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Abstract: Craniofacial bone defects are usually secondary to accident trauma, resection of tumor, sever
inflammation, and congenital disease. The defects of craniofacial bones impact esthetic appearance
and functionality such as mastication, pronunciation, and facial features. During the craniofacial
bone regeneration process, different osteogenic cells are introduced, including primary osteoblasts or
pluripotent stem cells. However, the defect area is initially avascular, resulting in the death of the
introduced cells and failed regeneration. Thus, it is vital to establish vascularization strategies to
build a timely and abundant blood vessel supply network. This review paper therefore focuses on the
reconstruction of both osteogenesis and vasculogenesis. The current challenges, various strategies,
and latest efforts applied to enhance vascularization in craniofacial bone regeneration are discussed.
These involve the application of angiogenic growth factors and cell-based vascularization strategies.
In addition, surface morphology, porous characters, and the angiogenic release property of scaffolds
also have a fundamental effect on vasculogenesis via cell behavior and are further discussed.

Keywords: craniofacial bone; osteogenesis; vasculogenesis; bone tissue engineering; blood vessel;
angiogenesis growth factor; biocompatible materials

1. Introduction

Craniofacial bone provides support for adjacent craniofacial soft tissues (especially
the attachments of mastication-related muscles) and anchorage for dental structures [1].
The defects of craniofacial bones, secondary to accident trauma, congenital disease, tumor
resection, and inflammation [2–5], impact esthetic appearance and functionality of the
craniofacial complex, such as mastication, pronunciation, and facial features. Furthermore,
craniofacial bone is highly vascularized, and its functions depend a lot on an unobstructed
and well-organized vascular network. With the intact vessels, sufficient oxygen and
nutrients can be supplied, guaranteeing the proliferation and viability of cells [6]. At
the same time, the metabolic waste of cells can be taken away [7]. Therefore, it is well-
recognized that the prompting of vasculogenesis is beneficial for reinforced bone functions.
After the craniofacial bone defect occurs, osteogenic cells such as primary osteoblasts or
pluripotent stem cells are recruited in order to generate neobones. However, the defect area
is initially avascular, resulting in the death of the recruited cells and failed regeneration [6].
Thus, it is vital to establish vascularization strategies to build a timely and abundant blood
vessel supply network [8].

Clinically, the damaged craniofacial bone can be reconstructed with a series of surgical
operations. More than 90% of grafts used are autologous or allogenic transplantations,
which are recognized as the “gold standards” [9]. However, challenges, such as donor
site morbidity, pain, infection, and additional economic burden, are still unmet [10]. More
importantly, vasculogenesis in the depth of the defect also cannot be well-established,
which leads to the necrosis of transplanted grafts [11–13].
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Rapid developments in bone tissue engineering bring new hope for solving the urgent
problems and provide more strategies for neovascular networks and craniofacial bone
tissue regeneration. During the past decades, numerous studies have been accomplished,
introducing different angiogenic cells and growth factors based on biocompatible scaffolds
for rebuilding vessel networks in craniofacial bone defects [9,14,15]. This work, presenting
a first-time comprehensive review of recent advances of vascularization strategies in cran-
iofacial bone tissue regeneration, overviews the current challenges, various strategies, and
the latest efforts applied to enhancing vascularization in craniofacial bone regeneration.

2. Challenges of Vascularization in Craniofacial Bone Regeneration

Vasculogenesis and angiogenesis are two well-known approaches by which embryonic
blood vessels develop. Vasculogenesis means that new blood vessels are formed in suit
by endothelial progenitor cells and then coalesce with elongating vessels. In contrast,
angiogenesis, assumed as the more prevalent way of vascularization, is related to new
capillaries by budding, branching, and elongation of existing vessels [16–18]. While the
specific angiogenesis mechanism during craniofacial bone defect regeneration remains
unexplicit, some inspirations can be obtained from the craniofacial bone formation. Unlike
the endochondral ossification pattern of the appendicular skeleton, most craniofacial bones
display an intramembranous ossification pattern (Figure 1) [3,19–21]. Under this pattern,
osteogenic cells derived from mesenchymal stem cells (MSCs) directly secrete osteoid
and then mineralize as bone tissue [14]. Recent research has reported that capillary-like
structures can be observed invading the avascular MSC layer prior to mineralization [21,22].
This indicates that ingrowth angiogenesis of the defect area is essential for craniofacial
bone regeneration.
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ossification. (A) Chondrocytes differentiate from proliferating prechondrocytes within the growth 
plate. The chondrocytes are pushed toward the diaphysis by this continuous process and then 
enlarge under hypoxia, leading to mineralization of surrounding cartilage and the attraction of 
blood vessels required for bone formation. (B) Magnified view of bracketed zone from “A” showing 
capillaries, in association with chondroclasts, growing towards hypertrophic chondrocytes as a 
precursor to osteoblast activity and bone growth at the epiphysis. Reprinted with permission from 
Ref. [21], 2013, John Wiley and Sons. 
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Figure 1. Schematic of the epiphyseal ossification of endochondral long bones, with emphasis on the
process of capillary growth into calcified epiphyseal cartilage and subsequent trabecular ossification.
(A) Chondrocytes differentiate from proliferating prechondrocytes within the growth plate. The
chondrocytes are pushed toward the diaphysis by this continuous process and then enlarge under
hypoxia, leading to mineralization of surrounding cartilage and the attraction of blood vessels
required for bone formation. (B) Magnified view of bracketed zone from “A” showing capillaries,
in association with chondroclasts, growing towards hypertrophic chondrocytes as a precursor to
osteoblast activity and bone growth at the epiphysis. Reprinted with permission from Ref. [21], 2013,
John Wiley and Sons.

However, there are still challenges in building a mature craniofacial neovascular
system in the bone defect site. First of all, the defects of craniofacial bone, secondary to
tumor resection or congenital craniofacial diseases, are usually critical-sized and the depth
of defects is often thicker than 1 cm. The maximum cell–vessel distance to gain adequate
oxygen supply and nutrition support is 200 µm [23,24], which means the transplanted or
recruited cells may not survive, as minimal oxygen and nutrition can be obtained from
host blood vessels, leading to the failure of new bone formation. Thus, how to establish
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a well-organized and functional neovascular network within a short time to support cell
proliferation and bone formation is the main challenge in craniofacial revascularization.
Furthermore, the final functionalization of the neovascular vessel relies on the extent of
anastomosis between neo and host vasculature [7]. Thus, therapeutic approaches for
achieving successful anastomosis with resident vasculature is another issue that should be
urgently addressed.

Furthermore, current studies demonstrate that blood vessels can be further classified
as two different types. Type H vessels are characterized by high and positive expressions
of CD31 and Endomucin. In contrast, type L vessels are characterized by low or negative
expressions of CD31 and Endomucin. Type H vessels are reported to be located near the
periosteum and endosteum of the diaphysis, while type L vessels are located in the bone
marrow [25,26]. Evidence indicates that type H vessels can promote the proliferation and
differentiation of osteoprogenitors and stimulate direct bone formation [27,28]. Therefore,
how to increase the type H vessel ratio of neovascular network formation to promote
craniofacial bone defect regeneration becomes another issue that should be further explored.

3. Various Vascularization Strategies in Craniofacial Bone Regeneration

Angiogenesis is a complex process involving extensive connections between vast
growth factors, cells, and extracellular matrices (ECMs) [3,7,16–18]. After the bone defect
occurs, the local hypoxic microenvironment and acute inflammation stimulate the release of
pro-angiogenic growth factors from surrounding cells, which initiate the active proliferation
of the endothelial cells (ECs) [8,29]. Afterwards, new blood vessels are formed, and then
stabilized and remodeled by pericytes [30,31].

3.1. Cell Sources for Craniofacial Bone Vascularization

Vascularization involves vasculogenesis or angiogenesis; both these approaches rely
highly on the functions of ECs and endothelial progenitor cells (EPCs) [32–35]. The cranio-
facial bone defect region is in need of oxygen and nutrients, and secretes proangiogenic
molecules. As illustrated in Figure 2, ECs are triggered to be invasive (referred to as tip
cells), lead the sprouts, and protrude filopodia [36]. Then, the protruded filopodia extend
in response to the angiogenic signal source [36,37]. Tip cells are followed by stalk cells,
which proliferate to elongate the sprout and form the fundamental vessel lumen [35,38,39].
Specification in migratory tip and proliferating stalk cells is dynamic, and ECs continuously
compete for the lead position. Eventually, tip cells connect with surrounding tip cells from
adjacent sprouts to form a new and stable vessel [35,39]. In addition, ECs have been proven
to enhance the anastomosis between the neovessel system and host vasculature [7,40].

Considering that EC sources are limited in the craniofacial bone defect area, the EPCs,
which are potentially derived from umbilical cord blood, peripheral blood, bone marrow,
or human-induced pluripotent stem cells, are of great importance in vascular engineering
because of their pluripotency and outstanding self-proliferation ability [41,42]. Studies have
demonstrated that postnatal neovascularization is both directly and indirectly stimulated
by EPCs [43,44]. Human EPCs have also been confirmed to be capable of forming a
neovasculature in a critical-sized rat bone defect model, indicating that EPCs may be
directly involved in the process of angiogenesis via differentiation into lumen-forming
cells [45]. Furthermore, the expressions of proangiogenic vascular endothelial growth
factors are higher in EPCs or EPCs/MSCs groups compared with those in MSCs alone, as
well as the formation of blood vessels, confirming that EPCs are capable of initiating a host
angiogenic response through cytokine secretion [44–46].
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Except for ECs/EPCs, pericytes are the other composed cells of blood vessels (also
referred to as perivascular cells, vascular smooth muscle cells, or mural cells). Pericytes
play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood
pressure regulation [30,31]. In addition, 22%~99% of the endothelium in capillaries is
covered with pericytes, which are also found in pre-capillary arterioles and post-capillary
venules. The high coverage rate seems to correlate positively with endothelial barrier
properties. A larger coverage rate of pericyte leads to reduced EC turnover, whereas a lower
coverage rate of pericyte results in enhanced proliferation and sprouting capacity of ECs.
Furthermore, pericytes exhibit other important functions, such as contractile regulation of
blood flow and the formation of ECM. Moreover, pericytes are embedded in the basement
membrane of the vasculature and contact with surrounding ECs, resulting in an efficient
communication, named pericyte–endothelial interactions, between the two cell types.
Pericyte–endothelial interactions are necessary for the development and maintenance of a
functional microcirculation in different tissues [47,48]. Currently, there are different views
on the pericyte–endothelial interactions in different type of tissues. The most well-accepted
view is that pericytes are recruited by stalk cells to support vessels. For example, research
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in the retinal angiogenesis field shows that the retinal vascular network remains immature
and is prone to rarefaction by ineffective stabilization until pericyte recruitment [49].

3.2. Cell Signaling and Angiogenic Growth Factors

The entire angiogenesis process consists of a series of growth factors and mediators
of microenvironment components. The current knowledge of angiogenic biology has
been widely expanding; one of the most significant factors is the vascular endothelial
growth factor (VEGF) family. VEGF and its receptors (VEGFRs) play a prominent role
in the activation of ECs in angiogenesis and osteogenesis [50–52]. ECs expressing high
VEGFR2 signaling are called tip cells and promote the neighboring ECs’ transfer as a
stalk cell phenotype by upregulating the signaling of Notch ligand Delta-like 4 (DLL4).
The transferring process is initiated by the activation of the NOTCH1 receptor of stalk
cell via DLL4. The transferring in turn leads to the suppression of VEGFR2 and the
concomitant induction of VEGFR1. The reciprocal regulation of VEGFR expression by
Notch signaling reduces sensitivity to VEGF and thereby enforces stalk cell specification.
The levels of VEGFRs, DLL4, and NOTCH1 are, however, constantly changing as ECs
meet new neighbors. As a result, stalk cells can be relieved from tip cell inhibition
and overtake the lead position, resulting in a dynamic position shuffle in the growing
sprout [53,54]. The integrated regulation of VEGF and Notch is a prime example of a
mechanism that allows ECs to sprout reiteratively in a concerted action, thereby ensuring
robust network formation.

Platelet-derived growth factor-BB (PDGF-BB) is a member of the PDGF family, which is
capable of improving the migration, proliferation, and differentiation of various mesenchy-
mal cell types, such as EPCs and MSCs. ECs secrete PDGF-BB to recruit platelet-derived
growth factor receptor–β positive (PDGFRβ+) pericytes onto the neovasculature [55,56].
Su et al. demonstrated that bone angiogenesis was weakened when PDGF-BB was se-
lectively knocked out in preosteoclasts. More bone angiogenesis was also obtained in
Pdgfb-transgenic mice that overexpressed PDGF-BB (Figure 3) [55]. In addition to vessel for-
mation, PDGF-BB–PDGFR signaling was reported to cooperate with DLL4–Notch signaling
pathways to prevent excessive vascular sprouting and achieve a balanced and functional
vessel network [57,58].

Hypoxia-inducible factor (HIF) is a transcription factor that alters the cell behavior in
response to oxygen concentration and further affects angiogenesis [59,60]. HIF-1α is one of
the most studied members of the HIF family. Studies have shown that HIF-1α is involved
in angiogenesis or vascular remodeling processes through the so-called “HIF-1α-VEGF
axis”. Under the stimulation of both angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2),
HIF-1α stimulates MSCs to secrete VEGF and inhibits the expression of the tissue inhibitor
of metalloproteinase-3 (TIMP-3), an endogenous competitive inhibitor of the VEGF receptor
(which mediates osteogenesis and angiogenesis) [61–64]. Furthermore, the ECs of Type
H vessels have been reported to promote vascular growth via the HIF-1α-VEGF axis and
further communicate with perivascular osteoblasts through the Notch signal pathway for
osteogenesis [26].
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Figure 3. Transgenic mice expressing PDGF-BB in preosteoclasts recapitulate the pathological fea-
tures of osteoarthritic joint subchondral bone. (A) Schematic diagram showing the TRACP5-Pdgfb
transgene in transgenic mice (PdgfbcTG). (B–N) Knee joints were harvested from 5-month-old trans-
genic mice and WT mice. n = 5 mice per group. Immunofluorescence staining of PDGF-BB
(green) and quantification of PDGF-BB+ cells in tibial subchondral bone (B,C). Scale bar: 50 µm.
*** p < 0.001. ELISA analysis of PDGF-BB concentration in tibial subchondral bone/bone marrow.
*** p < 0.001 (D). Immunofluorescence staining of CD31 (green) and Emcn (red) with quantification of
the intensity of CD31hi Emcnhi signal per tissue area in subchondral bone of the tibia (E,F). C—cartilage;
SB—subchondral bone. Scale bars: 200 µm (top), 50 µm (bottom). *** p < 0.001. Immunohistochemical
analysis of Osterix (brown) and quantification of Osterix+ cells in tibial subchondral bone (G,H). Scale
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bar: 50 µm. *** p < 0.001. Immunofluorescence staining of PGP9.5 (green) with quantification of
the intensity of PGP9.5 signal per tissue area in subchondral bone of the tibia (I,J). Scale bar: 50 µm.
*** p < 0.001. Three-dimensional µCT images (K) and quantitative analysis of structural parameters
of subchondral bone: BV/TV (L), SBP. Th (mm–1) (M) and Tb. Pf (mm–1) (N). * p < 0.05, and
** p < 0.01. All data are shown as means ± standard deviations. Statistical significance was determined
by unpaired 2-tailed Student’s t test. Reprinted with permission from [55], 2020, American Society
for Clinical Investigation.

In the context of biomaterials for craniofacial bone regeneration, the use of inorganic
cations such as Ca2+, magnesium (Mg2+), and silicon (Si4+) has gained attention due to their
influence on mechanical and biological properties crucial for bone regeneration [18,65–68].
These cations do also play significant roles in neovascularization, which are crucial aspects
of craniofacial bone regeneration [69–72]. Wang et al. displayed a sustained release of
Mg2+ from the piezoelectric Whitlockite scaffold and promoted angiogenic differentiation
of BMSCs in vitro. Mg2+ was further confirmed to remarkably form neobone with rich
angiogenic expressions in an in vivo rat calvarial defect model (Figure 4) [73]. Liu et al. also
reported the powerful angiogenic property of Mg2+. In their study, MC3T3-E1 cells were
treated with different concentrations of Mg2+, and the secretion of PDGF-BB was promoted,
which can effectively promote the angiogenic ability of HUVECs [74]. Wan et al. studied
the synergistic effect of Mg2+ and Si4+. They fabricated hierarchical microspheres named
PNM2, which can steadily release Mg2+ and Si4+ at an optimized ratio of 2:1 to match the
process of vascularized bone regeneration at different stages. Then, a high volume and
maturity of the vascularized neobone tissue was regenerated with PNM2 microspheres in a
rat calvarial defect model [75]. Other cations, like Cu2+ and Co2+, also show proangiogenic
activity [76,77]. Cu2+ affects angiogenesis via regulation of the pERK1/2-foxm1-MMP2/9
axis [78]. Co2+ has the capacity to stabilize HIF-1α and subsequently induce the production
of VEGF, activating the angiogenic process by creating a hypoxia-mimicking condition [79].
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post-operation. (B) Immunohistochemical staining of TRAP and OCN expression at 8 w post-
operation. (C) Immunofluorescence staining of CD31 (red), CGRP (green), and DAPI (blue) expression
at 4 w and 8 w post-operation. FCT: fibrous connective tissue. NB: newly formed bone tissue. S:
spaces in scaffolds. Reprint from [73].

A breakthrough in the additional application of miRNA in 2006 moved angiogenesis
to another level [80]. Zhuang et al. investigated the angiogenic effect of miR-210-3p. They
found miR-210-3p can hinder EFNA3 expression and subsequently activate the PI3K/AKT
pathway, enhancing the proliferation, migration, and angiogenesis of ECs [81]. Castaño et al.
also reported the synergetic effect of dual delivery of two miRNAs. MiR-210 mimics and
miR-16 inhibitors were released from a collagen–nanohydroxyapatite scaffold system to
enhance angiogenesis and osteogenesis, resulting in accelerated rat calvarial bone defect
repair [82]. There are also many other angiogenic miRNAs, such as miR-378, miR-126,
and Let-7, that target various signaling molecules. These miRNAs target various aspects
of angiogenesis via endothelial cell function, blood vessel formation, and related growth
factor signaling (Table 1).

Table 1. Major angiogenesis pathways and potential therapeutic miRNAs.

Target Pathway miRNA Target Signaling Pathway

Activation of ECs

miR-210-3p EFNA3/PI3K/AKT [81,83]

miR-378 Sufu [84]
Fus1 [85]

miR-126
SPRED1/Ras/Erk [86,87]

PIK3R2 [88]
VCAM-1 [89]

Sprouting, migration, and
tubulogenesis of ECs

miR-17-92 ERK/ELK1 [90]

Let-7f-5p DUSP1/Erk1/2 [91]

3.3. Co-Culture Systems with Different Cell Types or Growth Factors

Co-culture strategies involving different cell types and growth factors have indeed
found application in the field of craniofacial bone vascularization. These approaches
leverage the interactions between various cell types and signals to enhance osteogenesis
and angiogenesis. According to previous studies, the co-culture system may strengthen
the participating cells isolated from different tissues, showing enhanced cell functions. Co-
transplantation of EPCs and osteogenic stem cells has been widely accepted in vascularized
bone regeneration due to their respective angiogenic or osteogenic potentials reported in
different studies [92–94]. Cells harvested from bone marrow aspirates possess osteogenic
ability and can also be induced to form tubelike structures and ECs. Studies have shown
that EPCs or MSCs can secrete bone morphogenetic protein–2 (BMP-2), a potent inducer
of osteogenesis [95]. In turn, MSCs have secreted angiogenic cytokine to promote the
migration of EPCs via PDGF-BB and vessel formation [55,56]. Except for different cells,
growth factors are also dually applied within the same system. PDGF-BB co-expression with
VEGF can prevent the VEGF-related aberrant angiogenesis. Within the system, the VEGF–
VEGFR2 induces vascular sprouting and the PDGF-BB–PDGFRβ system can synchronize
with DLL4–Notch signaling to prevent excessive vascular sprouting at the same time,
preventing imbalanced expression or activation of each of these signaling components and
vascular dysfunctions [96].

3.4. Biological Requirements for Biomimetic Scaffolds Used for Craniofacial Bone Vascularization

Scaffold materials used in the field of craniofacial regeneration serve a critical role
beyond simply providing a structural framework; they must also support vascular regener-
ation in addition to promoting osteo-induction and osteo-conduction (Table 2).
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Table 2. In vivo biomaterial scaffold research about vascularization and craniofacial bone regeneration
during the last 5 years.

Author and
Year

Biomaterial
Scaffolds

Bioactive
Agent

Implanted
Cells

Animal
Model

Observation
Period Osteogenesis Angiogenesis

Yaxi Sun,
Dent Mater,

2023 [97]

Calcium
phosphate

cement
scaffold
(CPC)

Metformin hPDLSCs
Critical-sized
defect of rat

cranium
12 weeks 9 folds by

control
3 folds by

control

Ruochen Luo,
Biomed
Mater,

2021 [98]

Poly(lactide-
co-glycolide)
microspheres

Mg2+ and
La3+ ---

Critical-sized
defect of rat

cranium
8 weeks Enhanced Enhanced

Nurul
Aisyah Rizky

Putranti
Cells,

2022 [99]

Carbonate
hydroxyap-
atite (CAP)
granules

BMP-2 SHED

Critical-sized
defect of

immunodefi-
cient mice
cranium

12 weeks Enhanced Enhanced

Kun Liu,
Regen

Biomater,
2020 [100]

Mineralized
collagen

BMP-2 and
VEGF ---

Mandibular
defects of

rabbits
12 weeks Enhanced Enhanced

[101]
GM/Ac-
CD/rGO
hydrogel

--- ---

Critical-sized
defect of rat

and mice
cranium

8 weeks Enhanced
Promotes

type H vessel
formation

Omar Omar,
Proc Natl

Acad Sci U S
A, 2020 [102]

Bioceramic
(biocer)

implants
--- --- Skull defect

of ovine 12 months Enhanced Enhanced

Yaohui Tang,
Theranostics,

2020 [103]

Injectable
gelatin-based

µRB
hydrogel

BMP-2 ASC

Critical-sized
defect of

immunodefi-
cient mice
cranium

8 weeks Enhanced ---

Yuanjia He,
Stem Cell Res

Ther,
2020 [104]

HA/Col
scaffold --- EPCs and

ASC

Critical-sized
defect of rat

cranium
8 weeks Enhanced Enhanced

Maxime M
Wang,

Sci Rep,
2019 [105]

3D-printed
bioceramic
scaffolds

Dipyridamole ---

Unilateral
alveolar
defect of
rabbits

24 weeks Enhanced ---

Weibo Zhang,
Front Bioeng
Biotechnol,
2020 [106]

E1001(1K)/β-
TCP scaffolds

Tyrosine-
derived

polycarbon-
ate

hDPSCs and
HUVECs

Mandible
defect of
rabbits

3 months Enhanced Enhanced

Marley J
Dewey, Bio-
fabrication,
2021 [107]

Mineralized
colla-

gen/PCL
composites

--- ---

Critical-sized
defect of
porcine
ramus

10 months Enhanced Enhanced
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Table 2. Cont.

Author and
Year

Biomaterial
Scaffolds

Bioactive
Agent

Implanted
Cells

Animal
Model

Observation
Period Osteogenesis Angiogenesis

Qian-Qian
Wan,

ACS Appl
Mater

Interfaces,
2022 [108]

Eggshell
membranes Cerium oxide ---

Critical-sized
defect of

mice cranium
8 weeks Enhanced Enhanced

Yue Kang,
Biofabrica-

tion,
2023 [109]

Hybrid
scaffolds

Exos isolated
from hASC ---

Critical-sized
defect of

immunodefi-
cient mice
cranium

10 weeks Enhanced Enhanced

Zeqing Zhao,
J Dent,

2023 [110]

Calcium
phosphate

cement (CPC)
scaffolds

Human
platelet lysate

hPDLSCs
and hUVECs

Critical-sized
defect of

immunodefi-
cient mice
cranium

12 weeks 4 folds by
control

7.9 folds by
control

H Autefage,
Biomaterials,

2019 [111]

Bioactive
glass-based

scaffold
Strontium ---

Femoral
condyle
defect of

ovine

12 weeks Enhanced ---

Tania
Saskianti,

Clin Cosmet
Investig Dent,

2022 [112]

Hydroxyapatite --- SHED Mandibular
defect of rats

Downregula-
tion of
MMP-8

Upregulation
VEGF

expressions

W Ma,
J Dent Res,
2021 [113]

Col scaffold Galanin --- Periodontitis-
treated mice 6 weeks Enhanced ---

Tsuyoshi
Kurobane,

Acta
Biomater,
2019 [114]

Octacalcium
phos-

phate/gelatin
composite
(OCP/Gel)

--- ---

Critical-sized
defect of

immunodefi-
cient mice
cranium

4 weeks --- Enhanced

Mirali
Pandya, Int J
Mol Sci, 2021

[115]

Collagen/
erythropoietin

(EPO)
scaffold

EPO

First
maxillary

molars
extracted rats

8 weeks Enhanced enhanced

TaichiTenkumo,
Regen Ther,
2023 [116]

A triple-
functionalized
paste of CAP

DNA and
siRNA --- Femoral head

defect of rats 21 days Enhanced ---

Hyeree Park,
Mater Sci

Eng C Mater
Biol Appl,
2021 [117]

DC-S53P4
bioactive

glass hybrid
gels

--- DPSCs

Critical-sized
defect of

immunodefi-
cient mice
cranium

8 weeks Enhanced Enhanced

3.4.1. Surface Morphology

The surface characters of scaffolds are closely related to the cell adhesion, proliferation,
and function of blood vessel-forming related cells, which could eventually affect the forma-
tion of the functional vessel network. Surface modification includes chemical modification
and physical modification, and methods of surface modification usually include immer-
sion [118], coating [119–123], and plasma treatment [124,125]. Porous polyetheretherketone
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(PEEK) scaffolds are modified via polydopamine and Mg2+ physically deposited on the
surface. After surface modification, the hydrophilicity of PEEK scaffolds is significantly
enhanced, and bioactive Mg2+ could be released, contributing to the reinforced formation
of osteogenic H type vessels in a rabbit femoral condyle model [15].

Except for the physical modifications, chemical modifications of the scaffold sur-
face can also facilitate the adhesion and biological behaviors of blood vessel-forming
related cells. Among various studies, several amino acid sequences, such as Arg–Gly–Asp
(RGD) [126,127], have triggered intensive studies for the enhancement of EC adhesion by
the establishment of a ligand-modified surface and established capillary structure. Apart
from the well-known amino acids, Hao et al. successfully identified the αvβ3 integrin
ligand LXW7 with the help of unnatural amino acids [128]. The following research found
that LXW7 showed a stronger binding affinity to primary EPCs/ECs. In addition, an
LXW7-treated surface exhibited proliferation, migration, and tubule formation through
increased VEGFR2 phosphorylation [129].

3.4.2. Porous Characters

A porous scaffold is the prerequisite of cell ingrowth, oxygen supply, and nutrient
transport. Studies have illustrated that different properties of scaffold pores can affect cell
type and behavior. The suggested range of diameters is considered from 200 to 350 µm for
bone regeneration [130], while the favored pore size for revascularization is larger than
400 µm [7]. Moreover, large pore sizes have been reported to be beneficial for cell viability
but harmful for cell seeding. The above contradiction reminds us that a monomodal
scaffold is out of date. A scaffold with multiple pore size is urgently needed in order to
fulfill the best osteogenesis and angiogenesis at the same time.

3.4.3. Angiogenic GF Release Property

Sufficient oxygen, enough nutrients, and a large amount of different types of regenera-
tive cells can be supplied to the defect area, allowing the inflammation factors, metabolic
wastes, and necrotic tissue to be removed in time in the presence of the dense vascular
network. Angiogenic growth factors, including VEGF, have recently attracted much more
attention [131]. However, the narrow range of therapeutic windows of VEGF limits clinical
promotion. It has been reported that the concentrations of VEGF determine the fate of the
tissue regeneration process. Higher concentrations of VEGF are shown to result in unfa-
vorable effects, such as increased permeability and being prone to create malformed and
non-functional blood vessels [131,132]. Furthermore, a large proportion of VEGF degraded
rapidly because of the short half-life before coming into effect when being released into the
biological milieu [131]. Therefore, it is necessary to achieve a spatial and temporal release
of VEGF to prolong its activity. Wernike et al. reported that, when VEGF was introduced
in the cranial defects of mice and was slowly released via implanted biomimetic BCP
ceramics, more dense vessels and more regular vessel morphology could be visualized with
intravital microscopy compared with burst-released VEGF [132]. Burger et al. also reported
that over-expression of VEGF was associated with paradoxical bone loss. They controlled
the distribution of the VEGF dose with factor-decorated matrices and observed both im-
proved vascularization and bone formation in orthotopic critical-size defects compared
with burst-released VEGF [133].

3.5. Scaffold-Free Technique

Although biomimetic scaffolds provide the supportive structures for cell ingrowth,
ECM depositions, and tissue regeneration, they still bear a non-negligible drawback, i.e., in-
complete biodegradability [134]. This may induce chronic inflammation and hinder the
complete regeneration of bone defect with neotissue. Under this circumstance, scaffold-free
tissue engineering, also referred to as cell sheet engineering (CSE), has been developed in re-
cent years. In scaffold-free tissue engineering, cells are directly assembled or aggregated to
form a tissue-like structure. This approach relies on the temperature-responsive cell culture
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technology and inherent ability of cells to self-organize and interact with one another to
create functional tissue structures (Figure 5). Cells are cultured on temperature-responsive
culture dishes or surfaces coated with a temperature-responsive polymer, such as poly(N-
isopropylacrylamide) (PIPAAm), to form monolayer sheets. These polymers change their
properties with temperature, allowing cells to adhere to the surface at 32 ◦C and detach
as a sheet at 37 ◦C. Thus, the cell–cell junctions can be preserved, avoiding ECM damage
caused by proteolytic enzymes [134]. Since the thickness limitation of 3D constructs without
vascular networks is no more than 80µm [135], co-culture cell sheet approaches have been
proposed. Human umbilical vein endothelial cells have been reported to be co-cultured
within human myoblast sheets to form capillary-like structures within the construct. Then,
increased neovascularization and graft survival after transplantation were obtained [136].
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4. Conclusions and Further Expectations

Vascularization in craniofacial bone tissue engineering is a critical aspect of regenerat-
ing bone tissue in the craniofacial region. Craniofacial bone defects can result from various
causes, including trauma, congenital anomalies, or surgical resection due to disease. To suc-
cessfully regenerate bone in this region, ensuring the development of a functional vascular
network is essential. This review paper therefore focused on the use of angiogenic growth
factors, cell-based vascularization strategies, and surface morphology, porous characters,
and the angiogenic release property of scaffolds.

Although experiments on neovascularization have shown encouraging results, how
to establish the functional neovascular vessel with fast and mature anastomosis between
neo and host vasculature and how to increase the osteogenic H type vessel ratio remains
challenging. Further studies are required to address these issues and explore angiogenic
mechanisms in craniofacial bone reconstruction.
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