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Abstract: This study compared the fatigue resistance and elemental composition of two blue heat-
treated nickel–titanium (NiTi) files used in root canal preparation as follows: Tia Tornado Blue (TTB)
and Race Evo (RE) file systems. For cyclic fatigue testing, the two systems were tested where each file
was rotated inside an artificial metal canal submerged in either sodium hypochlorite or saline solution
until fracture. Time to fracture was recorded. For torsional fatigue testing, the file tip was secured
while the file was allowed to rotate at a fixed rate until fracture. Torque at failure was recorded.
The two experiments were performed at simulated body temperature and the length of fractured
segments was measured. Statistical analysis was carried out with a significance level (p-value) set at
5%. The mean cycles to fracture for RE were superior to that of TTB irrespective of the solution used
(p < 0.05). TTB’s cyclic fatigue resistance decreased in NaOCl (p < 0.0001). RE demonstrated lower
torque at failure (p = 0.002). All files were fractured at comparable lengths (p = 0.218). Although RE
is considered more resistant to cyclic fatigue, it showed inferior torsional resistance compared with
TTB. The NaOCl negatively affected the TTB’s cyclic fatigue resistance.

Keywords: blue wire; corrosion; cyclic fatigue; nickel titanium; sodium hypochlorite; torsional resistance

1. Introduction

Quality root canal preparation is essential to achieving a successful root canal treat-
ment [1]. This involves shaping and disinfecting the root canal with file instruments and
irrigating solutions, respectively. In the past, only stainless-steel files were available to
shape root canals [2]. This limited the ability of the clinician to safely shape complex
curvatures without creating deviations, ledges, and blockages that compromise treatment
success. Nickel–titanium (NiTi) files have heralded a new era in root canal treatment. They
allow for faster and more predictable preparation of the canal system. This is made possible
by virtue of the unique metallurgical properties of the NiTi alloy, such as super-elasticity
and shape memory [2]. However, unexpected NiTi file fractures due to internal stress that
might take place during canal preparation are a significant concern. There are two main
fracture scenarios. The first scenario is cyclic fatigue, which is created by the repeated
compressive and tensile stresses caused while rotating the file inside a curved canal. The
second one is torsional fatigue, where the file tip gets stuck in the canal while the shank
keeps rotating [3]. Both fatigue mechanisms induce stresses, which, in turn, reduce the file
hardness and modulus of elasticity, as evidenced by nanoindentation studies [4,5].
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The first generation of NiTi files, termed conventional NiTi, exhibits an austenite
structure at 37 ◦C, as their austenite finish temperature is below body temperature. The
austenite crystal lattice transforms into martensite under the stress induced by inserting
the file into the curved root canal [6]. Successively, manufacturers have employed new
manufacturing processes and different raw alloy compositions to improve the file’s re-
sistance and performance. By altering the temperatures at which the crystalline-phase
transformation occurs, they were able to obtain NiTi alloys with more favorable mechanical
properties at body temperature, thereby improving the reliability of NiTi files. Through
heat treatment, the NiTi finish temperature for austenite transformation can be elevated.
This alteration leads to an alloy characterized by a higher proportion of martensitic and
R-phase components at body temperature [7,8]. Consequently, these files demonstrate
enhanced flexibility and fatigue resistance [9–11].

Certain manufacturers have developed a thermos-mechanical manufacturing process
that creates blue NiTi. Its distinct blue color is due to a protective oxide surface layer that is
retained after machining and thermal treatment. These files feature a higher proportion of
stable martensite, resulting in a more flexible NiTi alloy [12]. This enhancement has led to
improved performance compared with conventional NiTi files [13,14]. Recently, two new
blue NiTi file systems have been introduced. Race Evo (RE) (FKG Dentaire SA, La Chaux de
Fonds, Switzerland) is designed to be operated at a relatively high rotation speed (800 rpm).
It has a triangular cross-section with alternating cutting edges that prevent file threading
into the canal. These files have shown improved cyclic fatigue resistance that is not affected
by autoclave sterilization [15,16]. Tia Tornado Blue (TTB) (Tiadent, Houston, TX, USA)
is another novel blue rotary file system made with heat-treated technology. While the
manufacturers claim that it has superior torque strength and resistance to cyclic fatigue [17],
a previous study showed no improvement in cyclic fatigue resistance in comparison with
other blue NiTi files [18]. It is essential to partner mechanical root canal preparation with
chemical irrigation to help lubricate files, flush out debris, and most crucially, achieve
the disinfection of the root canal system and dissolve pulp tissues without damaging
periapical tissues [1]. To date, sodium hypochlorite (NaOCl) remains the intracanal irrigant
of choice in endodontics [19]. It is employed in concentrations ranging from 0.5% to 5.25%
as an affordable antibacterial agent and lubricant. NaOCl works by breaking proteins into
amino acids, while free chlorine dissolves both living and dead tissues [20]. Although NiTi
files exhibit excellent resistance to corrosion, they have been prone to corrosive defects
when immersed in NaOCl [21,22]. The corrosive sites are suspected of acting as stress
accumulation points that lead to crack propagation, jeopardizing the NiTi files’ mechanical
properties [22,23]. Previous studies evaluated the effects of NaOCl on the NiTi files and
reported that NaOCl at specific concentrations and temperatures influenced the cyclic
fatigue resistance of certain NiTi files [24–26].

Limited articles are available on the cyclic fatigue resistance of blue NiTi files [18,27].
However, no studies have examined both cyclic fatigue and torsional resistance of blue NiTi
files at body temperature, let alone their performance under conditions simulating clinical
situations such as irrigation with NaOCl. Understanding blue NiTi file properties can
influence dentists’ decisions in the clinic and shed light on their effectiveness in complex
root canal systems, especially given the absence of a standardized benchmark for NiTi
instrument quality before market introduction [28]. Therefore, the purpose of this study was
to compare the cyclic fatigue and torsional resistance of RE and TTB files under simulated
clinical conditions and explore their elemental composition. The null hypothesis was that
there is no difference between the tested NiTi file systems in terms of cyclic fatigue and
torsional failure.

2. Materials and Methods

Sample size calculation was performed using G*Power software version 3.1.9.6
(Heinrich-Heine-Universität, Düsseldorf, Germany), estimating the power at 0.90 and
a probability of falsely rejecting the null hypothesis Type 1 error α = 0.05. The estimated
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sample size was 15 in each group. A total of ninety brand-new files were used in this
study (45 TTB and 45 RE files). All files had a tip size of 30 (0.30 mm) with a 0.04 mm
constant taper and a 25 mm length. The files were inspected for flaws or defects under
13.6× magnification (A6 series Global surgical corporation; Saint Louis, MO, USA) without
any need for exclusion. The files were randomly divided into four equal groups (n = 15 per
group) based on the NiTi file and the type of irrigating solution used.

2.1. Cyclic Fatigue Testing

Thirty files from each NiTi system were used. Each file was inserted into an artificial
canal that was milled in a stainless-steel block in such a way that 19 mm of the file from its
tip was inside the canal [29]. The artificial canal had a 60◦ angle of curvature with a 5 mm
radius. Its internal dimensions were larger than the NiTi files by 0.1 mm. The block was
stabilized in a container filled with either 5.25% NaOCl or saline solution. A glass slab was
placed above the artificial canal to prevent spillage and keep track of the file’s rotations
until it fractured. To simulate intracanal temperature, the solution’s temperature was set
at 35 ± 1 ◦C assessed by a digital thermometer. The files were operated using an electric
endodontic motor (X-Smart Plus; Dentsply Sirona; Charlotte, NC, USA) according to the
manufacturers’ recommendations regarding speed and torque. After the file was inserted
into the metal canal, the motor was operated at a speed of 350 rotations per minute (rpm)
with 2 N·cm torque for TTB files and 800 rpm with 1.5 N·cm torque for RE until fracture
occurred (Figure 1). The time to fracture, audibly or visually recognized, was recorded, and
subsequently, the number of cycles to fracture was calculated. Furthermore, the length of
the fractured segment was measured carefully using a digital caliper.
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Figure 1. (A) Photo of the experimental set-up for testing the NiTi files’ cyclic fatigue showing: (1) the
Endodontic Electric motor; (2) the handpiece fixed on a stand (3); and (4) the stainless-steel block
with artificial canal. (B) RE files and (C) TTB files. (D) Files placed in artificial canals immersed in
the irrigant.

2.2. Torsional Resistance Test

Fifteen files from each NiTi system were used. The apical part (5 mm) of the file
was firmly secured using a stainless-steel pen vise. A large vise was used to mount
the X-Smart Plus handpiece so that it could keep the file upright. The pen vise, along
with the file, was securely mounted on the top of a torque gauge device (TT01; Mark-
10 Corporation, Long Island, NY, USA). The file was rotated clockwise at a speed of
40 rpm until a fracture occurred by applying uniform torsional stress. The experiment was
conducted after zeroing the gauge at a simulated intracanal temperature of 35 ± 1 ◦C as
confirmed by a thermocouple. The torque-at-failure values were noted. The length of the
fractured segment was also measured carefully.
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2.3. Scanning Electron Microscope

Two fractured files from each group in the two tests were cleaned with absolute alcohol
in an ultrasonic bath. The topographical characteristics of the fractured surfaces were then
examined using a scanning electron microscope (SEM; JSM-7001F, JEOL, Tokyo, Japan).
Photomicrographs of the fractured surfaces were taken at ×230 and ×1000 magnifications.

2.4. Energy-Dispersive X-ray Spectroscopy Analysis (EDX)

Three RE and TTB underwent EDX analysis using a JSM-IT500HR EDX detector (STD-
PC80, JEOL, Tokyo, Japan). The following exposure parameters were used: acceleration
voltage of 15 kV at a magnification of ×1000. The samples were coated with platinum using
an auto-fine coater (JEC-3000FC, Jeol, Japan) for 80 s at 10 µA. The elemental composition of
the files was analyzed, and the atomic weight percentages were measured at three different
locations on the file.

2.5. Statistical Analysis

The data were analyzed using SPSS software version 22 (SPSS Inc., Chicago, IL, USA)
at a 5% significance level. The data were checked using the Shapiro–Wilk test. The cyclic
fatigue results were not normally distributed. Thus, the Kruskal–Wallis test followed by
the post hoc Mann–Whitney test was conducted. For the torsional resistance and the length
of separated fragments, independent t-test and one-way ANOVA were used.

3. Results

Table 1 shows the cyclic fatigue results for the tested NiTi systems in both solutions. RE
files showed superior resistance with an increased number of cycles to fracture compared
with TTB, irrespective of the solution type (p < 0.0001). However, TTB’s resistance to cyclic
fatigue was negatively influenced by immersion in NaOCl (p < 0.0001), unlike RE (p = 0.09).
The length of fractured segments due to cyclic fatigue was found to be comparable in all
groups, ranging from 4.29 to 4.62 mm (p = 0.30).

Table 1. Mean and standard deviation of the number of cycles to fracture and length of separated
fragments for both TTB and RE files rotating in different irrigating solutions.

NiTi System Solution Media Cycles to Fracture Fragment Length
(mm)

Tiadent Tornado Blue
(TTB)

Normal saline (n = 15) 3514 ± 740.31 a 4.29 ± 0.69
NaOCl (n = 15) 2564.72 ± 421.15 b 4.54 ± 0.52

Race Evo
(RE)

Normal saline (n = 15) 6651.56 ± 1402.45 c 4.56 ± 0.34
NaOCl (n = 15) 7584 ± 1120.0 c 4.62 ± 0.38

p-value 0.00 0.30
a, b, c Different lower-case letters represent statistically significant differences between groups.

In terms of torsional resistance, RE demonstrated significantly lower torque at failure
(1.03 ± 0.10 N·cm) compared with TTB (1.21 ± 0.14 N·cm) (p = 0.002). However, there was
no difference in the length of fractured segments, ranging from 5.05 and 5.15 mm (p = 0.218).
The complete data set for the cyclic and torsional fatigue tests can be found in Tables S1
and S2 as a Supplementary Material.

SEM photomicrographs of fractured surfaces due to cyclic fatigue and torsional failure
can be seen in Figures 2 and 3, respectively.

The EDX analysis revealed variations in the atomic weight percentages of nickel (Ni)
and titanium (Ti) between TTB and RE files. Furthermore, aluminum (Al) and zirconium
(Zr) were detected exclusively in RE files. Silicone (Si), on the other hand, was detected in
both TTB and RE files (Table 2) (Figure 4).
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Table 2. The mean atomic weight percentages (%) of elements revealed by the EDX analysis of TTB
and RE files.

Spectrum Ni Ti O C Si Al Zr

TTB 36.82 37.64 24.76667 16.91 0.75 - -
RE 27.66714 29.31286 25.55429 20.554 0.90 0.88 0.36
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4. Discussion

In this study, two blue NiTi file systems were evaluated in terms of cyclic fatigue and
torsional resistance at simulated body temperatures. Compared with TTB, RE files showed
superior resistance to cyclic fatigue but lower resistance to torsional stress. Thus, the null
hypothesis was rejected.

Although the tested systems have similar dimensions and cross-sections, the RE file
has a lower metal mass volume due to its alternating file blade design. It is known that
the file’s cross-section has an influence on cyclic fatigue resistance [30]. Furthermore,
previous studies compared RE with the conventional Race file and reported that the blue
technology enhanced the cyclic fatigue resistance of RE [15,16]. On the other hand, a study
comparing RE to the R-motion reciprocating file found that the latter required more time
to fracture, possibly due to motion kinematics [16]. The blue technology in RE allows for
phase transition from martensite to austenite to occur at temperatures close to intracanal
temperature (28 to 35 ◦C) [16]. Moreover, the chemical composition of the employed NiTi
wire and the heat manufacturing procedures they undergo might cause these differences,
which are also seen in other heat-treated NiTi files with identical geometric designs, such
as ProTaper Gold and EdgeTaper Platinum [11,31].

The cyclic fatigue resistance was tested in two solutions (saline or NaOCl). Although
the file was in short contact with the solution, there was a significant reduction in the
number of cycles to fracture only TTB in NaOCl. NaOCl is known to develop corrosive
zones on the surface [2]. RE was not affected due to the presence of the blue titanium oxide
layer, which is known to improve resistance to wear and decrease surface roughness with
autoclave sterilization [13,15,32]. The negative effect of NaOCl on cyclic fatigue resistance
was noticed in some NiTi systems, such as ProTaper Gold, EdgeTaper Platinum, and D-
Race [2,33,34], but not in others (Wave One, Wave One Gold, and HyFlex EDM) [26,35,36].
The contradictory results in these studies may be attributed to differences in the methodol-
ogy and the alloy properties, design, and kinematics of the tested files. The methodology
used in this study places the tested files in an artificial canal filled with the irrigating solu-
tion for a short duration. More investigations are warranted to study the surface properties
of heat-treated files such as RE and their performance under different solutions.

Although RE improved cyclic fatigue, it was unable to show better torsional resistance
than TTB. This is in accordance with several previous findings where files with superior
resistance to cyclic fatigue were found to have less resistance to torsional stresses due to
their heat treatment [37,38]. However, both files in this study were heat-treated. So, the
results could be related to the file design and chemical composition. Torsional resistance
increases with decreasing pitch (increasing number of threads) as well as a larger cross-
sectional area [31,39]. However, the two NiTi files used in the study had a similar tip
size, taper, and triangular cross-section design. Unlike TTB, RE carries the Race unique
alternating cutting-edge design, which means fewer threads to reduce the screwing effect
and allow for better control of the file’s progression in the canal [40]. Although the mean
torque required to fracture RE in this study (1.03 N·cm) is less than that reported by a
previous study (1.26 N·cm) [16], this may be due to different methodologies in running
torsional testing. Both studies reported a value lower than what has been recommended by
the manufacturer (1.5 N·cm). The same applies to TTB.

The files fractured at relatively similar points (4–5 mm) from the tip, which is close
to the point of maximum flexure or torsion. This shows that all files were subjected to
maximum stress points in that location, which is in accordance with previous studies [2,25].

The EDX analysis of the files revealed a substantial presence of alloying elements that
affect phase transformation temperature. This observation affirms a more martensitic nature
associated with increased flexibility and resistance to fracture. Several of these alloying
elements, such as oxygen (O), carbon (C), and aluminum (Al), have been documented in
prior studies on other shape memory NiTi files [41,42].

Interestingly, silicon (Si) was identified in both files. Si acts as an alloying element that
elevates the phase transformation temperature, contributing to martensite phase stability
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at room temperature and providing a cost-effective alternative to more expensive alloying
materials [43,44].

Additionally, the RE files exhibited the presence of zirconium (Zr). Previous studies
have indicated that NiTi surface treatments involving Zr can result in smoother surfaces
and improved resistance to metal fatigue [45,46]. The presence of Al and Zr in RE files may
also explain why their cyclic fatigue resistance remained unaffected by NaOCl [47].

Although the testing methods used in this study provided reliable, standardized
conditions that allow for different mechanical properties to be tested, their main limitation
is that they do not fully replicate the clinical situation. The cyclic fatigue and torsional
testing used lacked the dynamic movement the file is subjected to during canal preparation.
In the clinical setting, file fracture occurs as a result of a complex combination of flexural
and torsional stress that could not be replicated in this study. Instead, each of these stresses
was examined separately. Therefore, further studies would be necessary to correlate the
data from this study and the clinical performance of the files.

Previous studies suggest that files with higher torsional resistance are more suitable
for narrow and/or calcified root canals [37,48,49]. So, within the limitations of this study,
TTB may be safer to use when preparing narrow or calcified canals, while RE appears better
suited for instrumenting severely curved canals that require more flexibility.

Another point that would have benefited this study is performing differential scanning
calorimetry analysis to help describe the crystallographic transformation the heat-treated
alloy undergoes at root canal temperature. This could have provided a better explanation
of the mechanical features of the tested files [28,31].

The SEM photomicrographs show typical images of fractured topographies due to
torsional and cyclic fatigue failure in NiTi files [15,25,31]. The torsional fracture exhibits
shear-induced concentric marks at its center, with the dimpling characteristic of brittle
fractures, while cyclic fatigue fracture is characterized by linear striations typical of flex-
ural fatigue radiating from an initiation point along with dimpling patterns suggesting
ductile fracture.

The fatigue mechanism of NiTi files leads to reduced deflecting load [50], which is
considered a deformation-controlled, low-cycle fatigue [51], wherein slow crack propaga-
tion has an impact on the file’s fatigue life. The fatigue crack growth rate in NiTi alloy has
been found to be significantly greater than in other metals of similar strength [52]. This
might be due to their machining-induced irregular surface characteristics, which act as
stress concentrators [53]. New surface modification technology has shown the potential to
enhance the fatigue life of additively manufactured titanium alloys. Laser shock peening
utilizes laser-induced plasma shock waves to refine grains and introduce compressive
residual stress into the surface layer of the sample. This technology was found to reduce
crack growth rates [54]. Another study has shown to improve the fatigue resistance of NiTi
wire by increased grain size coupled with stress-control mechanical training [55].

There are certain limitations. In this study, cyclic fatigue was tested under static condi-
tions. However, testing the files under dynamic cyclic fatigue would more closely mimic the
clinical practice where the file is axially moved up and down during root canal treatment.

5. Conclusion

This in vitro study was able to show the characterization of blue wire NiTi files that
were exposed to cyclic fatigue and torsional fatigue failures. RE is more resistant to cyclic
fatigue compared with TTB. While sodium hypochlorite negatively affects the TTB file’s
resistance to cyclic fatigue, the RE file remains unaffected. On the other hand, the TTB files
have superior torsional fatigue resistance compared to the RE files.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings14030361/s1, Table S1: Data set for cyclic fatigue testing;
Table S2: Data set for torsional fatigue testing.

https://www.mdpi.com/article/10.3390/coatings14030361/s1
https://www.mdpi.com/article/10.3390/coatings14030361/s1
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