treatment at 900 ◦C was similar to that
of the as-deposited coating due to the serious W segregation at this temperature and the
formation of two W- rich and Ni-rich phases, loosening the coating. In addition, sample
hardness increased abnormally after heat treatment at 4 A/dm2 due to the formation of
hard phase particles, such as WC on the coating surface (Figure 4b), strengthening the
coating surface and improving the coating hardness. Although the wear resistance in
Figure 9b was not strictly proportional to the coating hardness, it was consistent with the
trend in the change of hardness. The wear resistance of the sample was best at 400 ◦C
heat treatment, followed by 600 ◦C, as-deposited, and 900 ◦C. The wear resistance was
stable with the change in current density. The coating hardness and the precipitation of
Ni4W, Ni6W6C, and WC as a result of heat treatment influences the wear resistance of the
coating. Humam [16] suggested that doping WC and TaC into the Ni-W alloy coating can
make the coating non-porous and compact, improving its mechanical properties. At the
same time, the hard phase precipitated by heat treatment is more evenly distributed in the
coating, and controlling a certain temperature also improves the coating compactness [34].
As shown in Figure 10, sample thickness of the atomic interdiffusion layer at the interface
of the as-deposited sample and at 400 ◦C was about 500 nm, with negligible effects, while
the interdiffusion layers of the samples at 600 ◦C and 900 ◦C heat treatment were 10 µm
and 20 µm, respectively. Therefore, Ni-W-Fe-C quaternary system did not form inside the
coating. Thus, the composition of the coating cannot be controlled after heat treatment.
These findings also explain why hard phase particles, such as WC, are precipitated after
heat treatment at 900 ◦C without the improvement of mechanical properties.
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3.4. Corrosion Resistance

Figure 11 shows the polarization curves of plated and heat-treated Ni-W coatings.
Electrochemical corrosion parameters derived using the Tafel extrapolation are given in
Tables 3 and 4 [35]. Higher current densities result in a denser and more uniform coating
structure, reducing the likelihood of corrosive substances permeating through defects or
gaps in the coating. Additionally, higher current densities can induce a transformation
of the coating into an amorphous state, consequently enhancing corrosion resistance.
The as-deposited sample of 5 A/dm2 had the lowest corrosion current (icorr), indicating
that the coating was nanocrystalline–amorphous at high current density with excellent
corrosion resistance. The samples heat treated at 400 ◦C had better corrosion resistance
than those with higher corrosion potential (Ecorr). However, the samples with different
current densities narrowly differed. The corrosion resistance of the samples heat treated
at 600 ◦C was improved, while those heat treated at 900 ◦C had the worst corrosion
resistance. Figure 12 shows the AC impedance (EIS) spectra of the samples before and after
heat treatment at different temperatures. Nyquist diagram revealed an arc with different
radii, and the only time constant of the impedance diagram was determined. Therefore,
the equivalent circuit diagram (ECD) (Figure 13) was drawn to calculate the corrosion
parameters, where Rs is the resistance of the solution, CPE is the electrical double-layer
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capacitance, and Rct is the charge transfer resistance at the coating/substrate interface. The
fitting data are shown in Table 3 [36]. The Rct is related to corrosion resistance. The corrosion
resistance of the coating increases with a high Rct value. The result of EIS was similar to that
of the polarization curve, and the samples heat treated at 400 ◦C and 600 ◦C showed better
corrosion resistance, attributed to the precipitates, such as Ni4W and Ni6W6C, making the
coating denser. Long et al. [37] revealed that the corrosion resistance of the Ni-W alloy
is affected by the boundary of cellular crystal clusters. The corrosion resistance of the
coating worsens with a high density of intercluster boundary (DIB). As shown in Figure 1,
the boundary of cellular crystal clusters was eliminated under heat treatment at 400 ◦C
and 600 ◦C, making the coating surface more compact. The surface of the coating heat
treated at 600 ◦C was smoother than at 400 ◦C, hence the best corrosion resistance. It is
also possible that the crystallization orientation of Ni (W) solid solution was changed by
heat treatment at 600 ◦C, and the promoted (200) crystal plane played a role in corrosion
resistance. The surface porosity of the coating heat treated at 900 ◦C was too large due to
the severe segregation of W and the formation of many precipitates, reducing the corrosion
resistance. It is also possible that the composition of the coating was changed due to the
interdiffusion between the coating and the substrate.
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Table 3. Electrochemical data obtained from polarization curve.

Ecorr (V)
(V vs.SCE)

Icorr(A)
(A)

As-deposited
1A/dm2 −0.71 2.85 × 10−4

2 A/dm2 −0.68 2.63 × 10−4

3 A/dm2 −0.67 2.32 × 10−4

4 A/dm2 −0.67 2.14 × 10−4

5 A/dm2 −0.65 1.70 × 10−4

400 ◦C
1A/dm2 −0.62 4.36 × 10−6

2 A/dm2 −0.66 4.58 × 10−6

3 A/dm2 −0.72 9.21 × 10−6

4 A/dm2 −0.68 8.43 × 10−6

5 A/dm2 −0.72 9.86 × 10−6

600 ◦C
1A/dm2 −0.79 6.35 × 10−6

2 A/dm2 −0.78 3.13 × 10−6

3 A/dm2 −0.76 2.64 × 10−6

4 A/dm2 −0.76 2.11 × 10−6

5 A/dm2 −0.75 1.96 × 10−6

900 ◦C
1A/dm2 −0.77 2.10 × 10−5

2 A/dm2 −0.75 1.33 × 10−5

3 A/dm2 −0.79 5.10 × 10−5

4 A/dm2 −0.82 1.81 × 10−5

5 A/dm2 −0.84 3.72 × 10−5

Table 4. Electrochemical data obtained from EIS spectrum.

Rs(Ω)
(Ω·cm−2)

CPE-Qdl
(Ω−1sn/cm2)

(cm2) × 10−6(S secn)

Rct
(Ω·cm−2)

As-deposited
1 A/dm2 26.57 2.076 × 10-4 533.7
2 A/dm2 25.32 1.452 × 10-4 856.1
3 A/dm2 24.13 9.193 × 10-5 1120.5
4 A/dm2 28.32 9.953 × 10-5 965.5
5 A/dm2 24.61 8.593 × 10-5 1882.4

400 ◦C
1 A/dm2 21.37 1.09 × 10-4 2104.1
2 A/dm2 21.96 8.59 × 10-4 1928.1
3 A/dm2 21.36 9.693 × 10-5 1526.4
4 A/dm2 21.63 3.083 × 10-5 1598.4
5 A/dm2 22.22 2.683 × 10-6 1342.4

600 ◦C
1A/dm2 27.84 9.875 × 10-5 2375.1
2 A/dm2 24.36 9.365 × 10-5 2472.6
3 A/dm2 25.63 8.365 × 10-5 2672.2
4 A/dm2 26.96 7.635 × 10-5 2885.7
5 A/dm2 24.58 7.132 × 10-5 3031.4

900 ◦C
1A/dm2 27.32 2.324 × 10-5 863.5
2 A/dm2 26.32 1.124 × 10-5 1130.2
3 A/dm2 24.21 4.325 × 10-4 436.2
4 A/dm2 24.32 3.241 × 10-4 432.1
5 A/dm2 23.36 1.103 × 10-4 536.2
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4. Conclusions

In this study, Ni-W alloy coatings prepared under different current densities were heat
treated at 400 ◦C, 600 ◦C, and 900 ◦C. By comparing their phase distribution, mechanical
properties, and corrosion behavior, the following conclusions have been drawn.

The composite structure of nanocrystal and amorphous in Ni-W alloy coating crys-
tallizes, and the grain size increases after heat treatment above 400 ◦C. Ni4W forms at
400 ◦C, and Ni6W6C forms at 600 ◦C when W reaches a certain content. Heat treatment
inhibits the preferred orientation of the (111) crystal plane. The coating hardness and
wear resistance are highest at 400 ◦C heat treatment. Due to its amorphous structure, the
as-plated sample at 5 A/dm2 exhibits the best corrosion resistance. As the heat treatment
temperature increases, the coating structure becomes denser, resulting in the corrosion
resistance of the coating heat treated at 600 ◦C being superior to the other groups. Choosing
the appropriate heat treatment temperature obtains the target hard particle precipitation
phase, eliminates the boundary of cellular crystals on the surface of the coating, and makes
the structure of the coating more compact. The WC hard particles are produced during
heat treatment at 900 ◦C. However, the coating properties are not improved due to the
interdiffusion between the coating and the substrate. Therefore, the heat treatment of Ni-W
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alloy coating should consider not only the phase change of the coating but also the effect of
interdiffusion with the substrate.
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