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Abstract: As a biomedical material, porous titanium alloy has gained widespread recognition and ap-
plication within the field of orthopedics. Its remarkable biocompatibility, bioactivity, and mechanical
properties establish it as a promising material for facilitating bone regeneration. A well-designed
porous structure can lower the material’s modulus while retaining ample strength, rendering it
more akin to natural bone tissue. The progression of additive manufacturing (AM) technology has
significantly propelled the advancement of porous implants, simplifying the production of such
structures. AM allows for the customization of porous implants with various shapes and sizes tailored
to individual patients. Additionally, it enables the design of microscopic-scale porous structures to
closely mimic natural bone, thus opening up avenues for the development of porous titanium alloy
bone implants that can better stimulate bone regeneration. This article reviews the research progress
on the structural design and preparation methods of porous titanium alloy bone implants, analyzes
the porous structure design parameters that affect the performance of the implant, and discusses the
application of porous medical titanium alloys. By comparing the effects of the parameters of different
porosity, pore shape, and pore size on implant performance, it was concluded that pore diameters
in the range of 500~800 µm and porosity in the range of 70%–90% have better bone-regeneration
effects. At the same time, when the pore structure is a diamond, rhombohedral, or cube structure, it
has better mechanical properties and bone-regeneration effects, providing a reference range for the
application of clinical porous implants.

Keywords: 3D printing; titanium alloys; bone implant; porous structure

1. Introduction

The repair and replacement of a wide range of bone defects caused by diseases,
trauma, and aging has been an important subject for centuries. So far, the regeneration of
bone defects caused by war, infection, car accidents, tumors, and genetics is still a clinical
challenge [1]. Bone tissue possesses intrinsic regenerative capabilities, but it has a critical
size limit. Within this critical size limit, bone defects can be repaired through the self-healing
capacity of the bone tissue itself. However, when bone defects exceed this critical size limit,
such as those resulting from trauma, disease, tumor resection, or osteomyelitis, spontaneous
healing becomes challenging in the absence of external intervention. A segmental bone
defect is defined as a defect whose length exceeds 1.5 times its diameter. At present, the
most common treatment methods for bone defects are autologous bone transplantation
and allograft bone transplantation. Among them, autologous bone transplantation is
considered to be the “gold standard” in clinical practice; that is, it is the most effective
bone-regeneration method [2,3]. However, these two treatments have obvious limitations,
such as limited autogenous bone, more pain for patients [4], and immune rejection [5]. In
view of this, orthopedic alternatives have rapidly developed in response to clinical needs,
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including skull prostheses, dental implants, interbody fusion devices, femur prostheses,
and tibial prostheses.

Currently, the biomaterials used for implants include the following four categories:
metals and their alloys, polymers, ceramics, and natural materials. The properties of
several commonly used materials are compared with those of natural human bone, as
shown in Table 1. Metal materials exhibit superior mechanical strength and wear resistance
in comparison to polymer and ceramic materials, so metal materials are often used as the
preferred materials for load-bearing implants [6]. Among all metal materials, titanium alloy
(Ti6Al4V) is widely used in the manufacture of orthopedic and dental implants because
of its high strength, low density, corrosion resistance, low elastic modulus, and good
biocompatibility [7,8]. The elastic modulus of human cortical bone and trabecular bone
ranges from 3 GPa to 30 GPa and 0.01 GPa to 3 GPa, respectively [9–11], while the elastic
modulus of a traditional solid titanium alloy can reach 110 GPa, which is much higher
than the elastic modulus of human bone, so the stress-shielding problem may be faced
after implantation [12]. The high contrast between the mechanical properties of bone tissue
and implant biomaterials may lead to bone resorption, a phenomenon defined as stress
shielding [13], which limits the normal growth of bone and ultimately leads to implantation
failure. Secondly, the dense titanium alloy was connected to the host-only interface, and
the intensity after implantation was also prone to loosening [14]. To address these issues,
titanium alloys with a porous structure have been introduced, and this porous structure is
regarded as an effective method for mitigating the mismatch in the elastic modulus [15–17].
Porous titanium alloys combine the advantages of titanium alloys and porous structures
and can be used to manufacture implants with a more perfect structure and performance to
achieve the effect of reducing the elastic modulus and regulating mechanical properties.

The ideal orthopedic implant requires its structure to conform to the anatomy of
natural bone tissue and have connected pores that can satisfy the inward growth and
vascularization of cells. It has certain mechanical properties to provide mechanical support
and avoid the fatigue fracture of the materials; has a surface suitable for cell adhesion,
growth, and reproduction; and should have good biocompatibility and a goodbone-tissue-
integration ability [18–20]. The design of porous structures involves the porosity, pore size,
and shape. The porosity, pore size, and shape of porous scaffolds can play an important
role in the growth of cells and the mechanics of the scaffold and will affect cell nutrients,
the flow of oxygen, and the biological responses of the cells (such as their proliferation,
differentiation, and signaling). The pore structure creates conditions for processes such
as cell adhesion, growth, and reproduction [21], allowing for cell migration, the influx of
oxygen and nutrients, and the circulation of body fluids [22,23]. Since the introduction
of porous Ti6Al4V bone implants, researchers have been diligently striving to discover a
porous implant design that is better suited for promoting bone tissue regeneration [4].

Table 1. Comparison of properties of various biomaterials.

Material Yield Strength (MPa) Strength of Extension (MPa) Elasticity Modulus (GPa) Cite

Human bone
(Cortical bone) 30–70 70–150 4–30 [24]

CpTi 320 465 110 [25]
Ti6Al4V 585–1060 690–1100 55–110 [26]

Stainless steel 190–690 490–1350 200–210 [27,28]
Co-based alloys 310–1586 655–1793 210–253 [29,30]
Hydroxyapatite — 40–300 80–120 [31]

Bioglass45S5 — 42 35 [32]

2. Preparation of Porous Titanium Alloys

Traditional processing methods such as metal foaming [33], freeze casting [34], and
powder metallurgy [35] can be used to manufacture porous structures. However, for im-
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plants with complex structures, the traditional methods cannot obtain an accurate porosity,
and it is difficult to control their porous structures [36], which limits the application of
porous structures in bone implants. In recent years, more and more studies have adopted
additive manufacturing technology (also known as 3D printing technology) to manufac-
ture implants with porous structures [37]. Three-dimensional printing technology is a
bottom-up processing method. It operates by creating solid objects layer by layer, following
computer-generated 3D models. This technology excels in meeting the demands of per-
sonalized customization to the fullest extent [38]. Three-dimensional printing technology
can further change its elastic modulus and mechanical properties by adjusting parameters
such as the pore size, porosity, pore shape, and surface topography. Today, 3D printing
technology has been widely used in various fields, including agriculture, healthcare, the
automotive industry, and the aerospace industry for mass customization. Figure 1 illus-
trates the utilization of 3D printing technology across various fields. The advantage of 3D
printing in the medical field is that it can be tailored for patients by computer, the size and
shape of the defect can be determined by a CT scan, and then the matching 3D model can
be built by reverse modeling [39], as shown in Figure 1a. Three-dimensional printing tech-
nology can further modify its mechanical and bone-inducing properties through parameter
adjustments, such as the pore size, shape, porosity, and surface topography.

Metal additive manufacturing technology can be divided into several different forming
processes, including Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS),
Selective Hot Sintering (SHS), Selective Laser Melting (SLM), and Electron Beam Selective
Melting (SEBM), among others. SLM can make porous titanium structures well, and the
Young’s modulus of the structure is well matched with that of the skeleton [40]. Therefore,
it is often used in the medical field for the molding of porous titanium alloys. Cui et al. [41]
prepared porous titanium alloys by using SLM technology. Compared to solid metals, the
elastic modulus of porous titanium has been reduced to 0.74 GPa while achieving a com-
pressive yield strength of 201.91 MPa. This meets the requirements for compatibility with
human bone tissue, highlighting the advantages of 3D printing technology in fabricating
porous structures.
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(d) SLM-3D-printed personalized Ti6Al4V spinal cage (mesh) implant [44]. (e) Three-dimensionally
printed Ti6Al4V threaded implant specimen [45]. (f) Trabecular titanium acetabular cup produced
by 3D ACT EBM [46]. (Reprinted with permission from Ref. [15]. Copyright 2019 Elsevier; Ref. [43].
Copyright 2021 Elsevier. Reprinted from Ref. [42]; Ref. [44]; Ref. [45]; Ref. [46]).

3. Effect of 3D Printing Porous Titanium Alloy Pore Structure on Bone Regeneration

Although a large number of porous metal implants have been designed, the design
and properties of porous structures are still subject to extensive research, especially the
effects of porosity, pore size, and shape. At present, there is no unified conclusion on the
optimal values of the pore size, porosity, and other parameters. In order to find suitable
porous structures, the effects of the above three structures on the physical properties
and endogenetic bone growth of titanium implantation are discussed below. In order to
find suitable porous structures, the effects of the above three structures on the physical
properties and endogenetic bone growth of titanium implantation are discussed below.

3.1. Porosity

Porosity is the ratio of the porous portion to the solid portion of the scaffold. Porosity
characteristics are usually obtained indirectly through physical measurements (for example,
using the density principle, immersing the sample in water, placing it in a graduated
cylinder, replacing the volume of water with the actual volume of the scaffold, and obtaining
porosity data based on the difference in volume) or by using digital image processing and
analysis, as well as computed tomography techniques that can provide a more direct way
to obtain porosity data [47]. The porosity is calculated as follows:

η =
Vp
Vz

× 100 %

Here, Vp represents the pore volume of the scaffold, while Vz denotes the original
volume of the scaffold.

The elastic modulus of implants is mainly regulated by porosity and can be changed
by adjusting the porosity. At the same time, porosity plays an important role in establishing
early bone integration and forming strong interface bonding between porous implants and
surrounding tissues [48]. Increasing porosity provides more room for cells to grow, and
the transport of oxygen and nutrients is correspondingly increased [49]. However, adding
too high a porosity with the same structural design can lead to a significant decrease in
mechanical properties, so finding the optimal porosity range is crucial for the successful
application of the implant. The right porosity can provide cells with room to reproduce
while mimicking the pore structure and mechanical strength of natural bone tissue [15].
When the porosity of the implant matches that of the human bone, the optimal bone
growth environment can be obtained. The structural variations in porous scaffolds with
different porosities are illustrated in Figure 2. Natural bone tissue comprises two distinct
structures: cancellous bone and cortical bone. The interior of cancellous bone features
a spongy structure with a porosity ranging from 50% to 90%. The internal structure of
cortical bone is dense, the bone density is much lower than that of cancellous bone, and
the porosity is only 5% to 10%. Scaffolds with a porosity comparable to that of human
bone trabeculae (70% to 90%) have been shown to enhance cell viability and inward bone
growth [50,51]. Moreover, studies have shown that when the porosity is greater than 70%,
the porosity of the porous structure can have a beneficial effect on bone tissue [52]. A
scaffold structure with a 600–900 µm pore size and 60%–90% porosity is recommended
as the best structure [53]. Zhang et al. [54] differentiated the pore rate of a 3D-printed
preparation (40%, 70%, and 90%), and the pore diameter was 700 µm multipores. Micro-CT
results showed that the bone integration effect of the implant with a porosity of 40% (P40)
was inferior to that of the implant with a porosity of 70% (P70) and 90% (P90). In addition,
it is suggested that the change in pore size has a more significant effect on osteogenesis
when the porosity is in the range of 70%–90%. In recent years, more and more researchers
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have prepared porous titanium alloys with a gradient structure. Hindy et al. [40] follow
the biomimetic approach and apply the porosity gradient visible in natural bone to the
fabrication of orthopedic and dental implants. The replication of this functional gradient
ensures the correct distribution of the compression stiffness in different regions.
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with different structural porosity [56]. (c) The LPBF-processed uniform lattice samples [56]. (Reprinted
with permission from Ref. [55]. Copyright 2023 Elsevier; Ref. [56]. Copyright 2021 Elsevier).

3.2. Pore Configuration

Most studies only explored the porosity and pore size suitable for endogenic bone
growth under the condition of a fixed pore shape and ignored the fact that the pore shape
of a porous structure would also affect the effective spatial distribution of the cells inside
the scaffold and affect the mechanical properties of the scaffold. The pore shape was
originally designed to mimic the shape of micropores inside the natural human bone,
which is a complex tissue with a precise porous structure. There are different opinions
about the micropore structure of bone tissue. Some people think that the microholes inside
the human bones are round, some people observe that they are square holes, and some
people think that they are hexagonal honeycomb holes. The geometry of the holes in bone
implants can be square, rectangular, spherical, trabecular, or hexagonal, and more complex
shapes can be made by using solid free-form fabrication techniques, such as cubes [57],
diamonds [58], rhombohedrons [41], and variations of these structures. With different
pore shapes, the mechanical properties and osteogenic properties of the scaffolds are also
different. For instance, the diamond structure has two additional angles compared to
the cubic structure, thereby offering a larger adhesive surface area for cells. The internal
topologies of the porous materials designed by computer-aided methods can be roughly
divided into (1) spatially arranged units composed of pillars, (2) three-period minimum
surfaces (TPMSs), and (3) irregular bioinspired or Voronoi Mosaic structures. In recent
years, TPMSs have also been widely applied to the field of bone tissue engineering based
on naturally occurring nanoscale spiral structures found on butterfly wings that have an
average curvature value of zero while the average curvature value of human trabecular
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bones is also close to zero [17]. A TPMS is an infinite and periodic surface, and the TPMS is
often described by the following types of equations:

cos αx + cos βy + cos γz = c

This equation satisfies the equation φ (x, y, z) = c, and this function φ (x, y, z) is the
isosurface evaluated by the isosurface c.

TPMS structures, including gyro, primitive, and diamond structures, are generated
by using mathematical formulas to tune their mechanical properties by changing various
parameters such as the periodicity and relative density. Kelly et al. [17] evaluated the
performance of TPMS titanium scaffolds produced by AM to repair femoral defects in rats
and confirmed that TPMS scaffolds can repair segmental bone defects. Table 2 summarizes
studies of the biological properties of AM implants with different structures. Jahir-Hussain
et al. [59] conducted a comparative analysis of the mechanical properties of 3D-printed
polylactide (PLA) scaffolds with four distinct pore structures, including round, square,
hexagonal, and triangular, by utilizing finite element analysis (FEA). Their findings revealed
that scaffolds featuring hexagonal pore shapes exhibited mechanical properties consistent
with those of human bones. Van Bael et al. [60] discovered that, in comparison to hexagonal
holes, triangular holes were more favorable for cell growth and differentiation, whereas
rectangular holes were more prone to causing cell blockage. By examining local curvature
and pore shapes, it was determined that obtuse angles were more likely to result in cell
blockage compared to acute angles. However, Xu et al. [61] reported that the osteogenic
ability of hexagonal prism scaffolds was higher than that of triangular prism scaffolds
through in vivo and in vitro studies. Zhao et al. [62] reported the influence of tetrahedral
and octahedral cell scaffolds on cell affinity and found that octahedral cells exhibit better
static mechanical properties and a longer fatigue life than tetrahedral cells. At the same
time, cells spread better on the scaffold on the octahedron than on the tetrahedron.

Kovács et al. [63] studied the mechanical properties and bone inward growth effect
of titanium alloy scaffolds with six lattice shapes, including a gyro type, cube, cylinder,
tetrahedron, diagonal cone, and Tyson polygon. The efficiency of the bone inward growth
of several lattice shapes was compared, and the results showed that the bone growth degree
of the gyro, conical, and cubic lattices was the best. Lim et al. [64] also came to the same
conclusion by implanting titanium scaffolds of three different structures (octadense, gyroid,
and dode) into the femur of rabbits, and no differences in bone formation in the titanium
scaffolds were observed between the three types of pore structures. Farazin et al. [65]
compared the biocompatibility of the cube, pyramid, and diagonal pore structures and
found that the pyramid structures had the highest cell viability and migration ability. Deng
et al. [66] conducted a study to investigate the effect of 3D-printed scaffolds with four dif-
ferent pore structures (i.e., diamond, tetrahedral cells, round pores, and cubes) on the
osteogenic properties. The results showed that the diamond structure produced the best
bone growth, possibly because the structure’s strut angles are similar to the angles between
the trabeculae of cancellous bone in humans. At the same time, fluid dynamics (CFD)
studies also show that the diamond structure has the smallest fluid velocity difference and
the longest fluid flow path. This property is very beneficial for promoting blood vessel
development, promoting nutrient transport, and enhancing bone formation. Therefore, the
diamond structure is more conducive to bone growth. Compared with diamond structures,
rhombohedral dodecahedrons have been shown to have better mechanical strength and
moderate biological properties and can be applied to body parts with relatively high me-
chanical properties requirements [67]. Zhao et al. [15] conducted a study on the mechanical
properties of supports featuring various pore structure elements. The findings revealed that
supports with diamond-shaped pore elements exhibited the lowest compressive strength,
measuring only approximately 38.2 MPa. Supports featuring cyclopore elements displayed
a lower compressive strength, around 57.0 MPa, while those with cube-shaped pore ele-
ments demonstrated a higher compressive strength, approximately 142.8 MPa. In summary,
the diamond structure, rhombohedral dodecahedron structure, and cube structure show
great potential in promoting bone regeneration.
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Table 2. Common porous scaffold structures and their characteristics.

Pore Size (µm) Porosity (%) Pore Structure Cell Structure Conclusions Ref.

500

80
75
70
65
60

Diamond
Gyroid

Orthogonal
Cube
Truss
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The adhesion of scaffolds with 1000 apertures was superior,
but their compressive and fatigue properties were inferior

to those of scaffolds with 500 apertures. Octahedral
scaffolds exhibited better compression performance and

fatigue life compared to tetrahedral scaffolds, and they also
displayed a greater capacity for cell proliferation.

[62]
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3.3. Pore Size

The porous structure not only efficiently lowers the elastic modulus, encouraging
the formation of a mineralized layer on the implant’s surface and promoting protein
adsorption, but also offers a conducive environment for cell adhesion, thereby facilitating
the proliferation and differentiation of bone cells. Additionally, it serves as a channel for
the transmission of metabolism and nutrition [68]. The pore size is very important for
porous implants, and it affects the expression of osteogenic genes and the differentiation of
osteoblasts. Wang et al. [69] confirmed that pore size and structure also play a certain role
in regulating the expression of genes related to angiogenesis. The aperture of the scaffold
should ensure that bone cells, nerve fibers, and blood vessels can grow into the scaffold.
When the aperture is too large, it increases air permeability, which prevents cells from
adhering to the surface [70]. When the aperture is too small, cells cannot enter the scaffold,
resulting in cell accumulation, reducing cell migration in the scaffold and even affecting the
circulation of nutrients and metabolic waste, which is not conducive to the growth of bone
tissue [52]. At present, there is no precise definition of the most suitable pore size for bone
growth. Some studies generally believe that the pore size of 100 µm to 400 µm can promote
angiogenesis and bone growth, and below this range will limit bone cell growth [71].
Through a comprehensive analysis of the pore size required for the internal growth space of
bone tissue and the formation of blood vessels, it is recommended that the optimal pore size
is 300–600 µm [72,73]. The comprehensive impact of pore size on implants is summarized
and drawn Figure 3. After staining with Toluidine Blue, it was observed that new bone
tissue had developed within nearly all of the surface micropores of the 600 µm implants.
The results indicate that, in comparison to scaffolds with 200 µm and 1000 µm apertures, the
scaffolds featuring 600 µm apertures were more favorable for the growth of new bone tissue.
Zhao et al. [62] reported tetrahedral cell titanium alloy scaffolds with pore sizes of 500 µm
and 1000 µm. Figure 4a shows that cells on the scaffold with a pore size of 1000 µm exhibit
better spread and more filamentous pseudopods. Hara et al. [74] conducted an experiment
in which they implanted four types of cylindrical porous titanium alloys with varying pore
sizes (500 µm, 640 µm, 800 µm, and 1000 µm) into the distal end of rabbit femurs. The
findings revealed that porous titanium alloys with pore sizes smaller than 800 µm offered
bioactive surfaces and maintained mechanical stability for bone fixation through implants.
Meanwhile, Zhou et al. [75] proposed that the pore size of ideal bone tissue engineering
scaffolds should be 300–900 µm. Zhang et al. [54] prepared titanium alloy scaffolds with a
constant porosity of 70% and different pore sizes (400 µm, 700 µm, and 900 µm) and porous
titanium alloy scaffolds with constant pore sizes of 700 µm and different porosities (40%,
70%, and 90%). The effect of the pore size and porosity on osteogenesis was discussed. The
micro-CT results showed that a scaffold with a pore size of 700 µm can better induce cell
ingrowth and new bone formation. An interesting phenomenon was discovered through
fluorescence images; that is, cells are more likely to grow at the edges and then spread
toward the center. Within the recommended porosity range (70%–90%), changes in pore
size have a more significant impact on osteogenesis. Similarly, the same phenomenon was
found in a study by Ran et al. [76]. The actual pore sizes of P500/P700/P900 implants
prepared by SLM were 401 ± 26 µm, 607 ± 24 µm, and 801 ± 33 µm, respectively. Through
observation, the morphology of osteoblasts on different implants found that the larger the
pore size, the higher the cell density, as shown in Figure 4b,c. Finally, by implanting the
implant into rabbits, it was concluded that the biological performance of the P700 group
with an actual pore diameter of approximately 600 µm was better than that of the other
two groups. Wang et al. [77] created consistently sized cubic pores measuring 300 µm,
400 µm, 500 µm, 600 µm, 700 µm, 800 µm, 900 µm, and 1000 µm through a combination of
in vivo and in vitro experiments. The structural modifications and experimental outcomes
are depicted in Figure 4d–f. The cell adhesion, proliferation, and differentiation of the
500 µm, 600 µm, and 700 µm porous scaffolds were superior to those of the other groups.
Subsequent in vivo experiments showed that the 600 µm porous scaffolds had a better
ability to induce new bone formation. Ouyang [78] compared the correlation between
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the mechanical properties and bone regeneration of scaffolds with a 400 µm, 650 µm,
850 µm, and 1100 µm aperture prepared by SLM and finally showed that the scaffolds with a
650 µm aperture showed the best bone inward growth.
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pores. Pseudopodia are in blue. SEM morphology of cells after 3 days of culture on c T500,
d T1000, e O500, f O1000. Lamellipodia and filopodia are indicated by yellow arrows in c–f [62].
(B): Macrophotographs of 3D-printed porous Ti6Al4V samples used for mechanical testing and
in vitro and in vivo studies, and SEM images of p500, p700, and p900 [76]. (C): Representative
fluorescence images of osteoblast adhesion to porous Ti6Al4V implants after 14 days of culture. Cells
are stained with actin filaments (red) and nuclei (blue) [76]. (D): Pore size analysis of Ti6Al4V and
cell-staining results(live: green; dead: red), the green circle represents the pore size measured by
Image-J software (Version 1.54) [77]. (E): Optical pictures of porous titanium alloys with different
pore sizes [77]. (F): Quantitative analysis of BV/TV [77] (* p < 0.05, ** p < 0.01, and *** p < 0.001, when
compared with P500). (Reprinted with permission from Ref. [62]. Copyright 2023 Elsevier. Reprinted
from Ref. [76]; Ref. [77]).

4. Application of 3D-Printed Titanium Alloy Bone-Repair Scaffolds

The utilization of 3D-printed porous titanium alloys addresses the issue of a mis-
matched elastic modulus between implants and human bone, enhancing compatibility with
host bone tissue. Consequently, this technology finds frequent application in orthopedic
bone defect repair and dental implant procedures. This section is dedicated to discussing
the use of titanium-alloy-based orthopedic and dental implants. A single porous titanium
alloy alone may not suffice to address the common challenges encountered in clinical
practice. In practical research and application, it is often combined with other functional
materials to achieve enhanced performance and functionality [62].

Biomimetic modifications can optimize the biocompatibility of the surface of 3D-
printed porous structures, imparting various desirable properties. The judicious selection
of biomaterial coatings represents a straightforward and effective approach to augment the
biological activity of 3D-printed implants. For example, Wei et al. [79] used 3D printing
technology to prepare a porous titanium alloy scaffold with a porosity of 68% and a pore
size of 710 µm and then used multiarc ion plating technology to prepare a magnesium
coating on the scaffold. Magnesium and its alloy also have good biocompatibility, and the
most important thing is that it is a degradable material. The results showed that magnesium
ions would be released after implantation, and the appropriate concentration of magnesium
ions could inhibit the proliferation of bone tumor cells. Porous titanium is combined with
antibacterial hydrogel to fill the micropores of porous titanium, which can be used to
treat infected bone defects to induce bone repair and bone integration. Qiao et al. [80] 3D
printed a titanium scaffold with a porosity of 70% and a pore size of 600 µm and found
that the regenerated bone tissue around the bare titanium scaffold was very limited while
the composite implant showed an antibacterial ability and the ability to promote the bone
formation differentiation of bone marrow mesenchymal stem cells (BMSCs) in both in vivo
and in vitro experiments. More applications are shown in Table 3.

Table 3. Application case of porous titanium alloy implants.

Material Method Feature Outcome Ref.

Ti-6Al-4V EBM
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3D printed porous titanium is a porous
titanium alloy rod with a diamond lattice

prepared using electron beam melting (EBM)
technology. A: the body of the rod; B: the end

of the rod.

Following Ti-Rod implantation, the femoral
head showed good osseointegration, with tight
integration between the peripheral bone and
the rod, and the new bone grew along the
metal trabecula without the intervention of
fibrous tissue.

[81]
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Table 3. Cont.

Material Method Feature Outcome Ref.
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The aperture of the 3D-printed Ti-6Al-4V stent

is about 350 µm, and the maximum
compressive strength is 49.3 ± 0.9 MPa. (A) is

the preparation and coating scheme of 3D
printed Ti6Al4V scaffold. (B) is a photographic
image of Mg-CS/CH coated Ti6-Al-4V scaffold.

The Mg-CS/CH-coated Ti-6Al-4V scaffold
enhanced cell adhesion, proliferation, and
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capabilities, making it a potential candidate for
clinical applications.

[83]

Ti-6Al-4V EBM

Coatings 2024, 14, x FOR PEER REVIEW 13 of 17 
 

 

Ti-6Al-4V EBM  
Titanium alloy cells (L, a and s are unit, 
projected aperture and strut size, respec-
tively) were designed to simulate trabecu-
lar structure. 

Compared to the solid titanium alloy struc-
ture, the elastic modulus of the 3D-printed 
titanium alloy scaffold with a trabecular 
structure ranges from 0.39 to 0.618 GPa, 
which closely approximates that of natural 
bone. This characteristic helps mitigate the 
occurrence of stress-shielding phenomena. 

[82] 

Ti-6Al-4V EBM 

 
(a) SEM image of the new 3D cage at 50 
times; (b) SEM image of the new 3D cage 
at 100 times. 
The interior of the 3D-printed cage has an 
octahedral porous structure with uniform 
pore size and interconnectivity. 

New bone grows inside the cage through 
pores on the surface of the newly 3D-
printed cage. This 3D-printed porous tita-
nium cage exhibits excellent biocompatibil-
ity and osseointegration capabilities, mak-
ing it a potential candidate for clinical ap-
plications. 

[83] 

Ti-6Al-4V EBM 

  
Visual images of (a) disk-shaped and (b) 
columnar-shaped pTi scaffolds. Visual im-
ages of supramolecular hydrogel modified 
(c) disk-shaped and (d) columnar-shaped 
pTi scaffolds. SEM microphotographs of 
(e) pTi scaffolds and (f) supramolecular 
hydrogel modified pTi scaffolds.  
Hydrogels composed of sodium tetra-
borate, polyvinyl alcohol, silver nanoparti-
cles, and tetraethyl orthosilicate were 
combined with titanium alloy scaffolds for 
the treatment of infected bone defects. 

Hydrogels composed of sodium tetra-
borate, polyvinyl alcohol, silver nanoparti-
cles, and tetraethyl orthosilicate were com-
bined with titanium alloy scaffolds for the 
treatment of infected bone defects. In vivo 
experiments verified that these implants 
can promote bone regeneration while effec-
tively exhibiting antibacterial properties. 

[80] 

Ti-6Al-4V — 

 
A 3D-printed titanium mesh used to re-
pair mandibular defects. 

Through finite element analysis, the opti-
mized implant can provide an excellent 
mechanical environment for bone regener-
ation, so as to achieve long-term stability 
and occlusion reconstruction of the im-
plant. 

[84] 

Visual images of (a) disk-shaped and (b)
columnar-shaped pTi scaffolds. Visual images

of supramolecular hydrogel modified (c)
disk-shaped and (d) columnar-shaped pTi

scaffolds. SEM microphotographs of (e) pTi
scaffolds and (f) supramolecular hydrogel

modified pTi scaffolds.
Hydrogels composed of sodium tetraborate,
polyvinyl alcohol, silver nanoparticles, and
tetraethyl orthosilicate were combined with
titanium alloy scaffolds for the treatment of

infected bone defects.

Hydrogels composed of sodium tetraborate,
polyvinyl alcohol, silver nanoparticles, and
tetraethyl orthosilicate were combined with
titanium alloy scaffolds for the treatment of
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regeneration while effectively exhibiting
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[80]
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Table 3. Cont.

Material Method Feature Outcome Ref.

Ti-6Al-4V —

2.5. Statistics

As the distribution trend of strains in most groups were not normal
distribution, strains from FEA were presented in box plots showing 25th
percentile, 75th percentile and the median which was adopted to de-
scribe central tendency of inner filling in this study. Data from com-
pression experiments were expressed as Means± standard deviation,
and analyzed with GraphPad Prism (GraphPad Software7.0, USA), as
well as analysis of one-way ANOVA. The Tukey test was used to per-
form multiple comparisons. For all tests, P < 0.05 was considered
significant.

3. Results

3.1. Mechanical characterization of porous scaffolds

The von Mises stress distribution of porous scaffolds for each model
under a vertical loading of 100 N was shown in Fig. 3a.The maximum
stress values of the porous scaffolds were illustrated in Fig. 3b. The
maximum stress value of porous scaffolds ranged from 36.7MPa (Co-
d3) to 41,852MPa (Di-d1), and Co-d3 was well below the value ob-
tained in the other structures and remarkable lower than the material's
yield strength. With the increasing of strut diameter, the maximum

stress of same configurations gradually decreased, and maximum stress
for different configurations at the same strut diameter: Di > Rd >
Rh > Co. Similarly, the max force that the porous scaffolds can bear
ranged from 7647 ± 290.9 N (Co-d3) to 4.2 ± 0.5 N (Di-d1), and Co-
d3 had a better performance than the other groups. With the increasing
of strut diameter, the compressive stiffness of same configurations
gradually increased, and compressive stiffness for different configura-
tions at the same strut diameter: Di < Rd < Rh < Co. The trend of
max force and compressive stiffness of the different scaffolds were
consistent with the FEA analysis (Fig. 3c).

3.2. Bone remodeling on porous scaffolds

The maximum von Mises stress values of the scaffolds under dif-
ferent load case and bone healing process were summarized in Table 3.
The maximum stress values of each scaffold at the early stages of bone
remodeling were significantly higher than other stages, and the stress of
scaffolds under inclined load is higher than that under vertical load. To
avoid scaffold failure, the maximum stress of each configuration should
be lower than the yield strength under various situations. Un-
fortunately, except the Rh-d3, Co-d3, and Rd-d3 models, the maximum
stress values of the other groups exceeded the yield strength, and made
them most susceptible to fail. So they were excluded from the rest of the
analysis for different load case.

The maximum principal strains distribution of the inner filling as-
sociated with Rh-d3, Co-d3, and Rd-d3 models under different condi-
tions were showed and analyzed in Fig. 4. According to the frequency
histogram (Fig. S1), the distribution trend of the all groups were skewed
distribution in different conditions, except for the groups of Rh-d3 and
Rd-d3 under vertical loading at later period of bone regeneration.
Therefore, the median value was adopted to describe central tendency
of all groups in this study, and the box plots were used to show dis-
persion of date (Fig. 5). At early stages of bone remodeling, the strain
value of inner filling under vertical load: Rd-d3 > Co-d3 > Rh-d3; the
strain value of inner filling under inclined load: Rh-d3 > Rd-d3 > Co-
d3. The strain value under inclined load was greater than that under
vertical load. Bone's genetically determined disuse-mode threshold
strain range according to previous research [27], 50 microstrain, the
strain range below which the maximal disuse-mode activity occurs and
above which it begins to decline or turn off; 1000–1500 microstrain, the
strain range in and above which the mechanically controlled modeling
function of increasing a bone's strength would usually turn on; 3000
microstrain, bone's microdamage strain threshold range in and above
which unrepaired microdamage can begin to accumulate. To promote
bone remodeling, the inner filling strain associated with favorable
models should be in the range of 50–3000 με under any conditions, and
approach 1000–1500 με in the early stages for promoting bone

Fig. 2. The finite element model and muscle constructed in this study. Masticatory muscle was simulated as springs, left: the pterygoid muscle in the frontal plane;
right: temporalis and masseter in the sagittal plane.

Table 2
Muscle force generated during a chewing bite and a maximum-force bite.

Chewing bite
(200 N)

Maximum bite force
(800 N)

Left Anterior temporalis 62.4 222.3
Posterior temporalis 18 158.6
Superficial masseter 71.5 196.3
Deep anterior masseter 2.4 37.9
Deep posterior
masseter

2.4 44.9

Medial pterygoid 26.5 170.8
Inferior lateral
pterygoid

3.4 65.5

Superior lateral
pterygoid

0.7 5.1

Right Anterior temporalis 60.8 221.5
Posterior temporalis 17.9 156.5
Superficial masseter 72.6 196.3
Deep Anterior masseter 2.3 37.9
Deep Posterior
masseter

2.4 44.2

Medial pterygoid 25.9 170.7
Inferior lateral
pterygoid

3.8 76.1

Superior lateral
pterygoid

0.7 5.3
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A 3D-printed titanium mesh used to repair
mandibular defects.

Through finite element analysis, the optimized
implant can provide an excellent mechanical
environment for bone regeneration, so as to
achieve long-term stability and occlusion
reconstruction of the implant.

[84]

5. Conclusions

The 3D-printed porous titanium alloy bone-repair scaffold can effectively solve the
stress-shielding problem between the implant and human bone, solve the bone mismatch
problem, shorten the operation time, and reduce the surgical failure rate, and it is expected
to solve the clinical problem of large bone defects repair, which has been widely studied
and applied in recent years. In this study, we conducted a comprehensive review of the
influence of structural design in 3D-printed orthopedic titanium alloy implants on bone
regeneration. We examined the critical factors such as pore size, porosity, and pore shape
that can effectively enhance bone regeneration. This analysis offers valuable insights and
establishes a reference framework for future research endeavors focused on the structural
aspects of porous implants. Based on the discussion of the above literature, the pore
size range of 500–800 µm and the porosity range of 60%–90% can achieve a better bone
growth effect. The cell structures with a better bone regeneration effect were diamond,
rhombohedral dodecahedron, and cube.

6. Future Direction

While 3D printing porous titanium alloy offers numerous advantages, it still encoun-
ters certain practical challenges. There is a need for further refinement in both the design of
porous structures and the selection of titanium alloy materials for 3D printing porous tita-
nium alloy brackets. First of all, the porous structure of a human skeleton is not uniformly
distributed on the whole but presents a gradient porous structure with a dense exterior and
loose interior. In the future, bionic porous scaffolds that can balance biological and mechan-
ical properties should be further studied to achieve the perfect combination of implants and
human bones. Secondly, efforts should be made to research the composition of titanium
alloys to improve the performance of titanium alloys, thereby preparing stents with better
performance. Finally, in order to verify the long-term safety and effectiveness of porous
titanium alloys, more clinical experiments and research are needed to combine porous
titanium implants with other functional materials to achieve antibacterial, osteogenic, and
other effects and obtain more clinical data and experience. With the deepening of research,
3D printing will be able to exert greater value in combination with artificial intelligence
and big data in the future.
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