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Abstract: In this study, the barrier properties and diffusion behavior of carbon-doped Cu(Ni) alloy
film were investigated. The films were fabricated using magnetron sputtering on a barrierless silicon
substrate. X-ray diffraction patterns and electric resistivity results demonstrated that the barrierless
Cu(NiC) alloy films remained thermally stable up to 650 ◦C. Transmission electron microscopy images
provided the presence of a self-formed diffusion layer between the Cu(NiC) alloy and Si substrate.
The effect of carbon-doped atoms on the diffusion behavior of the Cu(NiC) films was analyzed by
X-ray photoemission spectroscopy depth profile. Results revealed that carbon doping can improve
the barrier properties of barrierless Cu(Ni) film. Moreover, X-ray photoemission spectroscopy was
performed to examine the chemical states of the self-formed layer at the Cu(NiC)/Si interface. The
self-formed diffusion layer was found to consist of Cu metal, Ni metal, Si, Cu2O, NiO, and SiO2.

Keywords: diffusion barrier; barrierless; Cu interconnect; self-formed

1. Introduction

Cu metallization is widely used in ultralarge-scale (ULSI) manufacture due to its high
electric conductivity and great resistance electromigration [1–3]. Nonetheless, a disadvan-
tage is that copper tends to react with silicon at a temperature of approximately 200 ◦C,
leading to a substantial rise in resistivity and device failure [4]. Thus, effective barriers are
necessary to prevent interdiffusion or reaction between Cu and adjacent materials [5–13].
As integrated circuits are continuously scaling down to the nanometer range, their elec-
trical resistivity significantly increases due to electron grain boundary scattering [14–16].
Moreover, the thickness of the barrier layer is unable to be further scaled down without
significant deterioration in the device’s reliability [3]. However, preparing nanometer-thick
layers with a good diffusion barrier performance is challenging. It is essential to explore
a better method other than using the mentioned barrier. Thus, a barrierless structure has
become an unavoidable direction for development [17–19].

The addition of doped elements, such as Ti, Zr, Mn, and Mo, in Cu alloy tends to
precipitate at the grain boundary, interface, and defects [20–22]. It is known that Cu and
Ni are miscible due to their similar crystal structures, slight differences in atomic radius,
and electronegativity [23]. Our previous research has demonstrated that Cu(Ni) alloy has
excellent barrier properties [24]. Doped Ni occupies the fast diffusion channel, thereby
improving the thermal stability of barrierless Cu films. The added Ni elements are similar
in atomic size to Cu. Carbon, with a smaller atomic size, has a minimal effect on copper
residual resistivity (1.6 µΩ cm/at.%) [4]. Li et al. reported that the alloying of carbon had a
beneficial effect on the resistivity and stability of Cu film [25]. This study investigated the
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hypothesis that smaller atomic size carbon codoped with Ni in Cu film may enhance the
barrier properties of Cu(Ni) alloy film by obstructing smaller fast diffusion channels. A
more detailed investigation will be carried out to analyze the potential impact of carbon on
the Cu(Ni) diffusion barrier properties.

2. Experimental

In this study, Si wafers with [111] orientation were used as substrates (Lijing, Wenzhou,
Wenzhou, China). The Si substrates were cleaned by ultrasonication in acetone and ethanol
for 15 min and then dried with an ultrahigh purity N2 stream. A new type of ~300 nm
thick barrierless Cu(Ni) and Cu(NiC) alloy film was prepared by a direct current (DC)
magnetron sputtering system (Sky Technology development, Shenyang, China) by cosput-
tering with Cu target, Ni, and C chips. Pure Ni (99.999%) and C chips (99.999%), measuring
5 mm × 5 mm, were pasted by using a heat-curable conductive silver paste onto a pure
Cu target (99.999%) with a diameter of 75 mm × thickness of 5 mm. Subsequently, the Cu
target with Ni and C chips was heated to 150 ◦C for 30 min to avoid contamination during
sputtering. Before deposition, the Cu target with Ni and C chips underwent a presputtering
process lasting 10 min to eliminate impurities and oxide layers. The Cu(Ni) films with
~3.59 at.% Ni, as well as the Cu(NiC) films with ~3.59 at.% Ni and ~4.23% C, were fabricated
by cosputtering the Cu target and Ni and C chips for 60 min (Ketai, Nanchang, China).
The deposition process was conducted with a background pressure of 5 × 10−4 Pa and an
Ar gas deposition pressure of 1 Pa. The target power utilized was 100 W. The substrates
did not undergo any heating during the deposition process. The detailed experimental
information was described in our previous investigations [26].

Isothermal annealing was carried out under vacuum conditions with a pressure of
6 × 10−5 Pa for 30 min at temperatures ranging from 350 to 650 ◦C. The phase composition
and crystalline structure of the samples were analyzed by X-ray diffraction (XRD; D8
Venture, Bruker, Billerica, MA, USA) in the range 2θ = 40◦–55◦ with a step size of 0.04◦.
The sheet resistance of the films before and after annealing was measured using the four-
point probe (FPP; ST2258C, JingGe, Suzhou, China) method. The surface morphology and
chemical composition of the film were examined by scanning electron microscope–energy
dispersive spectrometer (SEM–EDS; JSM-6480, JEOL, Tokyo, Japan). The cross-sectional
morphology features were investigated through cross-section transmission electron mi-
croscopy with an operating voltage of 200 kV (TEM; JEM2100F, JEOL, Tokyo, Japan). X-ray
photoelectron spectroscopy measurements (XPS; Nexsa, Thermofisher, Waltham, MA, USA)
utilized a photoelectron take-off angle of 45◦, with monochromated Al Kα (1486.6 eV) as
the X-ray source and a survey of the X-ray beam over 400 µm. In the binding energy (BE)
analysis, peak positions were corrected by aligning them regarding the standard adventi-
tious carbon peak (C1s) at 284.8 eV. For XPS depth profiling, Ar+ ions with an energy of
2.0 keV were employed to scan over an area of 2 mm × 4 mm. The effective sputtering
rates were determined to be 12.1 nm/min, as measured at a Cu reference sample.

3. Results and Discussion

Figure 1 illustrates the XRD patterns of barrierless Cu(Ni) and Cu(NiC) copper alloys
before and after annealing at temperatures ranging from 350 ◦C to 650 ◦C. The XRD analysis
revealed that the as-deposited Cu(Ni) and Cu(NiC) samples exhibited diffraction peaks
corresponding to the Cu(111) crystal plane, while no diffraction peak was observed for the
Cu(200) plane. After annealing, a weak Cu(200) diffraction peak was observed in the Cu(Ni)
samples annealed at 450 ◦C and 650 ◦C, as shown in Figure 1a. In the case of Cu(NiC)
samples, a weak Cu(200) diffraction peak was observed at temperatures exceeding 550 ◦C,
as displayed in Figure 1b. Notably, the XRD patterns of the barrierless Cu(Ni) and Cu(NiC)
alloys annealed at 650 ◦C did not display any diffraction peaks that corresponded to the
copper silicide. Previous research has reported that the interaction between a pure copper
film and silicon typically takes place at a temperature of 200 ◦C, leading to the formation
of copper silicide with a notable increase in electrical resistance [1,24]. However, the XRD
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results of the Cu(Ni) and Cu(NiC) films annealed at 650 ◦C revealed diffraction peaks only
attributed to the existence of Cu. This finding implies that even at a high temperature
of 650 ◦C, there is negligible diffusion observed between copper and silicon, indicating
the excellent barrier performance of the Cu(Ni) and Cu(NiC) alloys. This observation
suggests that the addition of Ni and C enhances their thermal stability. Furthermore, it was
noted that the diffraction peak of Cu(NiC) shifted toward higher angles, resulting from
the incorporation of the C element. The shift indicates a reduction in the spacing of the
copper alloy, which can be attributed to the comparatively smaller atomic radius of carbon
in comparison to copper and nickel atoms.
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Figure 1. The phase evolutions for (a) Cu(Ni)/Si and (b) Cu(NiC)/Si annealed at various temperatures.

Figure 2 illustrates the variation in sheet resistance of the Cu(Ni) and Cu(NiC) copper
alloy specimens at various annealing temperatures. The resistivity of the deposited Cu(Ni)
and Cu(NiC) films was determined to be 5.41 µΩ·cm and 5.47 µΩ·cm, respectively, which
is higher than that of the pure copper film (5.17 µΩ·cm) [27]. At annealing temperatures
within the range of 350 ◦C to 550 ◦C, an increase in resistivity for Cu(Ni) film was observed.
Additionally, a rapid increase in resistivity was observed at 650 ◦C. In contrast, the resistivity
of the Cu(NiC) alloy experienced a slight decrease after annealing at 350 ◦C. This can be
attributed to the elimination of defects and the release of stress that occurs during the
annealing process [28]. Within the range of 450–650 ◦C, there was a gradual increase in
the resistivity of Cu(NiC) film. After annealing at 650 ◦C, the resistivity of the Cu(NiC)
sample was measured to be 10.23 µΩ·cm, which is much lower than that of the Cu(Ni)
sample (28.78 µΩ·cm). No clear diffraction peaks indicated the presence of copper silicide
compounds in the XRD results of the Cu(Ni) and Cu(NiC) samples. However, the observed
increase in resistivity implies that there is still a minor level of interdiffusion occurring
between Cu–Si. The XRD and resistant measurements results demonstrate the remarkable
thermal stability of the Cu(NiC)/Si interconnect structure, even to an annealing temperature
as high as 650 ◦C. This observation suggests that incorporating a carbon element effectively
enhances the barrier properties of Cu(Ni) film.
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Figure 2. Resistivity values for Cu(Ni)/Si and Cu(NiC)/Si samples after annealing at various
temperatures.

Figure 3 presents the SEM images of the as-deposited and 650 ◦C annealed Cu(Ni)
and Cu(NiC) samples. Figure 3a,b reveal that the surfaces of as-deposited Cu(Ni) and
Cu(NiC) films exhibit a smooth and compact surface without noticeable defects. Defects
were identified on the Cu(Ni) sample after annealing at 550 ◦C, as displayed in Figure 3c.
Defects in the film account for an elevation in sheet resistance in Figure 2. Cu(NiC) samples
exhibit excellent thermal stability as the surface morphology remains unchanged, except
for some particles in Figure 3d. In Figure 3e, it is evident that with an increase in annealing
temperature to 650 ◦C, the surface of the Cu(Ni) sample exhibits a rough and discontinuous
appearance. A multitude of small spherical particles and black holes were observed on the
film surface. The brighter particles (area 1) are encircled by darker holes (area 2). From
EDS analysis (Table 1), it can be concluded that the particles are Cu aggregates, and the
holes are formed as a result of Cu being lost. The content of carbon is not listed in Table 1,
which is inaccurately measured by the EDS method. Additionally, it was hypothesized
that the significant increase in resistance observed in the 650 ◦C annealed Cu(Ni) film can
be attributed to the presence of surface defects. These defects significantly increased the
resistance of the Cu(Ni) film and substantially diminished the stability of the Cu(Ni)/Si
interconnect structure at 650 ◦C. The Cu(NiC) samples annealing at 650 ◦C also displayed
the presence of particulate and cavities, as depicted in Figure 3f. In contrast to the Cu(Ni)
samples, there was a significant reduction in both the dimensions and quantity of particulate
and cavities. This observation implies that the addition of carbon can greatly improve the
surface morphology of the samples annealing at high temperatures. The SEM experiment
further demonstrates that the barrier properties of barrierless Cu(Ni) alloy are enhanced
significantly after adding C, indicating that the Cu(NiC) barrier layer possesses higher
thermodynamic stability than the Cu(Ni) barrier layer.
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Figure 3. SEM micrographs of Cu(Ni)/Si and Cu(NiC)/Si: (a) as-deposited Cu(Ni); (b) as-deposited
Cu(NiC); (c) 550 ◦C annealed Cu(Ni); (d) 550 ◦C annealed Cu(NiC); (e) 650 ◦C annealed Cu(Ni);
(f) 650 ◦C annealed Cu(NiC).
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Table 1. EDS results of element contents in the circled areas.

Area
Element Content (at.%)

Cu Ni Si

1 68.23 5.56 26.21
2 47.62 6.02 46.36

To accurately analyze the surface distribution of Ni and Si, XPS surface scanning
was conducted on 550 ◦C and 650 ◦C annealed barrierless Cu(Ni) and Cu(NiC) alloys.
By comparing Figure 4a–d, it is evident that the proportion of Ni element on the surface
of the 550 ◦C annealed Cu(Ni) sample (~9.3%) is higher than that of 550 ◦C annealed
Cu(NiC) (~0.9%). When the annealing temperature was 650 ◦C, the proportion of Ni
element on the surface of the Cu(Ni) sample rose to 12.2%. Nevertheless, the Ni content
on the Cu(NiC) surface was only 1.1%. Similarly, the Si element also exhibited a similar
trend, as demonstrated in Figure 4e–h. The proportion of silicon on the surface of the
550 ◦C annealed Cu(Ni) sample (~1.8%) was greater than that of the Cu(NiC) sample
(~0.8%). The silicon content for 650 ◦C annealed Cu(NiC) samples remained constant.
This suggests that the Ni element in the barrierless Cu(Ni) film diffused to the surface of
the sample after annealing at 550 ◦C. In contrast, the barrierless Cu(NiC) film retained
its compositional stability even after annealing at 650 ◦C. Although no distinct peak of
copper silicide was observed in the XRD results, the resistance measurements, SEM images,
and XPS surface scanning results confirmed that the barrier performance of the Cu(Ni)
film started to degrade at 550 ◦C. Therefore, it can be concluded that the doping of carbon
in Cu(Ni) impedes the diffusion of Ni and Si elements, thereby improving the thermal
stability of the barrierless film.
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Figure 4. XPS scanning images of (a–d) Ni and (e–h) Si on 550 ◦C/650 ◦C annealed Cu(Ni)/Si and
Cu(NiC)/Si surface.

The XPS technique was employed to accurately analyze the elemental composition
in the surface particles of 650 ◦C annealed barrierless Cu(Ni) and Cu(NiC) copper alloys.
Figure 5a presents the results of peak fitting analysis for the Ni elements found in the
surface particles of the barrierless Cu(Ni) and Cu(NiC) alloy. In the case of Cu(Ni) film, the
measurements revealed the peaks at 852.8 eV and 870.0 eV are characteristic of Ni metal [29],
and those at 854.8 eV and 872.1 eV are for the Ni2p3/2 and Ni2p1/2 multiplet-split peaks
of NiO [30]. The satellite peaks of both Ni metal and NiO are indicated by the arrows in
Figure 5a. According to the peak fitting analysis, the surface distribution of Ni elements
on the Cu(Ni) copper alloy comprised ~55.8% Ni metal and ~44.2% NiO. After annealing
at 650 ◦C, the Ni elements in the Cu(Ni) copper alloy diffused toward the surface and
oxidized due to residual oxygen during vacuum annealing. However, examination of the
Ni components in the surface particles of the barrierless Cu(NiC) copper alloy indicated
that the particle was composed of Ni metal elements, with no corresponding peak value
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indicating the presence of NiO components. The peak fitting analysis for the Si components
in surface particles of the Cu(Ni) and Cu(NiC) copper alloys is illustrated in Figure 5b.
In the case of the Cu(Ni) film, the peak at 99.6 eV corresponds to the Si element, and
the peak at 103.1 eV corresponds to SiO2, while no peak corresponding to copper silicide
was detected [31,32]. Similarly, Si atoms diffused toward the surface of the Cu(Ni) film
and oxidized in the presence of residual oxygen during vacuum annealing. However, the
Cu(NiC) alloy surface exhibited a low Si content, resulting in the absence of XPS peaks.
The results indicate that the presence of carbon atoms in Cu(Ni) film effectively hinders the
diffusion of Ni and Si atoms toward the surface, thereby enhancing the barrier performance
of the barrierless copper alloy.
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Figure 6 shows the typical TEM cross-section images of barrierless Cu(Ni) and Cu(NiC)
copper alloy after annealing at 650 ◦C. As shown in Figure 6a, the Cu(Ni)/Si interconnect
interface is readily identifiable. However, the interface is no longer continuous nor intact
due to the interdiffusion behavior of Cu and Si atoms. As indicated by the arrows in
Figure 6a, a clear diffusion reaction region is visible at the Cu(Ni)/Si interface. While XRD
experiments did not reveal any diffraction peaks, TEM observations indicate that the Cu
interface had been disintegrated by atomic diffusion. The appearance of the failure zone
suggests that the thermal stability of Cu(Ni) alloy began to degrade. Nevertheless, the
Cu(NiC)/Si interface remained flat and undamaged, and no diffusion failure zone was
detected. Furthermore, a self-formed layer ~30 nm in width was observed at the interface
of Cu(NiC)/Si. The amorphous structure of the self-formed layer, as depicted in the inset
Figure in Figure 6b, serves as an effective barrier against the interdiffusion of Cu and Si
atoms. The formation of an amorphous self-formed layer also enhanced the interfacial
bonding strength of Cu(NiC)/Si, further improving the high-temperature stability of the
barrierless Cu(NiC) copper alloy.
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In order to quantitatively analyze the effect of carbon (C) doping on barrierless Cu(Ni)
copper alloy films, the diffusion behavior of elements after annealing at 650 ◦C was investi-
gated by using XPS depth profile analysis. Figure 7a shows a high O element content on the
surface of the Cu(Ni) copper alloy. This was mainly due to the reaction between the residual
oxygen present in the chamber and the film, which led to the formation of a significant
amount of oxides during the vacuum annealing process. After annealing at 650 ◦C, the
interface between Cu(Ni) and Si lost its distinctness as a result of atom diffusion. This led
to a flattened curve for both Cu and Si elements, causing them to overlap across the entire
etching area. The observation implies that noticeable atom diffusion occurred in Cu(Ni)
film after annealing at 650 ◦C. The primary reason for the failure of the Cu(Ni) copper alloy
film was the diffusion of nickel (Ni) elements to the sample surface. Alloying elements are
commonly precipitated at grain boundaries and defects to prevent the interdiffusion of Cu
and Si atoms. However, it was evident that the Ni element was absent from the Cu(Ni) film
after 500 s of etching, as displayed in Figure 7a. Thus, the absence of the Ni element cannot
impede atom diffusion. A high carbon (C) concentration on the surface of the Cu(NiC)
copper alloy was due to surface contamination, as seen in Figure 7b. Compared with
the Cu(Ni) copper alloy, the Cu(NiC) film retained a clear interface. The Cu–Si curves of
Cu(NiC) copper alloy displayed a sharp variation exhibiting a distinct Cu/Si interface,
revealing the intact interconnect structure of the film. In contrast to the Cu(Ni) copper
alloy, the Cu(NiC) copper alloy demonstrated a minimal presence of Ni elements on the
surface of the specimen (1.1 at.%). The distribution of nickel within the Cu(NiC) film was
consistently around 9%. The Ni elements diminished gradually as they approached the
Cu(NiC)/Si interface. Similarly, the distribution of the C element was fairly uniform, at
around 5%. During annealing, the doped Ni and C elements precipitated from the copper
crystal lattice and gathered at grain boundaries and defects. Consequently, the diffusion
path for Cu and Si atoms was blocked by Ni and C elements. Carbon atoms, being smaller
in size compared with nickel atoms, have the capability to block smaller diffusion channels
among Ni atoms. Hence, the doped C atoms further enhanced the barrier performance of
Cu(Ni) film. Additionally, an elevated quantity of O element was observed at the interface
of Cu(NiC)/Si, which implies that residual oxygen migrated along the grain boundary to
the Cu/Si interface during vacuum annealing. Consequently, a self-formed barrier layer
was formed with the Cu(NiC) alloy, as proved by TEM images.
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The chemical state of the self-formed layer at the 650 ◦C annealed Cu(NiC)/Si interface
was analyzed using the XPS method. The XPS survey scan shown in Figure 8a reveals
the presence of Cu2p, Ni2p, O1s, and Si2p. The C1s signal was not detected in the XPS
survey scan due to its weak intensity. As shown in Figure 8b, the XPS peak fit of the Cu2p
peak revealed a prominent emission of Cu0 at 932.8 eV and 952.2 eV, accompanied by
peaks on the high binding energy (B.E.) side at 933.3 eV and 952.9 eV with weak satellite
corresponding to Cu1+ (Cu2O) [33,34]. Figure 8c shows the C1s spectrum at a B.E. of
284.7 eV, suggesting that the doped C atoms in Cu(NiC) copper alloy are primarily in the
C0 state [35]. The Si2p peak can be divided into two parts, as displayed in Figure 8d: the
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lower B.E. at 99.8 eV for Si0 and the higher B.E. at 104.0 eV for Si4+(SiO2) [31,32]. Based
on XPS fitting, the Si/SiO2 ratio was calculated to be 76.7:23.3. In Figure 8e, the Ni2p
XPS spectrum indicates that the predominant components are Ni metal and NiO, with a
ratio of approximately 9:1 [29]. The XPS spectrum depicted in Figure 8f reveals a B.E. of
530.7 eV, attributed to Cu2O and NiO, and 533.3 eV associated with SiO2 [36,37]. The XPS
analysis of elements in the self-formed barrier layer at the Cu/Si interface indicates that
the predominant substance is Cu metal, with the oxides primarily consisting of Cu2O, NiO,
and SiO2.
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4. Conclusions

To examine the effect of C doping on barrier properties of Cu(Ni) films in barrierless
Cu metallization, this study investigated the thermal stability of Cu(Ni) films doped
with 4.23 at.% C being subjected to annealing at various temperatures. The resistance
measurement, XPS spectra, and TEM results showed that the barrier properties of Cu(Ni)
alloy film were enhanced with carbon doping. A ~30 nm self-formed barrier layer was
confirmed by TEM images. The self-formed diffusion layer was found to be composed of
Cu metal, Ni metal, Si, Cu2O, NiO, and SiO2.
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