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Bone and joint defects or diseases, coupled with edentation, pose challenging and
commonly encountered clinical issues with a significant incidence in the medical domain.
These conditions are primarily attributed to factors such as aging, trauma, infections, tumor
resection, or congenital/hereditary disorders. It is important to acknowledge that the
prevalence of these medical issues is anticipated to rise further due to the global increase
in life expectancy [1]. Currently, orthopedic and dental implants predominantly utilize
materials crafted from titanium (Ti) and its medical-grade alloys, owing to their exceptional
performance attributes [2]. In recent years, there has been a growing interest among
researchers in biodegradable materials, specifically magnesium and its alloys [3]. The need
for a secondary surgical intervention to remove the implant, once the tissue has adequately
healed, is eliminated when employing biodegradable implants. This stands as one of the
most notable advantages associated with this type of devices.

A significant challenge in the biomedical field is the development of implants that
can seamlessly integrate into the living body [4]. Despite ongoing efforts to enhance the
corrosion resistance (an electrochemical process involving both reduction and oxidation
reactions) of metallic materials, the underlying issue continues to be persistent. A viable
approach to regulating the corrosion process and inhibiting direct interaction between
body fluids and implants involves the use of coatings, which function as protective layers
at the human body (“host”)–implant interface [5]. To optimize this interface, the surface
of the metallic substrate is typically coated with a bioceramic material. The objective of
these coatings is to enhance fixation and expedite the osseointegration rate at the living
tissue–implant interface, thereby improving its long-term functionality. Currently, the
“gold” standard material utilized for coating implants is hydroxyapatite (HA). HA stands
as one of the most extensively researched calcium phosphates (CaPs) for osseointegrative
applications, owing to its exceptional biocompatibility [6], high biomineralization capacity,
thermodynamic stability in body fluid environments [7], good osteoconductivity [8], and
chemical–structural similarity to the inorganic component of human bone tissues [9]. HA
can be either synthetically produced or derived from natural resources. It is important to
highlight that synthetic HA is typically produced using intricate and chemically demand-
ing protocols [1]. Therefore, an alternative and sustainable approach for HA production
involves extracting it from abundant biological resources, such as animal bones result-
ing from the food-processing industry, fish discards, eggshells, sea shells, corals, and so
on) [10,11]. Studies have reported that biological-derived HA (BHA), when compared to
synthetic HA, comprises a variety of trace elements (e.g., Na, Mg, Sr, and K) that play
specific bio-functional roles [12]. Additionally, BHA exhibits enhanced mechanical per-
formance [13], a more dynamic response to the environment, tends to elicit less intense
inflammatory reactions, and has demonstrated excellent biocompatibility, bioactivity, and
osseoconduction characteristics [14].
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It is worth noting that HA constitutes the primary inorganic component of bone tissue,
featuring a structure with a unique affinity that permits a broad range of substitutions and
ion doping. This resemblance to the composition found in natural, healthy bones includes
elements such as Mg, Si, Zn, Sr, Li, and CO3

2−. The objective is to foster bone remodeling,
exhibit antibacterial activity, and promote enhanced bio-integration.

Among the various surface modification methods, the plasma spray technique is
commonly employed in commercial applications to coat implants with bioactive ceramics,
particularly HA coatings. Nevertheless, issues have arisen concerning the poor clinical
performance of traditional plasma-sprayed coatings. Hence, within this Special Issue,
various techniques have been introduced as alternative methods to plasma spray for coating
metallic implants across diverse medical applications. These methods encompass, but are
not limited to, pulsed laser deposition (PLD), magnetron sputtering (MS), electrophoretic
deposition, dip-coating, hydrothermal treatment, and biomimetic coating [1,2,13,15–24].

The topic of interest for this Special Issue is, therefore, dedicated to the synthesis and
characterization techniques of HA-based coatings. Both synthetic and naturally derived HA
materials were considered. One should emphasize that a special focus was dedicated to the
preparation of bioactive and biodegradable HA-based biomaterials with tunable properties.
These biomaterials are intended for applications in bone repair and regeneration, tissue
engineering, orthopedics and biosensing, dental implants, and in vivo applications.
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