
Citation: Bednarski, H.; Hajduk, B.;

Jarka, P.; Kumari, P. Temperature

Coefficient of Electronic Polarizability

in Thin Polymer Films Deposited on

Si and SiO2 Substrates Determined via

Spectroscopic Ellipsometry. Coatings

2024, 14, 166. https://doi.org/

10.3390/coatings14020166

Academic Editor: Andrey V. Osipov

Received: 15 December 2023

Revised: 21 January 2024

Accepted: 25 January 2024

Published: 27 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Temperature Coefficient of Electronic Polarizability in Thin
Polymer Films Deposited on Si and SiO2 Substrates Determined
via Spectroscopic Ellipsometry
Henryk Bednarski 1,* , Barbara Hajduk 1,* , Paweł Jarka 2 and Pallavi Kumari 1

1 Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marie Curie-Skłodowska Str.,
41-819 Zabrze, Poland; pkumari@cmpw-pan.pl

2 Department of Engineering Materials and Biomaterials, Silesian University of Technology,
18a Konarskiego Str., 41-100 Gliwice, Poland; pawel.jarka@polsl.pl

* Correspondence: hbednarski@cmpw-pan.pl (H.B.); bhajduk@cmpw-pan.pl (B.H.)

Abstract: Ellipsometry is widely used to determine the thermo-optical properties of thin polymer
films. However, if the thermo-optic coefficient (TOC) and the linear thermal expansion coefficient
(LTEC) are to be used to determine the temperature coefficient of electronic polarizability (TCEP) in
thin polymer films, their values must be determined with the greatest possible accuracy, as both have
the opposite effect. In this article, we analyze changes in ellipsometric parameters resulting from
changes in the thin film temperature in order to develop a data analysis method for temperature-
dependent spectroscopic ellipsometry that will facilitate the accurate determination of thermo-optical
parameters, including the TCEP, in polymer thin films. As practical application examples, we
identified optimal spectral windows to accurately determine the thermo-optical parameters of 50
to 150 nm-thick PMMA thin films deposited on Si and SiO2 substrates. The influence of thin-film
thickness on the accuracy of TOC and LTEC determination is discussed.

Keywords: polymer thin films; thermo-optical properties; spectroscopic ellipsometry; electronic
polarizability

1. Introduction

Spectroscopic ellipsometry is widely recognized as a particularly useful experimental
technique for determining the dielectric properties of thin layers because of its high sensi-
tivity to their thickness [1,2]. Such possibilities are particularly useful in polymer research
because polymer thin films find many important applications in various branches of tech-
nology, industry and medicine, of which we will mention only a few. For example, they are
used in organic electronics as active or auxiliary layers, optoelectronic devices, shielding
layers, electrostatic layers, protective layers, membranes, filters and implants [3,4]. This is
why there is a huge need for research and knowledge related to thin polymer layers in all
scientific and practical aspects, starting from their production, determining their properties
and modification methods, and ending with the optimization of the parameters of the
final product. Many of these needs can be met by studying the physicochemical processes
occurring in thin layers of soft matter. Spectroscopic ellipsometry can be used in such
studies, e.g., to monitor changes in the dielectric properties associated with such processes.
Numerous examples have demonstrated the usefulness of spectroscopic ellipsometry in
such studies, see, for example, refs. [5–8] and the references therein.

Adding the possibility of controlled heating or cooling of the sample during ellipsomet-
ric measurements opens the way to the study of temperature-dependent physicochemical
processes [9–12]. The well-known Lorentz–Lorenz equation combines the optical properties
of a material with electronic polarizability and the volume of its single repeating unit [13],
thus creating a convenient platform for inferring the microscopic properties of matter from

Coatings 2024, 14, 166. https://doi.org/10.3390/coatings14020166 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings14020166
https://doi.org/10.3390/coatings14020166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-6721-2011
https://orcid.org/0000-0002-0425-314X
https://orcid.org/0000-0001-8639-8678
https://orcid.org/0000-0002-8783-2461
https://doi.org/10.3390/coatings14020166
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings14020166?type=check_update&version=2


Coatings 2024, 14, 166 2 of 17

its macroscopic properties. Due to this important relationship, the change in the refractive
index of a thin polymer film can be related to a change in electronic polarizability and/or a
change in the volume of its single repeating unit. Since changing the temperature of thin lay-
ers affects their refractive index and layer thickness, both effects must be considered [14–16].
Within linear approximation, these changes can be related to the thin-film thermoptic co-
efficient (TOC) and the linear thermal expansion coefficient (LTEC) [10,12], which in turn
are related to the temperature coefficient of electronic polarizability (TCEP) through the
Lorentz–Lorenz equation. For materials in which both these effects compete, their LTEC
and TOC must be determined with a very high accuracy in order to deduce from them the
value of electronic polarizability. This is the case with polymer thin films. In the case of
optical polymers, e.g., polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene
(PS) or polyolefins such as polyethylene (PE) or polypropylene (PP), when used as optical
elements, the thermo-optical effect may be perceived as unfavorable. However, in sensor
applications exploiting this phenomenon, it is advantageous [17].

From what has been said above, it follows that temperature-dependent spectroscopic
ellipsometry is a very useful tool for this purpose [10]. However, it should be remembered
that ellipsometry is an indirect method of experimental optics in which ellipsometric angles
are directly measured quantities [16,18,19]. For this reason, it is necessary to rely on more
or less complex analyses to determine, for example, the refractive index and the thickness
of a thin layer [16,18]. It should also be noted that although temperature-dependent
ellipsometry has long been successfully used to determine the thermo-optic coefficients
and linear coefficients of thermal expansion [10,15,20], an analysis of the sensitivity of
ellipsometric angles to sample temperature changes has not yet been performed, despite
the fact that a unified linear analysis (ULA) of the sensitivity of ellipsometric angles to
the change in thickness of thin films was developed by Azzam, Elshazly-Zaghloul and
Bashara [21] as early as 1975. Of course, ULA has not been adapted to describe the
temperature changes of the layer, which affect not only its thickness but also the refractive
index. Therefore, bearing in mind the need to determine the values of thermo-optical
parameters with the greatest possible accuracy, we develop such a data analysis method
here. As examples of the practical application of this method, we identified the optimal
spectral windows to accurately determine the LTEC for 50 to 150 nm-thick PMMA thin films
deposited on transparent (SiO2) and light-absorbing (Si (100)) substrates. The influence
of the thin-film thickness on the accuracy of TOC and LTEC determination is discussed.
Moreover, the analysis of temperature-dependent ellipsometry results developed here can
be considered a convenient method for determining thermo-optical parameters such as the
LTEC, TOC and TCEP.

2. Materials and Methods

This work concerns thin polymer layers deposited on Si and SiO2 substrates in order
to determine the thermal properties of these layers. Importantly, the proposed method
provides a convenient platform for inferring the microscopic properties of matter, such
as its electronic polarizability and the volume of its single repeating unit, based on its
macroscopic properties. In this section, we briefly present the basic relationships, following
our earlier work [15]. The polarizability of a molecule, γ, is a measure of its ability to
respond to the acting electric field, Eact, and can be used to ultimately obtain the electric
dipole moment, p, which can be written as follows:

p = γEact, (1)

where the molecular polarizability:
γ = ∑ γi, (2)
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is the sum of contributions γi derived from the i-th atom making up the molecule. Under the
general assumptions of using the linear approximation, the dependence of the molecular
polarizability γ on temperature, T, can be written as follows:

γ(T) ≈ γ(T0) +
dγ

dT
(T − T0) ≡ γ(T0)(1 + Ξ0(T − T0)), (3)

where T0 is the reference temperature, the infinitely small increase in temperature dT is
calculated with respect to the reference temperature dT = T − T0 and the TCEP Ξ0 is
defined by:

Ξ0 ≡ 1
γ(T0)

dγ

dT
|T0 . (4)

On the other hand, molecular polarizability γ(T) can be expressed by macroscopic
quantities using the Lorentz–Lorenz (LL) equation [9], namely:

γ(T) =
3

4π

Vm(T)
NA

n2(T)− 1
n2(T) + 2

, (5)

where Vm is the molar volume, NA is Avogadro’s number and n is the refractive index of
the medium. Differentiating both sides of the above equation with respect to temperature
leads us to the following relationship:

dγ

dT
= γ(T)

(
6n

(n2 − 1)(n2 + 2)
β + α

)
≡ γ(T)[ f (n)β + α], (6)

where quantity β, defined as:

β ≡ dn
dT

, (7)

is the thermo-optic coefficient (TOC), f (n) ≡ 6n[(n2 − 1)(n2 + 2)]−1 and α is the volumetric
thermal expansion coefficient (VTEC), defined as:

α ≡ 1
V

dV
dT

. (8)

Therefore, the temperature coefficient of polarizability Ξ0 can be written as follows:

Ξ0 = f (n0)β0 + α0. (9)

In other words, Ξ0 can be expressed as the sum of the TOC value proportional to the
factor f (n0) which depends only on the refractive index of the medium and the VTEC. Note
also that the volumetric coefficient of thermal expansion α can be expressed as the sum of
the linear thermal expansion coefficients (LTECs) αi, i = x, y, z along the main symmetry
directions of the body under consideration, see, e.g., [10] and the references therein. One of
the experimental methods capable of determining all the physical quantities present on the
right side of the relationship (9) is ellipsometry [10,12]. Its particularly valuable advantage
is the very precise determination of the optical properties of thin layers and their thickness.

The use of spectroscopic ellipsometry also allows one to determine the spectral disper-
sion of the TOC [10,15]. Thus, using Equation (9), the dependence of Ξ0 on the wavelength
of light λ can also be determined. The experimental approach commonly used is quite
natural. Namely, the refractive index n and the film thickness h are determined not only at
the reference temperature, but the procedure is repeated for other temperatures. Then, β
and αh, explicitly defined by the following formula:

αh ≡ 1
h

dh
dT

, (10)
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are calculated from the determined temperature dependences n(T) and h(T), respectively.
However, as already mentioned in the introduction, an analysis of the sensitivity of ellipso-
metric angles to temperature changes has not been developed so far.

3. Results

Standard ellipsometry measures the ratio of the overall complex reflectance or trans-
mittance coefficients ρ defined as follows [12]:

ρ ≡
rp

rs
≡ tan(Ψ)ei∆, (11)

where the ratio of the two reflection (or transmission) coefficients rp and rs of polarized
light parallel and perpendicular to the plane of incidence, respectively, is expressed by
ellipsometric angles Ψ and ∆. On the other hand, ρ depends on the film thickness and the
complex dielectric functions of a particular optical system. Generally, for a given optical
system, this is a known multi-variable function expressed by complex Fresnel reflection
and transmission coefficients, see, for example, ref. [21]. In the following, for the sake of
clarity, as arguments for ρ, we will explicitly list only the variables related to the tested layer,
since the other variables are considered to be known quantities. Changing the temperature
of the materials affects the optical properties and the film thickness as discussed above.
For most materials, the layer thickness usually increases and the refractive index decreases
with increasing temperature; however, there are many exceptions to this rule.

To find out how a slight change in the temperature of a film affects the measured
ellipsometric angles, it is convenient to extend the unified linear analysis developed by
Azzam, Elshazly-Zaghloul and Bashara in order to compare the sensitivity of reflection and
transmission ellipsometry on the thickness of the examined films [21]. For this purpose,
they introduced a complex sensitivity function, the real and imaginary projections of which
determine the sensitivity factors of Ψ and ∆. Although this approach is general in the
sense that it can be applied to films of any initial thickness h0, values of the remaining
parameters of the optical model of the film under study are fixed therein. Considering the
fact that changing the temperature of the film affects not only its thickness, but also its
optical properties, it is clear that we need to extend the ULA, and, to distinguish it, we will
call it the extended unified linear analysis (EULA). To move on, let us start by writing the
main sensitivity relationship as outlined in ref. [21], namely:

dρ

ρ0
= K

dh
h0

, (12)

where K is a complex sensitivity factor that couples a fractional change in film thickness
dh/h0 to a corresponding change in dρ/ρ0 [21]. Now, we extend this approach to cases
where the change in dρ may also be due to a change in the refractive index. To achieve this,
we rewrite Equation (12) as follows:

dρ =

(
ρ0

h0
K0

)
dh (13)

which takes a form similar to an exact differential if we identify ρ0
h0

K0 as the derivative
(∂ρ/∂h)h0 calculated at the indicated reference point, marked by the label 0. Note that the
sensitivity factor K in Equation (12) is also computed at this reference point. Therefore, we
can write the following extended version of Equation (13) with two variables:

dρ =

(
∂ρ

∂h

)
h=h0

dh +

(
∂ρ

∂n

)
n=n0

dn ≡ dρh + dρn

≡
(ρ0

h
Kh

)
h=h0

dh +
(ρ0

n
Kn

)
n=n0

dn, (14)
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where n is the refractive index of the film. In Equation (14), the first equation is nothing
but the complete differential notation for ρ, the middle equation defines corresponding
partial components dρh and dρn and the last equation defines the partial complex sensitivity
factors Kh and Kn. Explicitly, these sensitivity factors are defined by the following relations:

Kh0 ≡ h0

ρ0

(
∂ρ

∂h

)
h=h0

, and Kn0 ≡ n0

ρ0

(
∂ρ

∂n

)
n=n0

. (15)

The above-mentioned sensitivity factors of the ellipsometric angles Ψ and ∆ can be
determined by direct differentiation of the main equation of reflection ellipsometry [16],
i.e., Equation (11), from which differentials of ellipsometric angles Ψ can be expressed by
the differential of ρ as follows:

dΨ = (1/2) sin(2Ψ0)Re(
dρ

ρ0
) ≡ SΨh0

dh + SΨn0
dn ≡ dΨh + dΨn, (16)

where Ψ0 is the ellipsometric angle Ψ corresponding to ρ0 and SΨξ
is the ellipsometric

angle’s Ψ partial sensitivity factor associated with the variable ξ = h or n, explicitly
defined by:

SΨξ0
≡ (1/2) sin(2Ψ0)Re(

Kξ0

ξ0
), ξ0 = h0 or n0.

Similarly, for ellipsometric angle ∆,

d∆ = Im(
dρ

ρ0
) ≡ S∆h0

dh + S∆n0
dn ≡ d∆h + d∆n, (17)

where S∆ξ
is the ellipsometric angle’s ∆ partial sensitivity factor associated with the variable

ξ = h or n, explicitly defined by:

S∆
ξ0

≡ Im(
K

ξ0

ξ0
), ξ0 = h0 or n0. (18)

In the above expressions, Re and Im are the real and imaginary part of their arguments,
and the identities for sensitivity are a direct consequence of the relationship dρ = ∑ξ dρξ

and the fact that ρ is a complex-valued function of the real arguments. For an absorbing
substrate, its complex refractive index is n̂s ≡ ns − iks, where both ns and ks are real
quantities. During EULA, we can separate dρ into components resulting from the change
in layer thickness and the change in its refractive index according to Equation (14). Here,
we consider the case where the change in h and n is due to a change in the temperature
of the film. First, let us note that the ratio of the overall complex reflectance coefficients
ρ is not a function that is directly dependent on temperature. Of course, the temperature
change affects not only the thin film but also other components of the given optical system,
e.g., the substrate on which the thin film is deposited. In our approach to temperature-
dependent thin-film ellipsometry, we directly account for all temperature-induced changes
in ρ, except the thin film, for which we will apply the linear approximation to ρ developed
above. To go further, we express the temperature-induced change in the film thickness δh
and its refractive index δn by the linear thermal expansion coefficient and thermo-optic
coefficient, respectively. Thus, we write:

δh ≡ h0αhδT, (19)

and
δn = βδT. (20)

Note that above we use the Greek symbol δ to express a finite but slight change in the
value of a physical quantity that follows that symbol. Substituting these expressions into
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Equation (14), the corresponding relative change in δρ with respect to ρ0 can be written
as follows:

δρ

ρ0
≈

Kh0

h0
h0αhδT +

Kn0

n0
βδT. (21)

Equation (21) is important because it combines the contributions from the temperature-
induced changes in layer thickness and refractive index that are proportional to their
sensitivity factors Kξ , ξ = h0 or n0, and their LTEC and TOC with the fractional change
ρ−1

0 δρ due to these changes. Since most commonly in practice, the ellipsometric angles
Ψ and ∆ are measured quantities, it will be convenient to write appropriate expressions
just for these quantities. Namely, the changes in ellipsometric angles due to a temperature
change of the thin film by δT are, respectively:

δΨ ≈ SΨh h0αhδT + SΨn βδT, (22)

for the angle Ψ, and
δ∆ ≈ S∆h h0αhδT + S∆n βδT, (23)

for the angle ∆.

3.1. Unique Solution for the LTEC and TOC

It is hard not to notice that the complex Equation (21) or the two real Equations (22) and (23)
can be treated as a system of two equations for two unknowns αh and β, i.e., the LTEC and TOC,
respectively. To find a unique solution to this system of linear equations, one can use Cramer’s
rule, which leads to the following solutions:

αh =
S∆n0

h0D
δΨ
δT

−
SΨn0

h0D
δ∆
δT

≡ c11
δΨ
δT

− c12
δ∆
δT

(24)

and

β = −
S∆h0

D
δΨ
δT

+
SΨh0

D
δ∆
δT

≡ −c21
δΨ
δT

+ c22
δ∆
δT

(25)

where D in the numerators is the determinant of a 2 × 2 matrix of the respective sensitivity
factors, explicitly written as follows:

D =

∣∣∣∣∣ S∆n0
SΨn0

S∆h0
SΨh0

∣∣∣∣∣, (26)

which must be non-zero to obtain a unique solution. The last identities in Equations (24) and (25)
are written to define the coefficients c11, c12, c21 and c22.

3.2. Analysis of the Accuracy of TCEP, LTEC and TOC Determination

It should be noted that all these quantities Ξ0, αh and β were determined within
the linear approximation, which greatly facilitates an analysis of the accuracy of their
determination. Namely, let us assume that the exact value of any quantity, say q, lies in
a certain interval with a finite width q ± ςq. Thus, for the TCEP, using Equation (9), we
can write:

ςΞ0 ≈
∣∣∣ f

′
(n0)β0

∣∣∣ςn0 + | f (n0)|ςβ0 + ςα0, (27)

where f
′

denotes derivative f with respect to n0. Now, for the sake of simplicity, we denote
δΨ
δT by x and δ∆

δT by y and based on Equations (24) and (25), we get the following expressions
for ςαh and ςβ0:

ςαh ≈ |αh|ςh0 + |c11|ςx + |c12|ςy (28)

and
ςβ0 ≈ |c21|ςx + |c22|ςy (29)
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From this, we can immediately see that the width of the confidence interval for de-
termining the exact value of the LTEC depends on the coefficients |c11| and |c12|, while for
the TOC, it depends on the coefficients |c21| and |c22|. Therefore, in order to maximize the
accuracy of determining Ξ0, αh and β, the experimental conditions should be selected in
such a way as to minimize the values of ςΞ0. Moreover, to obtain the highest accuracy, the
fact that αh is a quantity independent of the wavelength of light can be used. Therefore,
the center and width of the spectral window can be selected so that just αh can be deter-
mined as precisely as possible. Then, β(λ) can be determined with a predetermined value
of αh using Equation (22). This procedure is dictated by the fact that ςΨ is more accurately
determined than ς∆ because its typical values are 0.02◦ and 0.1◦, respectively. Note that
the given ςΨ and ς∆ values in degrees must be converted to radians to be used in the
equations above. To find the spectral relationship β with the same accuracy over the entire
spectral range, a parametric relationship n0(λ) can be used to determine the temperature
derivatives of these parameters in the optimal spectral window, which are then applied to
determine β(λ) over the entire spectral range.

When concluding the discussion on the accuracy of TCEP, LTEC and TOC determina-
tion, the presence of the first components on the right side of Equations (27) and (28) should
also be mentioned, which are directly proportional to the accuracy of the determination
of the refractive index ςn0 and the film thickness ςh0, respectively. Since, in our approach,
we treat all the quantities determined at the reference temperature as known, this also
applies to the refractive index n0 and the thin-film thickness h0. As for ςn0 and ςh0, they
must be determined; one of the ways to do this is to estimate their values based on the
resolution of the ellipsometer. However, this does not take into account the effect of sample
imperfections. Therefore, it will be more accurate to determine them on the basis of a
statistical deviation from their mean value [22].

4. Discussion

The extension of the ULA developed here and its application to temperature-dependent
thin-film ellipsometry can not only provide a basis for a quantitative analysis of the physi-
cal effects that cause changes in ρ, but can also be used to construct sensitivity maps and
even to determine LTOC and VTEC values. Of course, to do this, we need to be able to
calculate all {Kξ}. In fact, the expression for computing the Kh0 value for a three-phase
optical system has already been derived within the ULA in ref. [16]. For the sake of
clarity of presentation, we moved the derivation of the expressions for calculating complex
sensitivity factors {Kxξ

} to Appendix A. Here, we will use the newly developed analysis
to study the influence of the substrate and the thickness of a polymer thin film on the
precise determination of the LTEC and TOC in temperature-dependent spectroscopic el-
lipsometry which, in turn, is necessary for the accurate determination of the temperature
coefficient of electronic polarizability Ξ0 of such a film. The obtained results should be
particularly useful, for example, for people interested in research related to the LTEC and
spectral dispersion of the TOC of thin films or surface layers, as well as for people who use
spectroscopic ellipsometry. We chose thin polymer films as a research material because
they present a challenge as their VTEC and TOC are relatively high and have opposite
signs. This results in competitive contributions to Ξ0; therefore, the precision of LTEC and
TOC determination has a great influence on the accuracy of determining the temperature
coefficient of electronic polarizability Ξ0 of such a film using Equation (9). To better illus-
trate this point, let us first compare Ξ0 deduced from published results, e.g., for PMMA
at room temperature by Waxler et al. [23] and Soave et al. in ref. [24]. In ref. [23], we find
n0(632.8 nm) = 1.4934, α0 = 203.7 × 10−6 ◦C−1 and β0 = −105 × 10−6 ◦C−1 which, accord-
ing to Equation (9), gives Ξ0 = 23 × 10−6 ◦C−1. On the other hand, from ref. [24], we have
n0(632.8 nm) = 1.4916, α0 = 248 × 10−6 ◦C−1 and β0 = −141 × 10−6 ◦C−1, which gives
Ξ0 = 4× 10−6 ◦C−1. Interestingly, Berini et al. [25] reported the same value of the refractive
index n(633 nm) = 1.4916 for PMMA as in [24]. However, in the case of the thermo-optical
coefficient measured by a very sensitive interferometric technique, β0 = −120 × 10−6 ◦C−1
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was given in the tested temperature range from 20 to 70 ◦C−1 [25]. As can be seen, values
of Ξ0 for PMMA as inferred from the cited data differ six fold. All of this clearly shows
how important the accuracy of VTEC and TOC determination is.

4.1. Effect of Substrate and Thin Layer Thickness on Precise Determination of LTEC and TOC in
Temperature-Dependent Spectroscopic Ellipsometry—Optimal Spectral Windows

Here, we are particularly interested in determining the optimal spectral window(s)
width, which allows the precise determination of the LTEC, as the TOC dispersion can then
be determined using αh. As practical examples, we present the results of calculations for
thin PMMA layers deposited on light-absorbing and non-absorbing substrates Si (100) and
SiO2, respectively, for the reference temperature To = 25 ◦C. Since our approach assumes
that ρ0(λ) of the thin polymer film and the thermo-optical properties of the substrate are
known, we will take the necessary inputs from the available literature. Namely, in the
case of the PMMA film, we use the data of Soave et al. [24] and for the Si (100) substrate,
we use data from the works of Jellison and Modine [26,27], while for SiO2, data are from
Ghosh [28,29].

4.1.1. Thin PMMA Films on a Si (100) Substrate

In variable-angle spectroscopic ellipsometry, the wavelength of light and the angle of
its incidence can be selected to ensure optimal experimental conditions. In the selection
of optimal experimental conditions, the 3D diagram shown in Figure 1 may be helpful,
in which the three coordinates h, λ and θ of the drawn points define the maxima of the
determinant D(h, λ, θ). We will highlight these coordinates with a label p to indicate that
they cause a peak in D. As shown in Figure 1, the maxima of the determinant D for a
layer thinner than 120 nm occur for incidence angles greater than 70 degrees and light
wavelengths shorter than 560 nm.

40
60

80
100

120
140

160

65

70

75

80

85

300
400

500
600

700

an
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thickness (nm)

PMMA/Si (100)

Figure 1. Coordinates hp, λp and θp, for which the determinant of the Cramer’s equation coefficients,
see Equations (22) and (23), reaches the maximum.

Now, we will discuss the results for the coefficients c11 =
S∆n0
h0D , c12 =

SΨn0
h0D , c21 =

S∆h0
D

and c22 =
SΨh0

D , defined in Equations (24) and (25), and appearing in Equations (28) and (29),
which have a large impact on the accuracy of LTEC and TOC determination. Figure 2a–f
show the spectral dependence of these coefficients for six films with thicknesses of
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h = 120, 90, 80, 70, 60 and 55 nm, respectively, at the indicated incidence angles θ detuned
from the corresponding θp by 1◦. We use this small incidence angle shift to avoid the
singularity in ρ0 that occurs when |rs|2 approaches zero. Additionally, in these charts, we
have marked with dashed lines the values of ±0.005 for these factors. This value is some-
what arbitrary, but should be as low as possible to ensure the greatest possible accuracy in
determining the LTEC value. Therefore, it results from a compromise between the desired
accuracy and the spectral width of the measurement window needed to determine the
values δ∆/δT and δΨ/δT caused by temperature changes. Thus, we can see that if we
want the values of these coefficients in Equations (28) and (29) not to exceed 0.005 for a
given sample, then we should properly select the spectral window and the light incidence
angle. In particular, as shown in Figure 2, the spectral windows are defined by the region
containing curves for c11 and c12 bounded by the assumed values ±0.005; additionally,
both these curves cross zero.
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Figure 2. The spectral dependence of coefficients c11, c12, c21 and c22 for six films with thicknesses
of h = 120, 90, 80, 70, 60 and 55 nm, for figures (a–f), respectively, of PMMA deposited on a Si (100)
substrate at indicated incidence angles θ detuned from the corresponding θp by 1◦. A pair of adjacent
arrows at different levels indicates the optimal spectral window.
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Importantly, the position of this spectral window, i.e., its center and width, depends
largely on the thickness of the layer and, of course, the angle of incidence of light. It should
also be noted that there is clearly a narrowing of the width of the spectral window as the
thickness of the layers decreases. On the other hand, for thin films with a thickness of
70 and 60 nm, two spectral windows can be identified. The main reason for this is that the
spectral dependence of the coefficients c11 and c12, defined in Equation (24) and appearing
in Equation (28), has a minimum for the Si (100) substrate in the considered spectral range.
Therefore, by limiting the value of these parameters to a certain value, here ±0.005, it may
be that an appropriate spectral window will be created on both sides of this minimum.
Figure 2 shows that this situation occurs for the PMMA layer with a thickness of 70 and
60 nm.

4.1.2. Thin PMMA Films on a SiO2 Substrate

We have discussed so far the results for PMMA thin films deposited on a Si substrate.
In order to reveal the role of the substrate, we also performed appropriate calculations for
the PMMA deposited on a SiO2 substrate [24]. To facilitate the comparison, we will present
the results in a similar way to above for a thin PMMA film on a Si substrate. Thus, in
Figure 3, we show the 3D graph in which the three coordinates hp, λp and θp of the drawn
points define the maxima of the determinant

∣∣D(hp, λp, θp)
∣∣.
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Figure 3. The same as in Figure 1, but for PMMA films on a SiO2 substrate.

As shown in Figure 3, the maxima of the determinant |D| for a layer thinner than
120 nm occur for incidence angles greater than 56.76 and light wavelengths shorter than
594.5 nm. Note the opposite sign of D, which is due to the fact that PMMA’s refractive
index is greater than SiO2. Finally, in Figure 4, we show the spectral relationships for the
coefficients c11, c12, c21 and c22 at the indicated θ values. These plots are dominated by the
steep and linear behavior of c12 and the nearly zero values of c22. However, much more
important is the reduction in the achievable accuracy of LTEC and TOC determination,
which forced us to quadruple the accuracy thresholds to the value of ±0.02.

A detuning of the incidence angle by about 1◦ is actually recommended; it increases
the width of the spectral windows to about 20 nm without losing accuracy. Finally, let
us add that with such a reduced accuracy, the LTEC and TOC can be determined for a
70 nm-thick PMMA film on a Si substrate measured at θ = 70◦ (instead of θ = 79.85◦ as in
Figure 2) in the spectral window from 350 to 450 nm. This example clearly demonstrates
the advantages of using light-absorbing substrates in ellipsometry.
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Figure 4. The spectral dependence of coefficients c11, c12, c21 and c22 for six films with thicknesses
of h = 120, 90, 80, 70, 60 and 55 nm, for figures (a–f), respectively, of PMMA deposited on a SiO2

substrate at indicated incidence angles θ detuned from the corresponding θp by 1◦. A pair of adjacent
arrows at different levels indicates the optimal spectral window.

4.1.3. Discussion of the Results

At this point, we would like to discuss some physical aspects of the presented results
for thin polymer films deposited on light-absorbing and transparent substrates. In both
of these cases, a shift in the optimal spectral windows towards shorter light waves is
clearly visible. An explanation for this fact can be found in the coefficient taking into
account the difference in the optical paths of light reflected from the upper and lower
surfaces of the film, see Equations (A1) and (A6), as it depends on the thickness of the
film. Since this coefficient is also inversely proportional to the length of the incident light
wave, its constant value forced by the interference condition leads to such an effect. This
blue shift in the optimal spectral window can have a significant impact on the accuracy
of the determination of LTECs and TOCs of thin films with the thickness range of 50 to
150 nm considered here. Moreover, it turns out that the determined spectral windows
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for precise LTEC determination are narrow, because only dρn does not dominate in them.
However, it is worth emphasizing the observed possibility of a more precise determination
of the LTEC for layers with thicknesses of 60–70 nm, deposited on the Si substrate, which
have two optimal spectral windows. Let us also note that the extended linear analysis
of temperature-dependent ellipsometry developed here can be considered a convenient
method for determining the thermoptic parameters LTEC and TOC, as it is based on the
values of the coefficients c11, c12, c21 and c22 determined at the reference temperature and
for raw ellipsometric data.

4.1.4. Validity of the Linear Approximations

Guided by the need to determine the values of thermoptic parameters with the greatest
possible accuracy, in this work, we have developed an appropriate mathematical analysis
that facilitates this task. This analysis is based on a linear approximation of the exact ellip-
sometry equation (Equation (11)). This also applies to the presented analysis of the accuracy
of determining the LTEC and TOC, for which the correctness of the linear approximation
was tacitly assumed. Therefore, it is important to check the range of temperature values
for which such a linear approximation has an acceptable accuracy. For this purpose, we
computed and compared the approximate (using Equation (21)) and exact (using directly
Equation (11)) values of ρ−1

0 δρ/δT for a PMMA layer with a thickness of 70 nm on a Si (100)
substrate for δT = 30 ◦C. The results of these calculation are presented in Figures 5 and 6
for Im(ρ−1

0 δρ/δT) and Re(ρ−1
0 δρ/δT),, respectively, using the angle of incidence θ detuned

by +1◦ from the corresponding θp = 78.85◦.

332 415 498

-1

0

1

 

 

Im
(

-1
)

(nm)

PMMA/Si (100) 
70 nm

T=30 oC 

EULA
Exact

= p

p=78.85o

T0=25 oC 

p=348 nm

Figure 5. Comparison of Im(ρ−1
0 δρ/δT) calculated for a 70 nm-thick PMMA film deposited on a Si

(100) substrate using the extended unified linear analysis, Equation (21), with that calculated using
the exact equation, Equation (11).

As can be seen in these figures, for the assumed parameter values, the compliance of
the curves calculated with the use of the EULA is excellent.

Considering that LTEC and TOC values are determined for the reference temperature,
the thirty-degree spread of δT seems to be large enough. Of course, the width of the
temperature range depends on αh and β, so for inorganic materials which have much lower
values of these parameters, δT may be correspondingly higher. Let us add that with the
above-mentioned parameter values, the relative accuracy of the TOC determined for the
70 nm-thick PMMA film deposited on a Si (100) substrate is approximately ςβ/β ≈ 0.35%
and for the LTEC, it is ςαh/αh = 1.35%.
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Figure 6. The same as in Figure 5, but for Re(ρ−1
0 δρ/δT) calculated for 70 nm-thick PMMA film

deposited on a Si (100) substrate using the extended unified linear analysis, Equation (21), compared
with that calculated using the exact equation, Equation (11).

5. Conclusions

In this work, we developed a data analysis method for temperature-dependent
spectroscopic ellipsometry to facilitate the accurate determination of the thermo-optical
parameters, including the temperature coefficient of electronic polarizability (TCEP),
in thin films. It is based on the extension of the unified linear analysis (ULA) of the
sensitivity of ellipsometry to changes in the thickness of thin films [21]. Our extension
also takes into account changes in the refractive index of the film due to temperature
changes. The extended unified linear analysis (EULA) of the sensitivity of ellipsometric
angles to temperature changes, as shown in the results, also allows for the determination
of optimal spectral windows for the determination of thermo-optical parameters with a
controlled accuracy. It turns out that for thin PMMA layers with a thickness in the range
of 50–150 nm, these optimal spectral windows are relatively narrow, and their position
indicates a shift towards shorter light waves as the thickness of the thin films becomes
thinner. In the case of PMMA films 60–70 nm thick deposited on Si (100) substrates,
two such optimal spectral windows can be identified. The main difficulty in accurately
determining the LTEC value in thin polymer films is that the changes in ellipsometric
angles caused by changes in the temperature of the layer are mainly due to the change
in its refractive index and are only in a very narrow spectral range; changes in Ψ and ∆
resulting from the change in layer thickness due to a temperature change may compete
with them. Importantly, the developed analysis can serve as a convenient method of
determining the LTEC, TOC and TCEP, as it allows one to determine their unique values
based on the solution of a system of two linear equations with coefficients determined at
the reference temperature and on the basis of raw ellipsometric data.
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Appendix A

This appendix presents the derivation of the formulas for calculating the coefficients
of sensitivity of the ellipsometric angle to the change in layer thickness and its refractive
index in a three-phase optical system. As already mentioned, the formulas for calculating
the coefficient of sensitivity of the ellipsometric angles to the change in layer thickness have
been derived in ref. [21]. However, for the sake of completeness of the article, we will cover
them here as well, and so we will start with them.

The overall complex amplitude-reflection coefficients occurring in Equation (11) for
the light polarized parallel (ν = p) and perpendicular (ν = s) to the plane of incidence for a
three-phase optical system can be written as follows [16]:

rν =
r01ν + r12ν exp(−2iξ),
1 + r01νr12ν exp(−2iξ)

, (A1)

where r01ν, r12ν are the 0–1 and 1–2 interface Fresnel reflection coefficients for the p and s
polarization [16]:

r01p =
n1 cos(θ0)− n0 cos(θ1)

n1 cos(θ0) + n0 cos(θ1)
, (A2)

r01s =
n0 cos(θ0)− n1 cos(θ1)

n0 cos(θ0) + n1 cos(θ1)
, (A3)

r12p =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)
, (A4)

and

r12s =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)
, (A5)

respectively, and

ξ = 2π
h
λ

√
n2

1 − n2
0 sin2(θ0) (A6)

Note that here we have changed the notation of marking the refractive index to n0,
n1 and n2 instead na, n and ns, respectively. Now, we take the logarithmic differential of
Equation (11), obtaining:

dρ/ρ = (drp/rp)− (drs/rs). (A7)

Writing that

rν ≡ Nν

Dν
, (A8)

we can express drν/rν analogically to Equation (A7):

drν

rν
=

dNν

Nν
− dDν

Dν
. (A9)
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Using (A8) and (A9), we can calculate increment drν caused by the film’s thickness
change, for which we obtain:

drν

rν
=

(
1

Nν

∂Nν

∂h
− 1

Dν

∂Dν

∂h

)
dh (A10)

Taking into account that the film thickness h is introduced into these equations only
through the variable ξ, we can rewrite this equation as follows:

1
rν

drν

dh
= −2i

(
r12ν

r01ν + r12νξ
− r01νr12ν

1 + r01νr12νξ

)
exp(−2iξ)

∂ξ

∂h
, (A11)

where the derivative ∂ξ/∂h is explicitly given by:

∂ξ

∂h
=

2π

λ

√
n2

1 − n2
0 sin2(θ0). (A12)

Now, using (A7) and (A10) ÷ (A11), the sensitivity factor Kh0 can be written as:

Kh0 =
h0

ρ0

(
∂ρ

∂h

)
h0

=
h0

ρ0

[
1
rp

drp

dh
− 1

rs

drs

dh

]
h0

. (A13)

We are going now to calculate the sensitivity factor related to the change in the
refractive index of the film, i.e., Kn1 . For that, we go back to Equations (A3) ÷ (A5), and
this time, we calculate the increments rν caused by the change in n1, and so we get:

drν

rν
=

(
1

Nν

∂Nν

∂n1
− 1

Dν

∂Dν

∂n1

)
dn1 (A14)

Thus, we need to calculate the partial derivative of Nν and Dν, ν = p, s, with respect
to n1:

∂Nν

∂n1
=

∂r01ν

∂n1
+

∂r12ν

∂n1
exp(−2iξ)− 2ir12ν exp(−2iξ)

∂ξ

∂n1
(A15)

and

∂Dν

∂n1
=

∂r01ν

∂n1
exp(−2iξ)r12ν +

∂r12ν

∂n1
exp(−2iξ)r01ν − 2i exp(−2iξ)

∂ξ

∂n1
r01νr12ν. (A16)

In order to calculate derivatives of the Fresnel inter-facial reflection coefficients, we
need to explicitly write them, i.e., ref. [16]. This leads to the following expressions for the
derivatives:

∂r01p

∂n1
=

2n0 cos(θ0) cos(θ1)

(n1 cos(θ0) + n0 cos(θ1))2 , (A17)

∂r01s
∂n1

= − 2n0 cos(θ0) cos(θ1)

(n0 cos(θ0) + n1 cos(θ1))2 , (A18)

∂r12p

∂n1
= − 2n2 cos(θ1) cos(θ2)

(n2 cos(θ1) + n1 cos(θ2))2 , (A19)

and
∂r12s
∂n1

= − 2n2 cos(θ1) cos(θ2)

(n1 cos(θ1) + n2 cos(θ2))2 , (A20)

respectively. In Equations (A12) and (A13), we still need to find the derivative of ξ with
respect to n1, for which we have:

∂ξ

∂n1
=

2πh
λ

n1√
n2

1 − n2
0 sin2(θ0)

. (A21)
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Thus, finally, the ratio of the overall complex amplitude-reflection coefficient change
caused by the film refractive index change can be written as:

dρ/ρ =

[
(

1
rp

drp

dn1
)− (

1
rs

drs

dn1
)

]
dn1, (A22)

where 1
rν

drν
dn1

, ν = p, s, are calculated using (A14) ÷ (A21) and the sensitivity factor Kn1 is
calculated as:

Kn1 =
h0

ρ0

(
∂ρ

∂n1

)
n1(T0)

=
h0

ρ0

[
1
rp

drp

dh
− 1

rs

drs

dh

]
n1(T0)

. (A23)
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