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Abstract: CrWN/MoN nano-multilayer coatings were deposited in pure N2 by multi-arc ion plating
using CrW and Mo targets, with the cathode co-controlled by a permanent magnet combined with an
electromagnet. The effects of the thickness modulation period on the microstructure and mechanical
and tribological performance were systematically analyzed by grazing-incident X-ray diffraction
(GIXRD), transmission electron microscopy (TEM), Nanoindentation, scanning electron microscope
(SEM) and profilometry using a Talysurf profilometer. The local coherent interfaces and nanoscale
modulation period were confirmed by TEM, while the coatings were confirmed to be composed of
fcc-CrWN and hexagonal δ-MoN by GIXRD. With the increase in the modulation period, the hardness
of the CrWN/MoN nano-multilayer coatings decreased, and the values of the H/E ratio and friction
coefficient showed the same variation trend. At an 8.0 nm modulation period, the CrWN/MoN
nano-multilayer coating showed the maximum hardness (30.2 GPa), the lowest H/E value (0.082) and
an H3/E*2 value of 0.16. With the decrease in the modulation period, the average friction coefficient
of the CrWN/MoN nano-multilayer coatings gradually decreased from 0.45 to 0.29, while the wear
rate decreased from 4.2 × 10−7 mm3/Nm to 3.3 × 10−7 mm3/Nm.

Keywords: CrWN/MoN nano-multilayer coatings; multi-arc ion plating; thickness modulation
period; mechanical properties; tribological properties

1. Introduction

Transition metal nitrides, exhibiting high hardness and wear, corrosion and oxidation
resistance, have been widely used for surface strengthening in the past decades. Among
them, CrN coatings are widely used in wear components, molding dies and cutting tools
due to their low internal stress. However, it has some limitations that hardly overcomes
modern challenges. For example, the relatively low hardness and high friction coefficient
can lead to the premature failure of CrN coatings. Yao et al. [1] found that the hardness
and wear resistance of CrN coatings can be improved by adding W. Compared with
CrN coatings, the Knoop hardness of CrWN was increased by HK 1000, while the wear
resistance was improved by 85%. Jasempoor et al. [2] studied the mechanical, tribological
and electrochemical behaviors of CrN monolayer and Cr/CrN multilayer coatings. The
hardness of CrN monolayer and Cr/CrN multilayer coatings was 21.5 and 23.3 GPa, while
the friction coefficients were 0.61 and 0.46, respectively. The corrosion resistance of Cr/CrN
multilayer coatings was higher than that of CrN single-layer coatings, which could be
ascribed to a multilayer architecture. These studies show that alloying and multilayer
structuring can improve the properties of CrN coatings.

Alloying is the addition of new elements to an existing coating to meet the require-
ments of specific applications. In a review, Hauert [3] explained that a new single-phase
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coating or a biphasic coating can be produced by adding new elements to existing coatings.
For example, Ding [4] and Endrino [5] tried to improve the hardness, oxidation resistance
and wear resistance of CrN coatings by adding Al, while Lin et al. [6] added Si to CrN
coatings. They found that the hardness and oxidation resistance could be improved when
the CrAlN coatings kept the cubic phase structure [4,5]. The incorporation of smaller Al
atoms into the lattice of CrN leads to local tensile stress, which contributes to the higher
hardness. Because of the formation of oxides and oxynitrides on the surfaces of CrAlN
coatings, the oxidation resistance of AlCrN coatings is increased [5]. Lin et al. [6] prepared
nanocrystalline–amorphous composite biphasic coatings of nc-CrN/a-Si3N4 by adding
metalloid Si to CrN. The improved hardness, wear resistance and corrosion resistance
are mainly attributed to the nanocomposite structure. The strengthened interfaces play a
critical role [6].

A multilayer architecture consisting of two or more different material layers can com-
bine the advantages of the constituent layers [7,8]. Owing to the fact that the propagation
of cracks and dislocations can be blocked or stopped at the interfaces or in the ductile
material layer, multilayer coatings show better performance [9,10]. Especially the nanoscale
multilayered structure coatings, combining Hall–Petch strengthening [11], the superlattice
effect [12] and supermodulus effects [13], the properties of the multilayer coatings can be
additionally improved [14]. Helmersson et al. [15] found that the maximum hardness of
TiN/VN nano-multilayer coatings is larger than 50 GPa when the modulation period (Λ) is
in the range of 5–10 nm. Kim et al. [16] demonstrated that the interface structure plays a key
role in the hardness enhancement of TiN/VN nano-multilayer coatings. No supermodulus
effect is shown in the TiN/VN nano-multilayer coatings, and the shear moduli of the TiN
and VN layers are different [16].

The aim of alloying and multilayer coatings is to create new properties from the combina-
tion of suitable materials and microstructures. From the research of Hones [17] and Yau [18],
it can be seen that W-doped CrN films with a blend of solution strengthening and changes
in chemical bonding exhibit excellent hardness, adhesion and mechanical properties that help
resist wear damage. Lin et al. [19] studied the mechanical properties and oxidation resistance of
(Cr,W) N coatings and demonstrated that CrWN coatings with low tungsten content exhibited
excellent hardness and oxidation resistance. Tungsten is considered to be one of the most effec-
tive alloying elements [19]. Researchers have reported that binary transition metal nitride Mo-N
coatings exhibit a low friction coefficient due to the formation of self-lubricating Magnéli phase
MoO3 [20–22]. As reported in the literature, Postolnyi et al. [23] designed multilayer CrN/MoN
coatings and concluded that the mechanical and tribological properties of CrN/MoN coatings
can be improved by a multilayer architecture, which benefits from the synergistic effect of
individual layer properties, as well as Hall–Petch strengthening and the superlattice effect.
Pogrebnjak et al. [24] found similar results in their study of CrN/MoN coatings. Thus, the syn-
ergy caused by both W-alloyed CrN and MoN layers can make nano-multilayered CrWN/MoN
coatings promising materials with enhanced mechanical and tribological performance.

In this paper, CrWN/MoN nano-multilayer coatings with different modulation peri-
ods (Λ) were prepared in pure N2 by cathodic arc ion plating using CrW and Mo targets,
with the cathode co-controlled by a permanent magnet and an electromagnet. The aim of
this investigation was to determine the effects of the nano-period Λ on the structure and
mechanical and tribological properties of CrWN/MoN nanocomposite coatings and obtain
good nano-multilayer CrWN/MoN coatings with the potential for industrial production.

2. Experimental Details

CrWN/MoN coatings with various modulation periods (Λ) were deposited on pol-
ished substrates of cemented carbide by arc ion plating using CrW and Mo targets. The
substrates were ultrasonically cleaned in acetone, alcohol and deionized water sequentially.
After drying in hot air, the substrates were clamped to the holder of a vacuum chamber. The
distance was 250 mm from the substrates to the cathodic source. The purity of Ar and N2
gases was 99.999%, and that of the Mo and CrW (95:5 at.%) targets was 99.6%. The coating
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includes the pure Mo metal layer, the MoN layer and the CrWN/MoN nano-multilayers.
The preparation parameters of CrWN/MoN coatings are shown in Table 1. The rotation
speed of the substrates was controlled between 0.5 rpm and 3 rpm, which makes it easier
to obtain much different Λ. The thickness ratio of the MoN and CrWN layers is around
2.5:1 for the nano-multilayer structure.

Table 1. Deposition parameters of the CrWN/MoN nano-multilayer coatings.

Deposition Parameter Values

Bias voltage/V −120
Target material CrW (95:5 at.%), Mo

Deposition pressure/Pa 1.0
Target current/A CrW (80), Mo (125)
Temperature/◦C 400

Reaction gas N2
Substrates rotation speeds/(rpm) 0.5, 1, 2, 3

Target substrate distance/mm 250
Deposition time/min 180

The crystal structures of the CrWN/MoN coatings were characterized by grazing-
incident X-ray diffraction (Smart Lab X, Rigaku, Japan). The surfaces and cross-sections of
the coatings were examined by field-emission scanning electron microscopy (Nova Nano
430, FEI, Hillsboro, OR, USA). The detailed microstructures were studied by high-resolution
transmission electron microscopy (HRTEM) using an Tecnai G2 F20 S-TWIN (FEI, Hillsboro,
OR, USA). The hardness and elastic moduli of the coatings were measured by an Agilent
NanoIndenter G200 hardness tester (CSM, Peuseux, Switzerland) under a load of 30 mN.
Six points were measured and averaged for each sample. The friction coefficients (COFs) of
the coatings were tested by UMT-Tribo lab friction tester (Bruker, Billerica, MA, USA) in
ambient air, with a temperature of 30 ◦C and a relative humidity (RH) of 80%; in order to
determine the wear rates of the CrWN/MoN coatings, a Si3N4 ball (6 mm in diameter) was
used as the mating material and a load of 15 N was applied on the ball. The sliding speed
of the friction pair was 0.04 m/s. The COF was recorded during the tests. The wear rate
(Wr) was calculated from the groove dimensions determined by a TALYSURF CLI 1000
Profiler (Taylor Hopson, Leicester, UK).

3. Results and Discussion

The XRD patterns of CrWN/MoN nano-multilayer coatings with different Λ (see the
TEM results) and the peak positions of monolayer fcc-CrWN and hexagonal δ-MoN coat-
ings are presented in Figure 1a, and the corresponding grain sizes of the multilayer and
monolayer coatings are shown in Figure 1b. The CrWN/MoN coatings show a bipha-
sic structure of fcc-CrWN and hexagonal δ-MoN. The diffraction peaks of CrWN/MoN
coatings locates between the fcc-CrWN and hexagonal δ-MoN. When Λ is 45 nm and
25 nm, one can see the diffraction peaks of fcc-CrWN and hexagonal δ-MoN. When Λ
decreases to 13 nm and 8 nm, the peaks of δ-MoN (202) and (222) disappear, as well as
those of fcc-CrWN (220) and (311), which coincides with the TEM ring analysis for the
same coating. As Λ decreases, the intensity of the diffraction peaks of the CrWN/MoN
nano-multilayer coatings gradually decreases, and the peak of CrWN/MoN coatings near
36.5◦ shifts from the (200) peak of monolayer δ-MoN at 35.8◦ to the peak (111) of monolayer
CrWN at 37◦, which indicates possible structural and stress evolution in the layers of the
coatings [25]. The crystallite size is estimated by the Debye–Scherrer formula [18]. The
crystallite size of CrWN monolayer coatings is about 11–12 nm, while the values of MoN
monolayer coatings are about 7–8 nm. With decreasing Λ, the grain size of CrWN/MoN
nano-multilayer coatings decreases from 4–5 nm to 1.5 nm, which is lower than the size
of monolayer CrWN and δ-MoN grains, as shown in Figure 1b. With decreasing Λ, the
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nano-multilayer structure shows broadened diffraction peaks, which means that the grains
of CrWN/MoN coatings are inhibited [26].
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Figure 1. XRD patterns (a) and grain sizes (b) of the CrWN/MoN nano-multilayer coatings with
different modulation periods and monolayer CrWN and δ-MoN coatings.

From the present experiment, one cannot see obvious differences in the surface mor-
phologies of the CrWN/MoN nano-multilayer coatings with the variation in Λ. Figure 2
shows the typical surface and cross-sectional SEM morphology of the CrWN/MoN nano-
multilayer coating with Λ = 13 nm. Macro-particles and pit holes are observed on the
surface of the coating, while a dense structure can be seen in the cross-sectional image.
The thickness of the samples is about 3.5 µm. Compared with nitride coatings prepared
by permanent-magnet arc ion plating [27–29], large particles are effectively inhibited on
CrWN/MoN nano-multilayer coatings prepared by permanent magnet and electromag-
netic co-controlled arc ion plating technology. The combination of the electromagnet and
permanent magnet can optimize the magnetic field on the surface of the cathode. The
optimized magnetic field can accelerate the arc motion and avoid overheating the cathode
spots, which are otherwise located in one position, which effectively inhibits the eruption
of large melt droplets [30,31]. The number of large particles on the coatings does not
increase, even with 125 A as the Mo target current. The melting point of Mo is 2468 ◦C. The
high melting point is one factor preventing the formation of droplets on the CrWN/MoN
nano-multilayer coatings [32]. Contrary to the Mo cathode, which is difficult to run stably
in conventional arc ion plating, the Mo target co-controlled by the permanent magnet and
electromagnet runs more stably.
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Figure 2. Surface (a) and cross-sectional (b) SEM images of the CrWN/MoN nano-multilayer coating
with Λ = 13 nm.

The TEM cross-sections and corresponding selection electron diffraction of CrWN/MoN
coatings are shown in Figure 3. No obvious penetrating columnar crystals can be seen in the
TEM micrographs. One sees clear nano-multilayered structures, with bright CrWN layers
alternating with dark δ-MoN layers. The calculated Λ values of the coatings are about 45 nm,
25 nm, 13 nm and 8 nm. The interface is fuzzy and non-smooth between the fcc-CrWN and
δ-MoN layers. For the CrWN/MoN coating with Λ = 45 nm, one thin black interlayer can be
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seen in the white CrWN layer. According to reference [33], the thin black layer is the δ-MoN
layer and is caused by the two-dimensional rotation of the sample holder. The nano-multilayer
structure of the coatings is obtained by adjusting the rotation speed of the substrates. Blend
of the lower rotation speed and higher Mo target current (125 A), the substrates rotated to
the front of the CrW target are coated by the Mo target at one certain time. With increasing
rotation speed, the interlayer becomes less obvious. This kind of mixing may be one reason
for the unstable properties of nano-layered coatings. For example, the superlattice effect is
easily lost if the layer constituents of the multilayer coating do not match [34]. Selected-area
electron diffraction (Figure 3 inset) confirms the existence of mixed fcc-CrWN and hexagonal
δ-MoN phases, which is consistent with the results of XRD. One of the diffraction rings of
all samples is observed to correspond to fcc-CrWN (111) or δ-MoN (200), a phenomenon
consistent with the XRD data, which show little difference in the lattice parameters of fcc-
CrWN (111) and δ-MoN (200). The other diffraction rings of the samples with 45 nm and
25 nm Λ are observed to correspond to fcc-CrWN (200) and (220) and δ-MoN (202), while
only fcc-CrWN (200) is observed for the samples with 13 nm and 8 nm Λ. The positions and
structures of the diffraction rings accord well with the XRD data. The smaller lattice difference
between fcc-CrWN (111) and δ-MoN (200) is more likely to enable coherent growth [14]. The
CrWN/MoN nano-multilayer exhibits the possibility of forming a coherent interface.
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(d) 8 nm.

To investigate the CrWN/MoN nano-multilayer coatings in more detail, a high-resolution
transmission electron micrograph (HRTEM) analysis was performed, as shown in Figure 4.
One sees the fuzzy interfaces of nano-multilayer coatings. With the variation in Λ, the interface
is clearly changed. Further detailed studies show that the CrWN/MoN nano-multilayer
coatings have coherent interfaces in a few regions. Figure 4a shows the HRTEM micrograph of
the CrWN/MoN coating with Λ = 45 nm. The rectangular region outlined in Figure 4a shows
that continuous lattice fringes run through the entire CrWN layer and extend into the δ-MoN
layers. One can see the epitaxial interface and edge dislocation between the CrWN and MoN
layers from the fast Fourier transformation (FFT) and inverse fast Fourier transformation (IFFT)
images in Figure 4a′,a′′. The minimization of the total energy of coherent strain energy and
interfacial energy is believed to be the driving force for the formation of coherent interfacial
energy. A coherent interface of a multilayer can be obtained when the coherent interface
energy is higher than the coherent strain energy [17,23]. Additionally, the dislocation at the
interfaces of the CrWN and MoN layers, as shown in Figure 4a′′, can reduce the coherent strain
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and improve the local stability of coherent interfaces. The thin MoN interlayer in the CrWN
layer is an overall epitaxial structure with CrWN, and the thickness of the thin MoN layer is
1.5 nm. In references [35,36], it was revealed that one material may act as a template and force a
thin enough layer of another material into its own crystallographic structure, such as TiN/AlN
superlattice coatings, where the crystal structure of AlN changes from the hexagonal type to
the TiN NaCl type for superlattice periods smaller than 3 nm. The HRTEM micrographs of
the CrWN/MoN coatings with 25 nm, 13 nm and 8 nm are shown in Figure 4b–d, where no
penetrating lattice fringe (as shown in Figure 4a) is observed in the interface. From the IFFT
images in Figure 4b′′,d′′, one can see the obvious localized coherent interfaces and an edge
dislocation between the CrWN and MoN layers. As shown in Figure 4c′′, the formation of
coherent interfaces is not observed in the CrWN/MoN coating with 13 nm Λ. The reason may
be that the coherent strain energy is higher than the coherent interface energy. Several grains
in the CrWN and δ-MoN layers with different growth orientations, CrWN (111), (200), and
δ-MoN (200), (202), are observed in Figure 4, which may reduce the strain energy, similar to
the renucleation of CrWN and δ-MoN [37]. The small grain size in the nanolayer means that
grain growth is blocked, which is consistent with the XRD results, as shown in Figure 1.

Figure 5 shows the hardness and elastic modulus of the CrWN/MoN nano-multilayer
coatings with different Λ; the inset is the hardness and elastic modulus of the 25 nm Λ coating
with displacement into its surface. With the displacement into 300 nm of surface, the hardness of
the coating is about 29.6 Gpa while the elastic modulus is about 296.6 Gpa. With increasing Λ, the
hardness of CrWN/MoN nano-multilayer coatings decreases from 30.2 GPa to 25.5 GPa and then
increases to 29.5 GPa. In our previous studies, the hardness of CrN, CrWN and δ-MoN prepared
by cathodic arc plating were 16–18 GPa [38], 19–20 GPa [39] and 20–21 GPa [38], respectively. The
hardness of the CrWN/MoN nano-multilayer coatings reaches 30 GPa, which is also higher than
that of the conventional monolayer TiN [40] and ZrN [41] coatings. This hardness enhancement
of the CrWN/MoN nano-multilayer is mainly dependent on the nano-multilayer microstructure.
Correspondingly, the Λ variation in the nano-multilayer leads to a similar variation trend
of the elastic modulus. According to the sectional morphologies of the CrWN/MoN nano-
multilayer coatings, as shown in Figure 2 (SEM) and Figure 3 (TEM), no obvious columnar
crystals can be seen in the coatings. Therefore, the multilayer structure effectively inhibits the
generation of columnar crystal structure and obtains the dense microstructure which is positive
on hardness [42]. In addition, the growth of nanoscale grains can result in a significant hardness
enhancement [43]. As shown in Figure 1b, with the decrease in Λ, the grain size decreases,
which is useful for increasing the hardness of CrWN/MoN nano-multilayer coatings according
to the Hall–Petch relationship [44]. As a result, the CrWN/MoN nano-multilayer coating with
Λ = 8 nm has the maximum hardness and elastic modulus. However, the CrWN/MoN coating
with 13 nm Λ has the minimum hardness, which can be attributed to interfacial structural
changes, such as incoherent interfaces, as shown in Figure 4c′′. In reference [45], Chen et al.
observed that the hardness of CrAlN/TiN multilayer coatings with coherent interfaces and local
coherent interfaces was higher than that of coatings with incoherent interfaces. Yalamanchili
et al. observed that the hardness of TiN/ZrAlN multilayers with semicoherent interfaces was
higher than that of coatings with incoherent interfaces [46]. As barriers to dislocation movement,
the defects at interface boundaries and the coherency strain of the multilayer coatings are useful
for hardness enhancement [47].

Figure 6 shows the calculated H/E and H3/E*2 ratios of CrWN/MoN nano-multilayer
coatings at Λ values ranging from 8 nm to 45 nm, and H is the hardness of the coating, E
is the elastic modulus, effective elastic modulus E* = E/(1 − v2), v is Poisson’s ratio 0.29.
With increasing Λ, the H/E ratio of the CrWN/MoN nano-multilayer coatings increases from
0.078 to 0.09, while the H3/E*2 ratio decreases from 0.184 to 0.169, followed by an increase to
0.24. H/E follows a similar evolutionary trend to that of the COF and wear rate, as shown in
Figure 7. Research shows that H/E and H3/E*2 are related to the toughness of hard coatings [48].
H/E is correlated to resistance to the elastic strain failure of the coatings, while H3/E*2 is related
to the resistance to plastic deformation [49–51].
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Figure 4. Cross-sectional HRTEM images of the CrWN/MoN nano-multilayer coatings with different
modulation periods: (a) 45 nm, (b) 25 nm, (c) 13 nm, (d) 8 nm. (a′) The FFT pattern for the marked
area in (a). (a′′) The corresponding IFFT image in (a′). (b′) The FFT pattern for the marked area
in (b). (b′′) The corresponding IFFT image in (b′). (c′) The FFT pattern for the marked area in (c).
(c′′) The corresponding IFFT image in (c′). (d′) The FFT pattern for the marked area in (d). (d′′) The
corresponding IFFT image in (d′).
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with displacement into its surface.
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Figure 8 shows the COF as a function of the wear time of CrWN/MoN nano-multilayer
coatings with different Λ. It is noticeable that the CrWN/MoN coatings have short running-in
times, as shown in the inset of Figure 8. Similar run-in stages mean that the surface of the
coating has less influence on friction. The COF of CrWN/MoN nano-multilayer coatings
increases with the increasing modulation period. At Λ = 13–45 nm, the COF increases
gradually with the wear time. The COF at Λ = 8 nm is relatively stable with the wear time.
The average COF and Wr of CrWN/MoN nano-multilayer coatings are presented in Figure 7.
The average COF was obtained by averaging the real-time friction coefficient, which was
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taken from 2/3 of the friction coefficients shown in Figure 8. The average COF increases
from 0.29 to 0.45 as Λ increases from 8 nm to 45 nm. As for the specific Wr, an increase
from 3.3 × 10−7 mm3/Nm at Λ = 8 nm to 4.2 × 10−7 mm3/Nm at Λ = 45 nm is observed.
Wang [40] and Zhou [52] revealed that the wear properties of coatings are closely related to
their H/E and H3/E*2 values. In addition, the CrWN/MoN nano-multilayer coatings with
higher Λ (13 nm, 25 nm and 45 nm) show a smooth wear morphology, while the coating with
8 nm Λ shows an abrasive wear morphology (as shown in Figure 9). Therefore, CrWN/MoN
nano-multilayer coatings with different Λ show different mechanical properties and wear
mechanisms, so the tribological properties of the coatings are different. Compared with the
COF (0.6–0.7) and Wr (3.3–207 × 10−6 mm3/Nm) of CrN [38], TiN [40] and ZrN [41], the wear
resistance of CrWN/MoN nano-multilayer coatings is significantly improved. Compared
with the COF (~0.5) and Wr (5 × 10−7 mm3/Nm) of CrWN coatings, the wear resistance
of CrWN/ MoN nano-multilayer coatings is also improved. Figure 10 shows the profiles
of the wear tracks of the CrN monolayer coating, the CrWN monolayer coating and the
CrWN/MoN nano-multilayer coating with 8 nm Λ. Under the same wear parameters, the
CrWN/MoN nano-multilayer coating shows a wear depth of 0.2 µm, which is smaller than
the wear depths of 0.25–0.35 µm for the CrN and CrWN monolayer coatings. The wear depth
is obviously less than the thickness of the coating, which means that no substrate is exposed.
The specific Wr of the coatings was calculated from the grooves of the wear tracks.
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Figure 9 shows the wear morphologies of CrWN/MoN nano-multilayer coatings with
different Λ from 8 nm to 45 nm. There are no tensile cracks of any type and/or spallation on
the wear tracks of these coatings. The wear is slight, the wear surfaces are smooth, and there
is no obvious debris at the edges of the wear tracks, but there are obvious pits and shallow
furrows on the wear tracks. During the wear process, large particles fall off and form pits
on the surface of wear. After large particles fall off, they are broken into small abrasive
particles between the friction pair. Small abrasive particles play a pushing or cutting role
in friction to form furrows on the wear track. The main wear mechanisms of CrN under
dry friction are abrasive wear and adhesive wear [53,54], and there are a lot of debris and
deep furrows at the edge of the wear track. MoN is introduced into CrWN coatings to form
CrWN/MoN nano-multilayer coatings, and the wear mechanism is mild abrasive wear,
which is evident from the wear morphology. During the friction process, tribochemical
reactions may occur to form thin lubricating WO3 and MoO3 layers [55–57], which play the
role of solid lubricants, significantly improve the wear resistance of the coating and reduce
the damage degree of abrasive wear to the coatings, and only shallow furrows appear. At
the same time, the nanometer multilayer structure improves the hardness of the coatings
and also promotes the wear resistance of the coatings.

From the results of the study, compared with conventional monolayer coatings, it was
found that the multilayer architectural design can provide improvements in mechanical
and wear properties. With the variation in Λ, one sees a change in the mechanical and
tribological properties of CrWN/MoN coatings. According to the Hall–Petch relationship,
the hardness of coatings with 8 nm and 13 nm periods should be higher than that of
coatings with 25 nm and 45 nm Λ. However, the coating with 13 nm Λ has the minimum
hardness, which is lower than the hardness of coatings with 45 nm and 25 nm Λ, as shown
in Figure 5. From Figure 4c, one sees a fuzzy non-coherent interface, which is different from
the local coherent interface of the other Λ. The coherent interface can block the motion
of dislocations, so compared with the coatings with coherent interfaces, we see the lower
hardness of the coatings with non-coherent interfaces.

As shown in Figure 6, with the variation in Λ, the CrWN/MoN nano-multilayer
coatings show different H/E and H3/E*2 values. However, as shown in Figures 6–8, the
tendencies of the tribological data of CrWN/MoN nano-multilayer coatings are consistent
with the tendencies of hardness with varying Λ. It is presently accepted that the ratios of
H/E and H3/E*2 are important parameters for evaluating the tribological properties of
hard coatings [47]. Coatings with higher H/E have better wear resistance [58]. It is clear
that the best wear resistance is obtained from the hardest sample, with Λ = 8 nm, which
has the lowest value of H/E. At Λ = 25 nm and 45 nm, the CrWN/MoN nano-multilayer
coatings exhibit higher values of H/E, while the friction coefficients and wear rates are
higher than those of the hardest sample with Λ = 8 nm. The results of the present study
are in contrast to the understanding that higher H/E means better wear resistance. The
results are consistent with the classical theories [59] that higher hardness means better
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wear resistance. Archard’s equation for abrasive wear shows that materials with higher
hardness have better wear resistance [60]. The results of this work are consistent with
results for graded Cr/CrN/CrTiN coatings [61], where the CrTiN-2A sample had the lowest
H/E value with the best wear resistance. It was revealed that coatings with low elastic
moduli and H/E > 0.1 have better crack resistance, which is useful for increasing wear
resistance [62]. This refers to the redistribution of the load over a wider area, delaying
the failure of the coating [37]. According to Beake et al. [63], in coatings with H/E < 0.1,
the compatibility of hardness and toughness is easier to achieve in hard coatings. The
combination of high hardness and a high H/E ratio of coatings is not conducive to anti-wear
durability under high loads. In the present study, it is seen that the CrWN/MoN coating
with Λ = 8 nm has the lowest H/E ratio, highest hardness and best wear resistance among
all samples. According to references [61,64], wear resistance is not only related to the
mechanical properties of the coatings but also affected by the stress state, wear mechanism
and wear test condition of the coatings. The increase in hardness due to the macroscopic
stress in the coatings is not beneficial for wear resistance improvement [49]. The study by
Li et al. [65] shows that the friction coefficient and wear rate of MoS2/Pb nanocomposite
coatings under humid conditions (75% RH) are no longer in accord with the H/E values.
In the process of the experiment, tribological tests were carried out with a large load (15 N)
in a high-humidity environment (80%). This may be one reason for the friction coefficient
and wear rate of the CrN/MoN coatings no longer matching the H/E value.

The interface plays a critical role in the coating’s mechanical properties, which have
an important effect on the tribological properties [8]. A multilayer structure is a useful
way to obtain an interface between two different material layers. The interface depends on
the modulation period and crystal structure. The interfaces of the multilayer coatings can
be optimized by adjusting the modulation period, while the crystal structure also plays a
role. The optimal properties of the multilayer CrWN/MoN coatings must be the result of
multiple effects, such as the Hall–Petch relationship and dislocation blocking.

4. Conclusions

CrWN/MoN nano-multilayer coatings were prepared in pure N2 by cathodic arc ion
plating using CrW and Mo targets. The nano-multilayer structure is formed by the rotation
of substrates. The influence of Λ on the microstructure, mechanical properties and wear
resistance has been studied. The major conclusions are as follows:

(1) The CrWN/MoN nano-multilayer coatings consist of two phases: face-centered cubic
CrWN and hexagonal δ-MoN. The nanoscale Λ and local coherent interfaces are
confirmed by TEM and HRTEM.

(2) Λ has a significant effect on the hardness and wear properties of CrWN/MoN nano-
multilayer coatings. With the variation in Λ, the hardness of CrWN/MoN nano-
multilayer coatings changes from 25.5 GPa to 30.2 GPa, the average friction coefficient
increases from 0.29 to 0.45, and the wear rate increases from 3.3 × 10−7 mm3/Nm
to 4.2 × 10−7 mm3/Nm. Compared with monolayer coatings of CrN, TiN and ZrN,
the mechanical and tribological properties of CrWN/MoN coatings are significantly
improved by the nano-multilayer architecture.

(3) With increasing Λ, the interface shows different characteristics, and the values of H/E
and H3/E*2 ratios follow a similar evolutionary trend to that of the friction coefficient
and wear rate. The interface has a critical influence on the coating properties. The
combination of high hardness and low H/E is favorable for the wear resistance of
CrWN/MoN nano-multilayer coatings, which is related to the hardness, the ratios of
H/E and H3/E*2, and the wear mechanism.
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