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Abstract: It is well known that the mechanical properties of a steel plate depend on the anisotropy
of the material and the rolling directions. This paper presents the results of the Charpy V-Notch
(CVN) impact test for the ST, TL, TS, LS, LT, 45◦, and SL directions in API 5L X52 pipelines with
electric-resistance-welded (ERW) and seamless (SMLS) pipes. Charpy specimens were manufactured
and tested according to the ASTM E23 standard in laboratory conditions. All possible directions in
the pipe were tested. Three Charpy specimens were tested for each direction, for a total of 21 Charpy
tests. Moreover, the microstructures, hardness, ductile and brittle areas, and fracture surfaces of the
Charpy specimens are presented in this research. The results show that the Charpy energy values,
hardness, and microstructures depend on the direction of the specimens. The Charpy values of the
SMLS pipe are higher than those of the ERW pipe because of several metallurgical factors, such as
grain size, non-metallic inclusions, delaminations, and microstructures.

Keywords: Charpy test; API 5L X52 steel; seamless pipe; ERW pipe; microstructure

1. Introduction

Despite the global energy matrix experiencing important challenges, because policies
to fight global warming emphasize the use of renewable sources, hydrocarbons have
remained the main source of energy in almost all countries [1]. One proof of this fact is the
increase in the mileage of gas and liquid hydrocarbon pipelines in the United States in recent
years. This was reported by the Pipeline and Hazardous Materials Safety Administration
(PHMSA) [2]. These pipelines are one of the main means of oil and gas transportation.
For this reason, monitoring a pipeline’s mechanical integrity is of paramount importance
to avoid loss of product, mitigate environmental damage, reduce fatalities, and not leave
other production sectors without energy. In the U.S.A., almost 94% of pipelines are made
of steel [3]. The main threats to pipeline integrity in North America are material and weld
failure and corrosion, while in Europe, the main threats are corrosion, external interference
(excavation damage), and material and weld failure [4,5]. Corrosion, material failure,
and external interference can provoke cracks along pipelines. Corrosion mechanisms like
Hydrogen-Induced Cracking (HIC), Stress Corrosion Cracking (SCC), and Sulfide Stress
Cracking (SSC) are well recognized as crack origins [6]. There are other crack origins such
as pores in welding [7,8], non-metal inclusions [9,10], crystallographic orientation [11], and
some external interferences [12]. Fracture toughness and crack propagation are strongly
related to pipeline failure [13–18].
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Devinder Mahajan and coworkers indicated that axial cracks could be common in API
5L X42 pipelines [19] when these structures underwent hydrogen embrittlement caused
by unusual natural gas. Hryhoriy Nykyforchyn et al. [20] indicated that older pipelines
tend to be more susceptible to cracking because of the natural aging process of the material.
Similarly, Olha Zvirko et al. [21] found a close relationship between the microstructure and
the susceptibility to cracking, and they also found that a higher-strength pipeline made of
steel, characterized by a more diffused microstructure, was less susceptible to cracking due
to hydrogen embrittlement. For this reason, it is important to conduct deeper studies on
steel’s toughness characteristics.

The characteristics of the steel of a pipeline that transmits hydrocarbons are typi-
cally specified by the API 5L standard [22]. The requirements for a pipeline made of
steel include a specific strength (yield stress and ultimate tensile stress), high ductility,
high toughness over a wide temperature range, high corrosion resistance against sour
hydrocarbons, high fatigue strength, good weldability, collapse resistance, and exceptional
crack arrestability [23]. Metallurgical factors, such as aligned inclusions, elongated grains,
and crystallographic textures, influence the orientation dependence of mechanical proper-
ties [24]. Therefore, there are special processes to fabricate pipelines. It is well known that
seamless pipes are limited to smaller diameters and are more costly [25].

Two methods to manufacture pipelines are commonly used in the oil and gas industry:
seamless (SMLS) and seam-welded [26–28]. Seamless API steel pipes are made from round
billet steel via continuous casting. Three seamless pipeline manufacturing processes are
employed: plug mill, mandrel mill, and pilger mill. Seam-welded pipelines are man-
ufactured using electric-resistance-welded pipes (ERW), longitudinal-seam submerged
arc-welded pipes (LSAW), and spiral submerged arc-welded pipes (SSAW). These pipes
can be produced through a continuous process from a rolled strip of plate. The processes
employed are usually forming processes such as U-forming–O-forming Expansion (UOE)
or the J-forming–C-forming–O-forming (JCO) process [23,27,29].

SMLS pipes are used in different oil and gas installations, such as offshore, because
they have excellent corrosive performance and low-temperature toughness for exploitation
in deep-water oil and gas reservoirs [28]. Traditionally, seam-welded pipes have been used
in offshore conditions for several years, and the pipes employed include the API 5L grades
from X42 to X100 [30–33]. Different studies have been carried out to study their mechanical
behaviors [34,35] and corrosive behaviors [5]. For example, Nonn et al. [36] conducted
research to establish the transition behavior or ductile crack arrest of high-toughness steels,
such as the seamless pipeline material X65Q. Hasenhutl et al. [37] studied ductile fracture
resistance and fracture toughness using the Charpy impact of a seamless pipe. Scherf
et al. [38] presented a study that developed an innovative low-carbon concept for X100
seamless pipes in low-temperature applications, obtaining excellent CVN impact behavior
below −60 ◦C. Also, some works have been conducted on the strain of seamless pipeline
steel [39], heat treatments [40,41], and the application of microalloyed steel [42]. Another
important characteristic of pipeline steel is the anisotropy of its mechanical properties,
strength, and toughness [30]. Anisotropy refers to the direction of a property, i.e., the
variation in a property with a change in the orientation of the sample concerning the
rolling directions [43]. At present, there are different works that have determined the
anisotropy in a pipe using Charpy data in different directions for the direction of rolling,
presenting excellent results [43–50]. However, only some orientations are presented, and
all possible directions have not been studied in pipelines. Unfortunately, at present, there
are few published works reporting toughness values obtained via Charpy impact tests in
seamless pipelines.

Pipelines have been used for several decades [51,52]. During these years, there have
been failures due to natural defects [53,54], and these failures have depended on the ages
of the pipes [55]. Therefore, in this paper, toughness was studied using Charpy V-Notch
(CVN) impact tests, ductile and brittle fracture areas, microstructures, grain size, and
Rockwell hardness C (HR) in different directions, using the rolling direction of API 5L X52
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EWR and SMLS pipes as a reference. Charpy specimens were obtained from all possible
directions, according to the pipe geometry, and at 45◦ from the rolling direction. It is
important to mention that all Charpy tests were carried out according to the requirements
indicated by the ASTM E23 standard [56].

2. Materials and Methods
2.1. CVN Impact Testing

The EWR pipe used in this experiment had a wall thickness of 25.4 mm and a diameter
of 914.4 mm. For the SMLS pipe, the wall thickness was 25.4 mm, and the diameter was
406.4 mm. Both pipes followed the requirements described in API 5L for PSL 2 steels [22].
Taking the rolling direction as a reference, the samples were manufactured from all repre-
sentative orientations at 45◦ from the rolling direction. The name of each sample is listed
in Table 1 according to the direction in which it was obtained. Three Charpy specimens
were obtained for each working condition. Figure 1a,b present the Charpy specimens in
the pipeline considering the rolling directions of the SMLS and ERW pipelines, respectively.
These specimens were used according to the ASTM E23 standard [56] in Charpy model
74 with a capacity of 0.0–274 lb-ft. Standard Charpy specimens measuring 10 × 10 × 55 mm
were employed. Tests were performed at room temperature. In the ASTM E23 standard,
there are subsized specimens (from 2.5 × 10 × 55 mm to 10 × 10 × 55 mm). Because of
the dimensions of the pipes analyzed, a wall thickness of 25.4 mm and standard-sized
specimens were chosen. To estimate the ductile and brittle fracture areas, the processes
indicated in the ASTM E23 standard were followed.

Table 1. Nomenclature for samples studied and others used.

Nomenclature

CVN Charpy V-Notch impact test
ERW Electric-resistance-welded
SMLS Seamless pipeline

HR Rockwell hardness
TIG Tungsten inert gas
L-T Longitudinal–transverse direction
T-L Transverse–longitudinal direction
S-T Short transverse–transverse direction
T-S Transverse–short transverse direction
L-S Longitudinal–short transverse direction
S-L Short transverse–longitudinal direction

PHMSA Pipeline and Hazardous Materials Safety Administration
HIC Hydrogen-Induced Cracking
SCC Stress Corrosion Cracking
SSC Sulfide Stress Cracking

LSAW Longitudinal-seam submerged arc-welded pipe
SSAW Spiral submerged arc-welded pipe
UOE U-forming–O-forming Expansion
JCO J-forming–C-forming–O-forming process
SEM Scanning electron microscopy
DBT Ductile-to-brittle transition

2.2. Welding Charpy Impact Specimens

Since several specimens did not reach the length of the Charpy specimens (55 mm),
larger specimens were made to achieve the required length using extensions jointed by
welding. The specimens were joined via the Tungsten inert gas (TIG) welding process
using an in-verter machine (ESAB, Goteborg, Sweden) with tungsten electrodes (3/32-inch
diameter) (ESAB, Goteborg, Sweden) and a current intensity of 90 Amperes. The welded
specimens for the Charpy test are illustrated in Figure 2. With this process, fractures were
located in the notches of the specimens, just as the literature indicates.
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Figure 2. Charpy impact specimen welded using the TIG process.

2.3. Microstructure, Grain Size, and Rockwell Hardness (HR)

To reveal the microstructure and to estimate the grain size, the transverse direc-
tion (plane T-S), longitudinal direction (plane L-S), and upper direction (plane L-T) were
evaluated, as indicated in Figure 3. Micrographs were obtained using an optical micro-
scope (Olympus, Center Valley, PA, USA) at 100X magnification, as indicated by ASTM
E112 [57,58]. Additionally, scanning electron microscopy (SEM) (JEOL JSM-6300, JEOL,
Peabody, MA, USA) was carried out to observe the fracture surfaces after the Charpy test.
The Rockwell hardness C was obtained by following the ASTM E370 standard [58]. Figure 3
depicts the points on the samples where the hardness was tested.
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Figure 3. Orientations for microstructure and hardness studies.

3. Results and Discussion
3.1. Charpy Impact Values

Table 2 shows the CVN values and ductile and brittle fracture areas, and these data
are plotted in Figure 4. One can affirm that the toughness values of the steel in the SMLS
pipe are higher than those of the steel in the ERW pipe for the ST, TL, TS, LS, LT, 45◦, and
SL directions. When comparing the Charpy values in Table 2 with other studies where
the authors also used API 5L X52 welded pipe [59], it can be seen that the values reported
in Table 1 are higher. Typically, it is recognized that the mechanical properties of PSL
1 pipelines are lower than those of PSL 2 pipes, and the values from the Charpy impact test
are within these values, according to API standard 5L [22].
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Table 2. CVN values and ductile and brittle fracture for SMLS and ERW pipelines.

Pipeline Pipeline

Specimen ERW SMLS ERW SMLS

Joules Joules
Ductile
Fracture
Area (%)

Brittle
Fracture
Area (%)

Ductile
Fracture
Area (%)

Brittle
Fracture
Area (%)

L-T-1 (0◦) 202.02 261.84 81 19 85 15

L-T-2 (0◦) 210.02 254.97 72 28 83 17

L-T-3 (0◦) 206.10 258.45 65 35 84 16

Average 206.04 258.42 72.66 27.33 84 16

T-L-1 (90◦) 215.75 268.70 76 24 81 19

T-L-2 (90◦) 207.90 262.82 90 10 77 23

T-L-3 (90◦) 211.82 265.43 79 21 81 19

Average 221.82 265.65 81.66 18.33 79.66 20.33

45◦-1 173.58 259.87 72 28 80 20

45◦-2 197.11 240.87 82 18 84 16

45◦-3 185.50 250.37 81 19 82 18

Average 185.39 250.37 78.33 21.66 82 18

S-T-1 231.44 253.87 75 25 84 16

S-T-2 228.49 259.87 70 30 88 12

S-T-3 229.71 256.41 78 22 79 21

Average 229.88 256.71 74.33 25.66 83.66 16.33

T-S-1 209.86 258.86 82 18 85 15

T-S-2 211.82 252.03 81 19 81 19

T-S-3 210.85 255.44 78 22 80 20

Average 210.84 255.44 80.33 19.66 82 18

L-S-1 205.94 253.00 77 23 65 35

L-S-2 213.78 260.86 78 22 74 26

L-S-3 209.76 255.93 76 24 76 24

Average 209.82 256.59 77 23 71.66 28.33

S-L-1 165.73 256.93 74 26 77 23

S-L-2 200.05 260.93 77 23 75 25

S-L-3 182.49 258.14 81 19 78 22

Average 182.75 258.66 77.33 22.66 76.66 23.66

The Charpy values for all conditions are constant and homogeneous with each other
(see Figure 4a). Additionally, there is not much difference for each rolling condition for the
three Charpy specimens. However, they cannot be compared directly because the SMLS
pipe diameter is 406.4 mm, while the ERW one is 914.4 mm. Also, ductile and brittle fracture
behavior is observed for both pipelines. It can be mentioned that the ductile fracture values
are higher for the SMLS pipeline compared to the ERW pipeline (see Figure 4b,c). As
pointed out above, the toughness values are higher for the SMLS pipe compared to the
ERW pipe.

The Charpy energy values for both pipes with respect to angle variation (TL, LT,
and at 45◦) have the same behavior. The Charpy energy values are higher for the TL
condition, followed by the LT condition, and finally the 45◦ condition. While the Charpy
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energy values for the SMLS pipe, comparing all rolling direction conditions, are higher
in the TL, SL, LT, ST, LS, TS, and 45◦ conditions, the Charpy energy values for the ERW
pipe, comparing all rolling directions, are higher in the ST, TL, TS, LS, LT, 45◦, and SL
conditions. Beltran et al. [60] found that the fracture toughness values of an API X42
steel in base metal (BM) were 20% higher in the longitudinal direction than in the short
transverse direction. Terán et al. [61] found that the Charpy energy values of a pipeline
made of steel were highest for the longitudinal directions, and finally the circumferential
direction. Different works reported Charpy values in different directions with respect
to the rolling direction in pipelines, showing serious anisotropy depending on the notch
direction [24,41,50] Anisotropy is an important issue in the mechanical behavior of API 5L
pipelines [46,62].

For example, Ju et al. [46] reported that the Charpy values in the longitudinal direction
were much lower than in the circumferential direction (by about 0.7 at room temperature).
Zhu et al. [45] found that the Charpy impact data were higher for the longitudinal direction,
followed by 45◦, with the lowest values for the longitudinal direction. Samples parallel to
the rolling direction had higher impact energy [45].

The results indicate that API 5L pipeline steel shows serious anisotropy behavior
with a change in the orientation of a sample with respect to the rolling direction [27,43].
Anisotropy can arise from several factors such as chemical segregation, variation in the
shape and size of grains, inclusions, and crystallographic texture [27]. Stringer-shaped
inclusions are known to cause anisotropy in mechanical properties such as tensile ductility
and fracture toughness [26]. Variations in grain size and grain shape along different
directions can also cause anisotropy [32]. Another study [46] suggested, based on an
analysis of texture intensities, that the anisotropy of toughness at room temperature might
be attributed to the variation in the volume fraction of the {110} plane, with an angle to the
circumferential direction.

3.2. Microstructures Obtained and HR Values

Figure 5 shows micrographs of the ERW and SMLS pipes for the LT, LS, and TS
planes. The mechanical properties of API 5L pipelines depend on the microstructural
characteristics of the pipelines [63–65]. One can see in the photographs that the ERW pipe
is more uniform for the ST, TL, TS, LS, LT, 45◦, and SL directions. This is because, during
the manufacturing process, in the rolling stages, the grains were distributed along the
rolling directions. For SMLS pipes, the processes are carried out using a plug mill, mandrel
mill, and pilger mill. The grain size value for the welded pipeline is 10.3 µm, while for
the SMLS pipelines the grain size is about 11 µm. Here, the grains are smaller, scattered,
and not homogeneous compared to the ERW pipe grains. As we can see in Figure 5, the
microstructures correspond to general ferrite (white) and pearlite (black) structures. The
welded pipeline consists of ferritic and perlitic microstructures that are strongly elongated
in the rolling direction. Jang et al. [46] reported that the microstructures and mechanical
properties of steel can change during the pipe-forming process. During plastic deformation
due to cold or hot work, grains are elongated in the direction of the applied stress. Therefore,
the ferrite grain size varies in different directions, resulting in anisotropy in mechanical
properties [28,32]. It is observed that grains of perlite and ferrite are usually oriented in the
directions of lamination. This behavior is known as banding. Banding is more visible in the
laminate direction than in the transverse direction [66]. In the 45◦ direction, a combination
of microstructures is observed between the longitudinal and transverse directions. During
the manufacture of ERW pipelines, thermal treatments of quenching and tempering can
be applied [26]. For seamless pipes, two treatment methods are employed: normalizing,
and quenching and temping treatment. With these treatments, ferrite, pearlite, bainite, and
martensite can be obtained. Figure 6a,b show non-metallic inclusions in the ERW pipeline
in plane T-S and plane L-S, respectively. For the SMLS pipeline, it was more difficult to find
non-metallic inclusions due to the elongated microstructures.
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In the context of inclusions, manganese sulfide and silicates become elongated during
the rolling process, and hence contribute to mechanical anisotropy [24]. It can be said that
non-metallic inclusions affect the mechanical properties of pipelines [67–69].

The Rockwell hardness C values of these two pipes are reported in Table 3. It can be
said that the Rockwell hardness C hardness values of the ERW pipe are the same for all
three measured directions. Sung [24] determined that when anisotropy occurs in seam-
welded pipelines, the hardness values are the same and the hardness is not affected by the
anisotropy. However, in the SMLS pipe, a small variation in the results can be observed. It
is present, as mentioned above, because the grains are more dispersed, smaller, and not
homogeneous. Higher values are obtained in the transverse direction (plane T-S), followed
by the upper plane (plane L-T), and finally the longitudinal direction (plane L-S). This
behavior is because of mechanical properties, such as hardness, Charpy values, and yield
stress, which depend on the rolling directions of the pipelines. For the SMLS pipe, the
ferrite and perlite grains are smaller compared to the ERW pipe, and as a result, this pipe
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has higher hardness and Charpy values. According to a previous study [66], there are
higher grain size values in the longitudinal direction compared to the transverse direction,
resulting in lower mechanical properties.

Table 3. HR values of ERW and SMLS pipelines.

Direction Pipe

ERW SMLS

Upper (Plane L-T) 1 76.5 89.0

2 77.0 89.5

3 76.5 87.5

average 76.6 88.6

Longitudinal (Plane L-S) 1 75.5 85.0

2 77.0 85.05

3 76.0 85.0

average 76.1 85.8

Transverse (Plane T-S) 1 77.0 90.0

2 76.0 90.0

3 77.0 87.0

average 76.6 89.0

3.3. Fracture Surfaces of Charpy Specimens

Figure 7 shows a comparison of Charpy specimens between a specimen that did not
need extension and one with an extension welded using the TIG process. For the latter,
fractures occurred within the notch and in the metal tested. The TIG welding procedure
was appropriate to obtain the standard specimen dimensions. This was confirmed by the
results obtained using the Charpy values described above. Figure 8 confirm that surfaces
present high plastic deformation. Because the Charpy specimens were tested at room
temperature, the specimens were presumably in the upper range of the ductile-to-brittle
transition (DBT) temperature. Therefore, the fractured Charpy impact specimens exhibited
ductile behavior. The specimens were reported as “non-fractured test tubes” and averaged
with the other Charpy specimens. The CVN results were below 80% of the capacity of the
Charpy impact test, as stated in ASTM E23 [56].
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Figure 8 shows all fracture surfaces of the Charpy specimens for the ERW and SMLS
pipes. It can be said that all specimens had ductile behavior. This was because the tests were
performed at room temperature, considering that API 5L X52 steel shows real toughness
behavior in this condition. It can be said that for all fracture surfaces of the Charpy
specimens, ductile zones, and brittle zones appeared, and small ductile and brittle (mixed)
zones could be observed (see Figure 9a). Also, a common defect that could be found was
delaminations on all ERW pipe fracture surfaces, mainly for the TL, TS, and LS conditions
(see Figure 9b). Delaminations are generated during the rolling of a pipeline, and can occur
on ferrite–perlite sections or along perlite bands. It has been reported that they decrease the
mechanical properties in the transverse direction [66]. Joo et al. [48] reported delaminations
in API X80 steel in the TL, LT, and LS directions.

Figure 10 presents fracture surfaces using a scanning electron microscope. It is inter-
esting to note that all specimens have a ductile mechanism with high toughness values.
Ductile fracture indicates a border on a specimen with characteristic lusterless and dark
features [70]. It is observed that the specimens have areas of shear and cleavage. In ad-
dition, fibrous fracture, shear lips, microvoid coalescence, dimpled surfaces, main cracks,
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and secondary cracks are presented [71–73]. A common feature is that the generation of
secondary cracks is also indicative of high absorbed energy [74].
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4. Conclusions

Toughness values and ductile fracture are higher for the SMLS pipeline compared to
the ERW pipeline. The CVN values of the SMLS pipe are greater for all rolling direction
conditions (TL, SL, LT, ST, LS, TS, and 45◦). Moreover, the CVN data of the ERW pipe are
higher in the ST, TL, TS, LS, LT, 45◦, and SL directions. The microstructures of the two
pipelines studied in this paper (ERW and SMLS) contain ferrite and perlite elongated in the
rolling direction. For the ERW pipe, the grain size is 10.3 µm. For the SMLS pipe, the grain
size is about 11 µm. For the ERW pipe, metallurgical factors such as non-metallic inclusions
are observed. Anisotropic behavior is important to the mechanical properties of pipeline
steels and depends on the rolling direction of a pipeline. Mechanical properties such as
toughness and hardness depend on the microstructural characteristics and rolling direction
of seam-welded pipelines. The fracture surfaces of the Charpy specimens presented highly
ductile behavior. On the surfaces of the Charpy specimens, ductile zones, brittle zones,
and mixed ductile and brittle zones were observed. In addition, delaminations could be
found on the Charpy fracture surfaces, which decreased the mechanical properties of the
pipelines. Fibrous fractures, shear lips, microvoids, dimples, and cracks were observed
on the fracture surfaces. These defects are typical of plastic deformation during Charpy
tests at room temperature. The results in this work serve to know the mechanical behavior
of two steels in the transport of hydrocarbons worldwide, and to complement the values,
it is recommended to perform Charpy tests at low temperatures, in order to determine
ductile-to-brittle transition curve.
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