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Abstract: Magnesium (Mg) alloy with good biomechanical and biocompatible properties is consid-
ered to be a promising biodegradable material for various applications. However, Mg alloy that is
chemically active tends to be corroded in a physiological environment. In this work, we proposed a
laser–chemical surface treatment to combine laser surface structuring and stearic immersion treat-
ment to enhance the anti-corrosion and antibacterial properties of Mg alloy. The effects of surface
structuring, chemistry, and wettability were analyzed, and the performance of the proposed technique
was evaluated in terms of corrosion resistance and antibacterial properties. The experiments showed
the following: (1) surface structuring by laser-induced dual-scale micro/nanostructures produced
superhydrophilicity, with a water contact angle (WCA) of 0◦ on the surface of the Mg alloy; (2) apply-
ing the stearic acid immersion changed the chemistry of the Mg alloy’s surface and thus facilitated
the wettability transition to superhydrophobicity, with a WCA of 160.1◦ ± 0.5◦; (3) the proposed
laser–chemical surface treatment enhanced corrosion resistance and stabilized the wettability of Mg
alloy in a corrosive medium significantly; and (4) the proposed laser–chemical surface treatment
enhanced the antibacterial properties of the Mg alloy greatly, with an improved antibacterial rate as
high as 82.05%. This work proved that the proposed laser–chemical surface treatment was a simple,
effective, and efficient technique to modulate and control the wettability and further improve the
anti-corrosion and antibacterial properties of the Mg alloy.

Keywords: magnesium alloy; laser surface structuring; stearic acid treatment; superhydrophobicity;
corrosion resistance; antibacterial

1. Introduction

Magnesium (Mg) alloy is widely used in biomedical applications due to its distinguish-
ing advantages, such as superior biomechanical properties, good biocompatibility, and high
biosafety [1]. Mg-based alloys are promising in their potential to be used as biodegradable
materials in surgical implants since their density and elastic modulus are quite similar to
those of human cortical bones [2,3]. Using an Mg-based alloy as an implanting material
reduces the possibility of stress shielding and avoids secondary surgery [4–7]. On the
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other hand, Mg alloys are also chemically active and tend to be corroded in a physiolog-
ical environment, and this affects the widespread use of Mg alloys as implants [7]. The
corrosion and degradation of a Mg alloy can produce hydrogen, increase the pH value of
surrounding liquids, and reduce the joining strength of an implant with tissue [8]. Microbi-
ologically induced corrosion also causes the degradation of Mg alloys and, eventually, the
failure of the clinical operation [9]. Therefore, it is critical to enhance the anti-corrosion and
antibacterial properties of Mg alloys for biomedical applications.

To improve the corrosion resistance or antibacterial properties of a Mg alloy, many
techniques have been proposed to treat the surfaces of Mg alloy products. For example,
the techniques of physical vapor deposition (PVD) [10,11], chemical vapor deposition
(CVD) [12], sol–gel coating [13], conversion coating [14–16], and micro-arc oxidation [17,18]
have been developed to improve the corrosion resistance of Mg alloys. The techniques of
coating [19–22], microalloying [23], and micro-arc oxidation [24] have been proposed to
improve Mg alloys’ resistance to bacterial adhesion. Nevertheless, the above-mentioned
techniques were coating-based and exhibited some limitations, such as poor reliability,
poor durability, a complex coating process, and the possibility of being peeled off. There is
an emerging need to develop new surface treatment techniques to improve the corrosion
resistance and antibacterial properties of Mg alloys effectively.

Recently, surface structuring via lasers has attracted a great deal of attention due to its
potential for automation, environmental friendliness, high flexibility, and the high selectiv-
ity of the process [25–29]. Moreover, laser treatment has been combined with sequential
surface chemistry treatments to improve the superhydrophobic properties [8,30–32], cor-
rosion resistance [33] and anti-bacterial properties of Mg alloys [34]. For example, Wei
et al. [34] prepared a superhydrophobic Mg AZ91 sheet using laser ablation and a subse-
quent annealing treatment at 160 ◦C for 60 min. The laser-annealed Mg AZ91 sheet exhibited
superhydrophobicity with improved corrosion resistance. Cai et al. [35] laser-textured Mg
AZ91D with the structure of a micro-pit array and further immersed the samples into a
fluorosilane/ethanol solution to obtain superhydrophobicity. The laser–chemical-treated
surface of superhydrophobic Mg AZ91D showed excellent corrosion resistance. Emelya-
nenko et al. [36] processed superhydrophobic Mg MA8 using a nanosecond laser and CVD
with fluorosilane. The corrosion current of the processed Mg MA8 was drastically reduced
when it was compared with that of the polished sample. Emelyanenko et al. [9,37] also
treated a superhydrophobic Mg alloy with the laser and CVD to suppress the vital activity
of bacteria and inhibit the degradation of the substrate of Mg alloy. However, it took 1–2 h
for the post-processing treatment, after laser surface texturing, to achieve the wettability
transition. Moreover, the fluorosilane reagent was toxic and inapplicable to biomedical
applications. It is desirable to develop a bio-friendly and efficient post-processing technique
after laser surface treatment that can be used on Mg alloy.

In this work, a novel laser–chemical surface treatment technique was developed in
order to prepare the superhydrophobic surface of a Mg alloy, encompassing the following
steps: the surface was structured using a laser to induce hierarchical micro/nanostructures
to support superhydrophilicity; the surfaces were then processed with stearic acid immer-
sion at 60 ◦C for 10 min to achieve the wettability transition to superhydrophobicity. Using
stearic acid immersion to alter the surface wettability of laser-structured Mg alloy has rarely
been reported in the literature. Thus, it can be considered as the key innovative aspect of
this work.

To verify the effectiveness of the proposed technique, the morphology of the surface
was characterized by a scanning electron microscope (SEM, FEI Sirion, Hillsboro, OR,
USA), and the chemistry of the surface was analyzed by energy-dispersive X-ray spec-
troscopy (EDS, FEI Inspect F50, Hillsboro, OR, USA). The wettability evolution of the
surface was demonstrated after each step of the treatment, and the mechanism of the wet-
tability transition was elaborated upon. Finally, the corrosion resistance and antibacterial
properties of the treated specimens were evaluated by electrochemical tests and bacterial
activity analysis.
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2. Raw Materials and Methods
2.1. Raw Materials

Hot-rolled Mg AZ31B was used as the raw material of specimen in this experiment.
The chemical composition of Mg AZ31B is shown in Table 1. Specimens with sizes of
20 × 20 × 5 mm3 and 10 × 10 × 5 mm3 were prepared for the electrochemical and
antibacterial tests, respectively. Before the laser–chemical treatment, a specimen with a grit
size of 800 was polished by the sandpaper, washed in acetone ultrasonically, and deionized
in water successively for 5 min. It was then dried in air for subsequent experiments.

Table 1. Chemical composition of Mg AZ31B.

Element Al Zn Mn Si Fe Cu Ni Mg

wt.% 2.960 0.5200 0.310 0.160 0.003 0.006 0.001 Bal.

2.2. Experimental Methods

As shown in Figure 1, the proposed laser–chemical treatment consisted of two steps,
i.e., (1) surface structuring using laser and (2) stearic acid immersion. In surface structuring,
the laser was produced by the laser marking machine (MQ5T, Mac Laser, Guangzhou,
China); it was equipped with a 355 nm UV laser source (Seal-355-3/5, JPT Laser, Shenzhen,
China). The UV laser source emitted a laser beam, which passed through the attenuator and
beam expander to control the intensity and diameter of laser, respectively. The laser scan
head was used to control and modulate the laser beam, which allowed us to structure a two-
dimensional surface. The diameter of a focal spot was 50 µm. A cross-hatch surface pattern
was adopted to structure surfaces using laser. In Table 2, the key processing parameters of
laser surface treatment are listed. This work emphasized the effect of scanning speed and
step size on the anti-corrosion and antibacterial properties of treated specimens.
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Figure 1. Process schematic of laser–chemical treatment.

When a specimen was only treated with laser surface structuring, it typically exhibited
superhydrophilicity. To achieve the wettability transition, the laser structured specimen was
further immersed in mixed stearic acid (CH3(CH2)16COOH with density of 0.9408 g/cm3

and melting point of 69.3 ◦C)/ethanol (CH3CH2OH) solution at 60 ◦C with a molar con-
centration of 0.05 mol/L and a molar ratio of 1:350 for 10 min. The specimen was then
cleaned with ethanol to remove excessive stearic acid and dried in ambient air to determine
surface properties.

In this study, three types of Mg alloy specimens were prepared and investigated: the
first one with untreated surface, the second one with laser surface structuring, and the third
one with laser–chemical surface treatment.
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Table 2. Key parameters of laser processing in laser–chemical treatment.

Sample No. 1 2 3 4 5

Average power (W) 6.5 6.5 6.5 6.5 6.5

Repetition rate (kHz) 40 40 40 40 40

Pulse width (ns) 12 12 12 12 12

Scanning speed (mm/s) 50 100 20 20 20

Step size (µm) 150 150 150 100 200

Power intensity (GW/cm2) 0.48 0.48 0.48 0.48 0.48

Pulse energy (mJ) 0.2 0.2 0.2 0.2 0.2

2.3. Surface Characterizations

Surface topography/structure and surface chemistry were analyzed by field emis-
sion scanning electron microscopy (FE-SEM, FEI Sirion, Hillsboro, OR, USA) and energy-
dispersive X-ray spectroscopy (EDS, FEI Inspect F50, Hillsboro, OR, USA), respectively.
Water contact angle (WCA) measurements were created by a contact angle goniometer
(SCA-100, Mumuxili Technology, Nanjing, China). For each measurement, a 4 µL droplet
was dripped onto a specimen, and a high-resolution CMOS camera was used to capture
its shape. Five measurements were carried out on each specimen. The averaged value of
WCA was analyzed and recorded by ImageJ software.

2.4. Electrochemical Tests

Electrochemical tests were employed by using an electrochemical workstation (COR-
RTEST CS310X, Wuhan, China) to evaluate the open-circuit potential (OCP), electrochemical
impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). A specimen was
immersed in the NaCl aqueous solution (3.5 wt%) and tested using a three-electrode cell
system. The reference electrode, an Ag/AgCl electrode, was filled with the saturated
KCl solution; a graphite electrode was selected as the counter electrode; and a platinum
electrode was chosen as the working electrode where the specimen was clamped. The
tested area was set at 1 cm2.

A specimen was immersed in the NaCl aqueous solution for 20 min to stabilize OCP
before the EIS and PDP tests were performed. The EIS test was implemented by using
the following settings: a frequency range of 1~100,000 Hz, a perturbation amplitude of
voltage 10 mV, and a recording rate of 30 data points per decade. The results of EIS test
were further analyzed by the equivalent circuits. The PDP was conducted using a potential
scan rate of 3 mV/s and a potential range of ±0.5 V. Tafel extrapolation was applied to
obtain electrochemical parameters, including corrosion potential (Ecorr), corrosion current
(jcorr), and corrosion rate.

2.5. Antibacterial Tests

The antibacterial properties of Mg alloy were evaluated using Escherichia coli (E. coli,
ATCC 25922) and Staphylococcus aureus (S. aureus, ATCC 29213). A specimen was first
sterilized using 75 vol% ethanol for 2 h and then dried in air. It was then placed and
cleaned ultrasonically in a 24-well plate. Bacterial suspensions of E. coli and S. aureus
(106 CFU/mL) with a volume of 1000 µL were absorbed by pipettes and inoculated on the
surface of the specimen. The specimen was then cultured in an incubator at 37 °C for 24 h.
After bacteria were adhered to the surface of the specimen, they were completely scraped
out by the cotton swabs with phosphate-buffered saline (PBS) in a volume of 1000 µL.
Finally, the mixed solution with a volume of 100 µL was absorbed by pipettes, coated on
the LB medium, and then cultured at 37 ◦C for 24 h. The antibacterial rate was calculated
by the following equation:

ηRA =
B − A

B
× 100% (1)
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where the untreated specimen was taken as the reference specimen; A and B are the average
numbers of the bacteria colonies in the tested and reference specimens, respectively; and
ηRA is the antibacterial rate.

3. Results and Discussion
3.1. Surface Structure

Figure 2 shows the micrographs created by SEM with different magnifications from
three types of specimens, and the laser–chemical surface treatments used different pa-
rameters of laser processing. For the laser-structured specimen, the scanning speed and
the step size were set as 20 mm/s and 150 µm, respectively. The surface of the specimen
named SHL-150 µm in Figure 2b exhibited superhydrophilicity. For two laser–chemical-
treated specimens, the scanning speed was set as 20 mm/s, and the step sizes were set
as 150 and 200 µm, respectively. Two specimens, named SHB-150 µm in Figure 2c and
SHB-200 µm in Figure 2d, respectively, showed superhydrophobicity. It is clear that the
low-magnification (200×) micrograph of the untreated specimen in Figure 2a indicates
high flatness and low surface roughness. When a high magnification (1000× or 10,000×)
was used, a few horizontally polished marks were observed. After the surface of the
specimen was structured by laser, cross-hatch microgrooves under a low magnification
were observed on SHL-150 µm [38]. Under high magnification, some sub-microns and
nanoparticles were deposited on the top edges of microgrooves, which were caused by the
strong ablation and evaporation effect of substrate materials modified by the nanosecond
laser [39]. When the scanning speed was increased, a depth change of microgrooves was
observed, as shown in Figure S1a,b. When the step size was varied, the density of the
cross-hatch structure induced by the laser was changed, as shown in Figure S1c,d. For the
laser–chemical-treated specimens, the structures in SHB-150 µm and SHB-200 µm were
slightly different from those of SHL-150 µm, as shown in Figure 2c,d. After the specimens
were treated by stearic acid immersion, cross-hatch microgrooves were still observable
by the SEM under low magnification. Using a high magnification, we uncovered that
the number and density of sub-micron and nanoparticles were higher than those of the
laser-structured specimen. This was caused by the etching effect of the stearic acid on
Mg alloy [1]. When the laser–chemical-treated specimens were observed by varying the
scanning speed and step size, a higher density of micro/nanostructures was observed in
comparison with the laser-structured specimen, as shown in Figure S2a–c. The results
showed that laser structuring induced multi-scale structures on the surface of an Mg alloy
specimen effectively and its density could be enhanced further by the stearic acid immer-
sion treatment. Moreover, the structures induced by laser were the key factors in controlling
the wettability of Mg alloy specimens [40].

3.2. Surface Chemistry

To evaluate the chemistry on the surfaces of three types of specimens, EDS was used
for the measurements and analyses, as shown in Figure 3. The results of the untreated
specimen are shown in Figure 3a. The elements Mg, aluminum (Al), carbon (C), and oxygen
(O) were clearly identified. As shown in Table 1, Al was the primary alloying element for
Mg AZ31B, and C and O existed originally in the oxidations and the contamination of the
substrate [41]. After the surface was structured by laser, changes in O were detected in
SHL-150 µm (Figure 3b), and the atomic percentage (at%) was increased from 2.05% to
32.52%. Such an increase was also visible in the EDS mapping data of element O. This
indicated that laser surface structuring not only produced cross-hatch microgrooves but
also oxidized the surface of the specimen significantly, which helped to produce a large
amount of OH and -COOH for high polarity [42,43]. When the laser-structured specimen
was observed by SEM at different scanning speeds and step sizes, changes in O were
observed, as shown in Figure S3a,b. As shown in Figure 3c,d, after the specimens were
treated with the stearic acid immersion, the atomic percentage of C was increased on the
surfaces of SHB-150 µm and SHB-150 µm Mg alloy in comparison with SHL-150 µm. The
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EDS mapping data of C for the laser–chemical-treated specimen also exhibited a significant
increase in carbon content; the change in C was observable in Figure S3c, even though the
scanning speeds were different. The results showed that the long-chain molecules in stearic
acid (CH3(CH2)16COO−) were bonded onto the surface of the specimen successfully and
firmly [44]. It was also seen that magnesium stearate Mg[CH3(CH2)16COO]2 was formed
on laser–chemical-treated specimen under low surface energy [43]. The measurements and
analyses of EDS showed that both laser surface structuring and stearic acid immersion were
able to change the chemistry on the surface of an Mg alloy, which was another important
factor used to control and regulate its wettability [40].
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3.3. Surface Wettability

Figure 4 shows the evolution of the surface wettability of a specimen after each
treatment. The untreated specimen with a WCA of 69.8◦ ± 0.6◦ exhibited hydrophilicity.
Immediately after laser surface structuring treatment, the specimen with WCA reduced to
0◦ drastically became superhydrophilic. This was caused by two factors: (1) the increased
surface roughness led to the saturated Wenzel state of droplets on the surface; which, in
turn, resulted in superhydrophilicity [42]; (2) a large amount of −OH and −COOH was
generated to promote the superhydrophilicity of the surface [41]. The WCA of the laser–
chemical-treated specimen was increased significantly to 160.1◦ ± 0.5◦, indicating that the
surface of the specimen was superhydrophobic. The results showed that immersion in the
mixed stearic acid/ethanol solution was conducive to reducing the surface energy effec-
tively [43,45,46]. With the combined effect of low surface energy and laser-induced surface
structure, the superhydrophilicity was transited into superhydrophobicity successfully.
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As shown in Table 2, when the scanning speed was changed, the step size was kept
constant at 150 µm; in turn, when the step size was changed, the scanning speed was kept
constant at 20 mm/s. Figure 5 illustrates the WCA of the laser–chemical-treated specimens
that were processed at different scanning speeds and step sizes. Figure 5a shows that at
a scanning speed of 20 or 50 mm/s, the surface of the laser–chemical-treated specimen
exhibited distinct superhydrophobicity; when the scanning speed rose to 100 mm/s, the
WCA dropped to slightly below 150◦, but it still maintained high hydrophobicity. The main
reason for this result was that a high scanning speed lowered the time of laser–material
interaction and thus weakened the density of surface micro/nanostructures, as shown in
Figure S2, leading to a slight decrease in the WCA. For step sizes from 100 to 200 µm that
were tested here, the superhydrophobicity was stabilized, and a wide scope of effective
processing variables in the laser–chemical treatment is depicted in Figure 5b. The results
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show clearly that laser processing parameters could be selected to modulate and control
the wettability of the surface appropriately.
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3.4. Corrosion Resistance

The corrosion of three types of specimens was characterized by electrochemical tests.
The OCP curves in Figure 6a indicate that the OCP value of SHL-150 µm was slightly larger
than that of the untreated specimen, implying that the laser surface structuring had an
insignificant effect in improving corrosion resistance. In contrast, both SHB-150 µm and
SHB-200 µm yielded a larger OCP, suggesting that the corrosion resistance was significantly
improved [47,48]. The PDP curves in Figure 6b further backed up the enhanced corrosion
resistance. Compared with that of the untreated specimen, the PDP curve of both SHB-
150 µm and SHB-200 µm deviated in the direction of positive potential. As shown in
Table 3, the corresponding Ecorr values were much higher, and jcorr values were several
orders lower than those of the untreated specimen. The corrosion rate of SHB-150 µm and
SHB-200 µm was much lower than that of the untreated specimen, which confirmed that
the corrosion resistance of the Mg alloy with superhydrophobicity was enhanced by the
laser–chemical surface treatment [49]. However, the PDP curve of SHL-150 µm deviated
toward the direction of negative potential, and that of Ecorr, jcorr, and corrosion rate were
worsened, indicating that the corrosion resistance was not improved.
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Table 3. Corrosion potential, corrosion current density, and corrosion rate of specimens in 3.5 wt%
NaCl solution.

Sample Type Corrosion Potential,
Ecorr (mv)

Current Density, jcorr
(A/cm2)

Corrosion Rate
(mm/a)

Untreated −1397.5 0.015 179.81

SHL-150 −1469.7 0.038 446.8

SHB-150 −898.5 8.3 × 10−5 0.9728

SHB-200 −880.1 8.7 × 10−5 1.0399

Figure 7a–c show the EIS spectra of specimens. The Nyquist plots in Figure 7a show
that the semi-circle diameter of the capacitive loop of SHB-150 µm and SHB-200 µm was
larger than that of the untreated specimen; however, the diameter of SHL-150 µm was
smaller than that of the untreated specimen. The results are consistent with the comparison
of the OCP and PDP curves, which show that the corrosion resistance was improved in
SHB-150 µm and SHB-200 µm but worsened in SHL-150 µm [47,48]. The Bode impedance
plots in Figure 7b show that the impedance value (|Z|) of SHB-150 µm and SHB-200 µm
Mg alloy was higher than that of the untreated specimen. The Bode phase plots in Figure 7c
illustrate that the phase angle of SHB-150 µm and SHB-200 µm was higher than that of
untreated specimens at a high-frequency range of over 1000 Hz. Higher |Z| values and
phase angles indicate the significant enhancement in the corrosion resistance created by the
proposed laser–chemical surface treatment [50,51].
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An equivalent electric circuit (EEC) model consisting of solution resistance (Rs), po-
larization resistance (Rp), and double-layer capacitance (Cdl) was utilized to analyze the
EIS data, as shown in Figure 7d (untreated model) and 7e (superhydrophobic model).
Compared with the untreated model, the superhydrophobic model exhibited an obvious air
layer that could prevent contact between the Mg alloy surface and electrolyte to improve
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corrosion resistance. In Table 4, the fitting data are depicted. Rs and Rp of SHB-150 µm,
6.214 and 45.968 Ω·cm2, were 212% and 1266% times higher than those of the untreated
specimen, respectively. Meanwhile, in comparison with that of the untreated specimen, Cdl
was reduced to 1.194 × 10−4 S·sn/cm2. Compared with those of the untreated specimen,
Rs and Rp of SHB-200 µm were slightly lower, and Cdl was slightly higher, which still
showed an improvement. Larger Rs and Rp and smaller Cdl represented a slow corrosion
rate [52]. The fitting data of the EEC model confirmed the enhanced corrosion resistance of
the proposed laser–chemical surface treatment.

Table 4. Equivalent EEC elements derived from the fitted EIS data.

Sample Type Solution Resistance
Rs (Ω·cm2)

Polarization Resistance
Rp (Ω·cm2)

Double-Layer
Capacitance Cdl

(S·sn·cm−2)

Untreated 1.9921 3.364 5.419 × 10−4

SHL-150 2.0388 3.1944 13.29 × 10−4

SHB-150 6.214 45.968 1.194 × 10−4

SHB-200 4.797 35.178 3.851 × 10−4

To further quantify the anti-corrosion capability of specimens under a corrosive con-
dition, the variation in surface structure, chemistry, and wettability of specimens was
examined while referring to previous work [53]. As shown in Figure 8a,b, a large number
of black corrosion pits was observed on the untreated and SHL-150 µm specimens. The
surfaces on these two specimens were roughened severely, and the surface patterns were
damaged to some extent. In Figure 8c,d, no pit can be observed on SHB-150 µm and
SHB-200 µm specimens, but some corrosion occurs in a few specific areas, indicating that
the surface by laser–chemical treatment was well preserved. It was worth noting that the
superhydrophobic surface was obtained after stearic acid immersion treatment and blocked
the attack of chloride ions (Cl−) effectively [43]. Figure 9 shows a schematic illustration of
the enhancement in anti-corrosion capability created by laser–chemical surface treatment.

In the EDS spectra, the atomic percentages of element O in the untreated and SHL-
150 µm specimens increased considerably, indicating that for electrochemical corrosion, the
hydrogen reaction in the NaCl electrolytic cell generated Mg(OH)2 on their surface [54,55].
The elements Na and Cl, with relatively high atomic percentages, were also detected on
the untreated and SHL-150 µm specimens, which was caused by the hydrophilicity of the
specimens. Corrosive Cl− tended to contact and penetrate the surface and caused severe cor-
rosion [49], which mainly led to corrosion of the untreated and laser-structured specimens.
The atomic percentages of O in SHB-150 µm and SHB-200 µm specimens slightly increased
after the electrochemical tests, and the contents of Na and Cl were much lower than those of
the untreated or SHL-150 µm specimen, which was attributed to (1) the superhydrophobic
nature of the surface and (2) the air layer induced by dual-scale micro/nanostructures that
avoided direct contact of corrosive ions with the surface of the specimen (Figure 9) [8,30].
It was shown that the laser–chemical treatment enhanced the resistance to Cl− and weak-
ened electrochemical corrosions. The EDS results proved the effectiveness of the proposed
laser–chemical surface treatment in improving corrosion resistance.
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3.5. Antibacterial Property

Figure 10 shows high-resolution images of bacteria colonies of specimens cultured for
24 h. The antibacterial performance was evaluated by the number of bacteria colonies. A
large number of E. coli and S. aureus colonies were observed on the untreated specimen,
indicating its poor antibacterial performance. Immediately after the surface was structured
by a laser, the numbers of E. coli and S. aureus colonies of SHL-150 µm increased slightly.
This indicated that the laser structuring on the surface with superhydrophilicity did not
change its antibacterial performance effectively. However, the numbers of E. coli and
S. aureus colonies of SHB-150 µm in the laser–chemical surface treatment were reduced
significantly, which proved that the proposed laser–chemical surface treatment improved
the antibacterial performance remarkably.
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Equation (1) was used to calculate the antibacterial rate of the laser-structured and
laser–chemical-treated specimens based on China’s standard GB/T 2591 [56], as shown
in Figure 11. The antibacterial rate of E. coli in SHL-150 µm was merely 8.22%, while it
increased greatly to 74.43% in SHB-150 µm. The antibacterial rates of S. aureus in SHL-
150 µm and SHB-150 µm were 8.01% and 82.05%, respectively. The big difference in
antibacterial rates in these specimens showed that the laser–chemical surface treatment
induced superhydrophobicity and improved the antibacterial performance of Mg alloy
significantly [36,37].
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Figure 12 illustrates the mechanism used to enhance the antibacterial performance in
the laser–chemical surface treatment. The untreated specimen was hydrophilic; therefore,
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the bacterial fluid could spread easily and facilitate bacterial adhesion on the surface [51,57].
The surface of specimens was structured by a laser, and microgrooves with sub-micron and
nanoparticles were formed to reduce bacterial adhesion, thereby lowering the antibacterial
rate [58,59]. However, since the laser-structured surface exhibited superhydrophilicity, the
bacterial fluid was still able to penetrate into the surface and cause significant bacterial
adhesion. When the surface was laser–chemical-treated, the structured surface with super-
hydrophobicity could form air pockets to prevent the penetration of bacterial fluid and the
direct contact of bacterial cells with the surface [60]. Therefore, both the bacterial adhesion
and antibacterial rate were reduced greatly by the laser–chemical surface treatment.
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4. Conclusions

In this paper, a simple and efficient laser–chemical surface treatment was proposed
to functionalize the surface of the Mg alloy specimen, and relevant experiments were
conducted to verify its effectiveness. In particular, electrochemical and antibacterial tests
were carried out to evaluate the corrosion resistance and antibacterial performance of
specimens in comparative studies. The following conclusions were drawn:

1. Laser surface structuring was used to generate dual-scale micro/nanostructures on
the surface of a Mg alloy specimen due to the strong ablation and evaporation in
laser–material interaction.

2. The stearic acid immersion improved the deposition and bonding of long-chain
molecules on the surface of Mg alloy specimens in the stearic acid and reduced the
surface energy significantly.

3. By incorporating the effect of dual-scale micro/nanostructures, the superhydrophilic-
ity on the surface could be transited into superhydrophobicity via sequential chemi-
cal immersion.

4. Compared with that of the untreated specimen, the corrosion resistance of laser–
chemical-treated specimen was enhanced significantly, which was attributed to its
superhydrophobicity in that the structure-induced air layer prevented the direct
contact of corrosive ions with the surface of the specimen.

5. The proposed laser–chemical surface treatment also strengthened the antibacterial
performance of the Mg alloy specimen greatly, and the antibacterial rate was as high
as 82.05%, mainly owing to the air pockets in the structured surface restraining the
penetration of bacterial fluid.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/coatings14030287/s1, Figure S1: SEM micrographs of the laser-structured
Mg alloy surfaces processed by different laser processing parameters: (a) scanning speed of 50 mm/s
and step size of 150 µm; (b) scanning speed of 100 mm/s and step size of 150 µm; (c) scanning
speed of 20 mm/s and step size of 100 µm; (d) scanning speed of 20 mm/s and step size of 200 µm.;
Figure S2: SEM micrographs of the laser–chemical-treated Mg alloy surfaces processed by different
laser processing parameters: (a) scanning speed of 50 mm/s and step size of 150 µm; (b) scanning
speed of 100 mm/s and step size of 150 µm; (c) scanning speed of 20 mm/s and step size of 100 µm;
Figure S3: EDS spectra of (a) laser-structured Mg alloy surfaces processed with a scanning speed
of 100 mm/s and step size of 150 µm; (b) laser–chemical-treated Mg alloy surface processed with
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a scanning speed of 20 mm/s and step size of 200 µm; (c) laser–chemical-treated Mg alloy surface
processed with a scanning speed of 100 mm/s and step size of 150 µm.
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