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Abstract: Dielectric barrier discharge (DBD) plasma surface modification has certain aging effect.
This article studies the aging effect of plasma (DBD) on the surface modification of carbon fibers. The
test results show that plasma (DBD) treatment reduces the impurity particles on the surface of carbon
fibers and makes the surface texture coarser. In addition, there is no significant change. After plasma
(DBD) treatment, the content of C–O–C, C–O and C=O on the surface of carbon fibers increased
from 3.20%, 7.76% and 1.64% to 7.06%, 21.50 and 6.08%, respectively. This is due to the high-energy
particle bombardment of the fiber surface, which forms activated carbon atoms on the surface. The
free electrons of these activated carbon atoms combine with ionized oxygen in the air. However,
with the passage of time, the content of C–O–C, C–O and C=O gradually decreases to 3.31%, 8.57%
and 1.77%, respectively. This is because some functional groups formed on the treated carbon fiber
surface are not firmly bound, and some of these functional groups containing O2 groups will combine
with surrounding substances through irreversible chemical oxidation reactions to produce CO2,
which leaves the carbon fiber surface as a gas. The treated carbon fibers will immediately become
hydrophilic, and the water contact angle decreases from 148.71◦ to 0◦. With the passage of time, the
water contact angle gradually increases to 118.16◦, and the hydrophobicity recovers.

Keywords: surface modification; dielectric barrier discharge (DBD) plasma; carbon fiber; timeliness
(aging effect)

1. Introduction

Carbon fiber has attracted considerable attention and research from scholars due to
its excellent physical and chemical properties and wide range of applications. Carbon
fiber exhibits outstanding mechanical properties (such as high strength, high modulus
and low density), high thermal conductivity, low thermal expansion coefficient, high
electrical conductivity, high chemical stability and compatibility with metals. It plays a
significant role in advanced composite materials, flexible conductive materials, catalysts,
biomedical, automotive engineering, etc. [1–4]. Carbon fiber, however, has a smooth
surface and very few active functional groups, which results in chemical inertness and
hydrophobicity, making it difficult to be covered by coatings or resins uniformly. Enhancing
the bonding interfacial strength between carbon fiber and the matrix and fully exploiting the
excellent properties of carbon fiber are of great significance in improving the performance
of composite materials.

In recent years, methods for surface modification of carbon fiber have become a focused
areas. The most commonly used methods for the surface modification of carbon fiber are
surface oxidation, surface sizing and plasma treatment. Surface oxidation involves placing
the carbon fiber material in an oxidizing agent to undergo an oxidation reaction. Based on
the types of oxidizing agents, surface oxidation can be divided into two categories. The
first category is gas-phase oxidation, where carbon fiber material is exposed to F2, O2, CO2
or O3 under heating conditions to undergo an oxygen oxidation reaction, forming oxygen-
containing polar functional groups, such as –O, –C, –OH and –COOH, on the surface. Polar
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bonds can be formed on the matrix surface through polar functional groups, resulting
in the effective enhancement of the interfacial bonding energy between carbon fiber and
the matrix [5]. The second category is liquid-phase oxidation, where the carbon fiber
surface is treated with oxidizing agents, such as KMnO4, HNO3 or HNO3 solution or mixed
solution. Although the surface oxidation process is relatively mature, the introduction
of strong oxidants adsorbed on the fiber surface can cause serious damage to the fiber
surface. Surface sizing involves uniformly attaching the slurry to the carbon fiber surface,
forming a protective layer with about 10 nm thickness, aiming to reduce the phenomenon of
fiber surface fuzzing and breakage, thereby improving the surface smoothness and overall
strength of carbon fiber, followed by the enhancement of abrasion resistance and bundle
ability [6]. The slurry can be classified as a solvent-based, water-based or emulsion-based
type [7]. The key point in surface sizing is the degree of compatibility between the slurry
and the matrix. The compatibility degree is positively correlated with the effectiveness of
modification. If the sizing agent has a similar molecular structure to the matrix, the surface
polarity of carbon fiber may not be effectively improved, and the wetting capability of the
coating or resin on the carbon fiber surface may not be significantly enhanced. Therefore,
the option of a sizing agent plays a crucial role in the sizing method. Plasma treatment
is a method that uses high-energy electrons, particles and neutral particles produced by
electrochemical discharge or high-frequency electromagnetic oscillation waves to bombard
the carbon fiber surface. The carbon fiber surface molecules will be excited and ionized by
the high-energy particles, leading to the breakage of chemical bonds [8]. Free radicals and
polar functional groups can be generated on the surface, by which the wetting property can
be increased [9]. Meanwhile, under the action of high-energy electrons, low-temperature
active ions on the fiber surface produce the sputtering effect [8], indirectly cleaning the
surface impurities and increasing the fiber texture. Adhesion between the fiber surface and
the matrix can be improved by changing the chemical and physical properties of the fiber
surface without significant impacts on carbon fiber properties [5,10].

The preceding overview highlights three widely employed techniques for the surface
modification of carbon fiber. In comparison to the initial two methods, namely surface
oxidation and surface sizing, the utilization of low-temperature plasma in plasma treatment
stands out for its simplicity, efficiency and time-saving attributes. It has advantages, such
as excellent treatment effect, no need for expensive vacuum equipment [11], low energy
consumption [12] and low environmental pollution (no solvent). There are many studies
on the surface modification of plasma, but there are few reports on its timeliness (aging
effect) [13–16]. This research focuses on the modification of commercial carbon cloth
surfaces using a dielectric barrier discharge (DBD [17]) device at room temperature and
atmospheric pressure. Based on the experimental results, the timeliness (aging effect) of
surface modification of carbon fiber was analyzed.

2. Materials and Methods

The carbon cloth (Taiwan Carbon Energy WS1009) was divided into 8 precise segments,
each measuring 2 cm × 2 cm. Subsequently, these segments were thoroughly immersed
in absolute ethanol to undergo a stringent ultrasonic cleaning process for a duration of
5 min. After that, it was rinsed by pure water three times. Subsequently, the segments
were subjected to an additional ultrasonic cleaning stage utilizing ultra-pure water for a
duration of 5 min, ensuring the highest level of cleanliness. At last, to facilitate the complete
evaporation of any residual moisture, the segments were dried in an oven set at 70 ◦C, for
a duration of 5 h. The 8 cleaned carbon cloths were subjected to plasma DBD treatment
at room temperature and pressure for 5 min (as shown in Figure 1). After processing,
they were placed at room temperature (298 K), atmospheric pressure (101.325 kPa) and
normal humidity (50%) for 60 min, 90 min, 120 min, 150 min, 180 min, 210 min and 240 min,
respectively, named as 0-C1s (no samples placed), 60-C1s, 90-C1s, 120-C1s, 150-C1s, 180-C1s,
210-C1s and 240-C1s.
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axially parallel to the fibers on the surface of the samples [18]. The samples are coated 
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cles further substantiates the role of plasma in surface cleaning. Additionally, no other 
significant changes were observed [18,19]. 

Figure 1. Schematic diagram of the plasma (DBD) generation device. (a) Carbon fiber sample,
(b) substrate, (c) worktable, (d) plasma.

The surface morphology of the plasma treatment samples was observed and analyzed
by an emission scanning electron microscope (SEM) with a Zeiss Supra 55, and the surface
chemistry of the samples was determined using X-ray electron photoelectron spectroscopy
(Thermo Fisher scientific, Waltham, MA, USA, ESCALAB 250Xi+) and calibrated based
on the standard C1s (284.8 eV) binding energy. Sample surface water contact angles were
measured by a Theta Lite instrument (WCA. Biolin Scientific, Gothenburg, Sweden) at
6 µL per droplet, and the results were used to assess sample surface wettability. All
measurements were repeated five times in order to calculate the mean calibration error.

3. Results and Discussion
3.1. Surface Morphology

The SEM of the samples after plasma treatment is shown in Figure 2. Additionally, the
raw, untreated samples are shown in Figure 2i, which are industrially prepared wet-spun
fibers with distinctive smooth and flat stripes and grooves on the surface, which are axially
parallel to the fibers on the surface of the samples [18]. The samples are coated with a
polymer sizing layer, which protects the samples and facilitates the subsequent processing.
A minor amount of contaminants may adhere to the surface during transportation, serving
as the primary cause for the presence of impurity particles on the surface. The morpho-
logical changes resulting from plasma treatment are depicted in Figure 2a–h. Notably, the
surface particles diminish, and the grooves, when compared to the original sample, become
slightly clearer. This transformation is primarily attributed to the active particles in the
plasma, which act on the sample surface, leading to the degradation and separation of
the polymer sizing layer. Consequently, the original groove characteristics of the sample
surface fibers gradually emerge. The observed reduction in impurity particles further
substantiates the role of plasma in surface cleaning. Additionally, no other significant
changes were observed [18,19].
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Figure 2. SEM image plots of samples. (i) Untreated sample. (a–h) Samples with aging time of
0–240 min.

3.2. Surface Chemical Assessment

In order to analyze the chemical composition and state of several samples, XPS was
performed. C and O are the main elements in the samples. Figure 3 shows the high-
resolution C1s spectra of several samples. It can be seen that the most prominent peak is
284.8 eV, relating to C–C. In the corresponding high-resolution spectra of the untreated
raw samples, as shown in Supplementary Figure S1, it presents low contents of C–O–C,
C–O and C=O, only 3.2%, 7.76% and 1.64%, respectively, which is most likely due to the
air surrounding the samples. Figure 3a shows that the C–O–C, C–O and C=O groups on
the surface of the sample after 5 min of plasma treatment increased to 7.06%, 21.50% and
6.08%, respectively. With the passage of time, the content of C–O–C, C–O and C=O groups
gradually decreased, returning to the state before plasma treatment (the trend is shown in
Figure 4). This indicates that the activated carbon atoms and oxygen-containing functional
groups on the carbon fiber surface after plasma treatment are unstable. Due to the transient
and efficient action of high-energy particles in plasma on the material surface [20], the
activated carbon atoms and newly introduced oxygen-containing functional groups may
gradually react with air molecules to form carbon dioxide gas and leave the sample surface.

3.3. Contact Angle

The hydrophilicity and hydrophobicity can be clearly reflected by the surface contact
angle. The surface contact angle of carbon fiber samples was measured by the Theta Lite
instrument. As can be seen from the Figure 5, the surface of the original sample without
plasma treatment is hydrophobic, and the contact angle is 148.71◦. After plasma treatment
for 5 min, the sample presents hydrophilicity, and the contact angle decreases sharply to 0◦,
which is in agreement with the study of Rani K V et al. [21]. The contact angle was 0◦ until
a placement time of 90 min. When the placement time reached 120 min, the contact angle
changed to 50.82◦. From 150 min to 180 min, the contact angle changed significantly from
65.2◦ to 102.32◦. After 180 min, the contact angle presented a slight change and, finally,
reached a maximum of 118.16◦ at 240 min. The above shows that the plasma treatment can
significantly change the surface properties of the material. The hydrophilicity of the surface
of the material can be changed by plasma treatment. With the increase in process time, the
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hydrophilicity decreased significantly, and the hydrophobicity was restored, which was
consistent with the results of Owen et al., Morra et al. and Riedl et al. [22–25].
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3.4. Mechanism Analysis

The surface edges of the sample treated with plasma generated many dangling bonds
(resulting from the fracture of the sample caused by plasma bombardment). These dangling
bonds form an unstable saturated state with the substances in the surrounding air (such
as hydrocarbon compounds and water), as shown in Figure 6a. Meanwhile, the defects
caused by plasma will also generate charge “traps” (charge holes) [26], which attract the
incorporation of free radicals, resulting in charge neutralization [27]. The adsorption of
these organic compounds occurs on the surface of carbon fibers. When carbon fibers are
exposed to the surrounding environment, the content of O2-containing groups will increase
significantly. With the passage of time, the available active sites on the surface (such as
dangling bonds) continue to react with substances in the surrounding environment (such
as O2) [28,29]. In this continuous reaction, C–H bonds will be replaced by C–O–C and C–O
functional groups [30] (Figure 6b). The plasma treatment, being a surface modification
technology, results in the generation of some functional groups on the carbon fiber surface
that exhibit weak binding affinity. The parts of these functional groups containing O2
will combine with substances in the surrounding environment, resulting in irreversible
chemical oxidation reactions to produce CO2 [31], which leaves the carbon fiber surface as
a gas (Figure 6c).
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4. Conclusions

Although the plasma surface modification of carbon fiber is short-term and efficient,
its timeliness is also an important factor limiting its development. In this paper, plasma
treatment (DBD) was used to modify the surface of carbon fiber, which had little effect
on its surface morphology. The surface of the sample after plasma treatment significantly
increased oxygen-containing groups, but it gradually decreased with the extension of the
storage time. After plasma treatment, the surface of carbon fiber was highly hydrophilic,
but with the extension of the storage time, the hydrophobicity gradually recovered. After
four hours of storage, the contact angle reached a maximum of 118.16◦, and the change
curve of the contact angle with water indicated that the optimal application time frame of
the material is within 160 min after treatment. There are many studies on various aspects
of plasma surface modification, but there are few reports on its timeliness. The basic data
measured in this paper about the timeliness can provide a reference for future research in
this field.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings14010080/s1, Figure S1: XPS spectra of samples that have
not been treated with plasma (DBD).

Author Contributions: Conceptualization, S.W.; methodology, M.G.; validation, S.W.; resources, Y.W.;
data curation, S.W.; writing—original draft preparation, S.W.; writing—review and editing, Y.H.;
supervision, Y.H. All authors have read and agreed to the published version of the manuscript.
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