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Abstract: Carbonation is one of the critical issues affecting the durability of reinforced concrete.
Evaluating the depth of concrete carbonation is of great significance for ensuring the quality and
safety of construction projects. In recent years, various prediction algorithms have been developed
for evaluating concrete carbonation depth. This article provides a detailed overview of the existing
prediction models for concrete carbonation depth. According to the data processing methods used
in the model, the existing prediction models can be divided into mathematical curve models and
machine learning models. The machine learning models can be further divided into the following
categories: artificial neural network model, decision tree model, support vector machine model,
and combined models. The basic idea of the mathematical curve model is to directly establish the
relationship between the carbonation depth and age of concrete by using certain function curves.
The advantage of the mathematical curve model is that only a small amount of experimental data is
needed for curve fitting, which is very convenient for engineering applications. The limitation of the
curve model is that it can only consider the influence of some factors on the carbonation depth of
concrete, and the prediction accuracy cannot be guaranteed. The advantage of using the machine
learning model to predict the carbonation depth of concrete is that many factors can be considered
at the same time. When there are sufficient experimental data, the trained machine learning model
can give more accurate prediction results than the mathematical curve model. The main defect of
the machine learning model is that it needs a lot of experimental data as training samples, so it is
not as convenient as the mathematical curve model in engineering applications. A future research
direction may be to combine a machine learning model with a mathematical curve model to evaluate
the carbonation depth of concrete more accurately.

Keywords: carbonation depth; prediction model; neural networks; decision tree; support vector machine

1. Introduction

Concrete structures are widely used in civil engineering facilities such as houses,
factories, and bridges. There are usually a lot of holes and cracks invisible to the naked
eye on the surface and inside of concrete. Carbon dioxide (CO2) in the air can enter
the concrete through these holes or cracks. On the other hand, there are some alkaline
substances in the concrete such as calcium hydroxide (Ca(OH)2). When CO2 and Ca(OH)2
are in contact for a long time, a slow chemical reaction will occur. This chemical reaction
will consume Ca(OH)2 and produce calcium carbonate (CaCO3) and water. Therefore,
carbonation will reduce the alkalinity of concrete. When carbonation exceeds the protective
layer of concrete, concrete will lose its protective effect on steel bars, and steel bars will
begin to rust in the presence of water and air. Therefore, carbonation will shorten the
service life of concrete structures. It is of great significance to study the prediction model
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of carbonation depth for evaluating the remaining life of concrete structures and taking
necessary maintenance measures.

There are many factors that affect the carbonation of concrete, and the most important
one is the concentration of CO2 in the air. The higher the CO2 concentration, the higher
the carbonation level and subsequent degree of deterioration of concrete materials [1,2].
The chemical reactions produced by concrete carbonization are shown in Equations (1)–(4).
Figure 1 clearly represents the process, highlighting the difference between pre-carbonated
and post-carbonated concrete pores [3]. Carbonation can significantly lower the pH value
of concrete near the steel bars, leading to corrosion, structural damage, and a shorter
lifespan for the structure [4,5]. After extensive research, it has been found that the service
life of reinforced concrete will significantly decrease after 20–30 years of use due to the
influence of carbonation [6]. If left unchecked, the carbonation process can lead to the
expansion and cracking of concrete, posing a serious risk to personal safety and property
integrity [7–9]. Accurate prediction and evaluation of carbonation depth are vital for
determining the expected lifespan of a structure, identifying potential risks for structural
damage, and planning appropriate maintenance and repair interventions. It is possible
to effectively evaluate the structural performance of concrete by predicting the degree of
carbonation. This can further extend the structure’s service life and protect the safety of
relevant users [10–13].

Ca(OH)2 + CO2
H2O→ CaCO3 + H2O (1)

(3CaO · SiO2 · 3H2O) + 3CO2 → (3CaCO3 · 2SiO2 · 3H2O) (2)

3CaO · SiO2 + 3CO2 + γH2O → SiO2 · γH2O + 3CaCO3 (3)

2CaO · SiO2 + 3CO2 + γH2O → SiO2 · γH2O + 2CaCO2 (4)
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Figure 1. Carbonation reaction mechanism.

Over the past century, some countries have made significant efforts to enhance the
durability of concrete structures by undertaking extensive research and analysis on concrete
carbonation. After years of development, there is a comprehensive understanding of the
mechanism and influencing factors of concrete carbonation domestically and internationally.
This understanding has led to the development of many carbonization depth prediction
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models based on different algorithms, improved the foundation of quality evaluation
of reinforced concrete structures, and provided theoretical and data support for further
evaluating the performance of concrete structures and determining their service life [14,15].
Extensive research has been conducted in recent years on concrete carbonation models to
understand concrete’s durability better and develop reliable techniques for preventing it.
These models are of practical significance for the construction industry as they provide
a means to evaluate the expected service life of concrete structures and optimize their
design and maintenance. Based on a comprehensive analysis of the recent literature, it
has been observed that prediction methods for concrete carbonation depth are typically
categorized based on the type of data utilized and the algorithm employed to process the
data. According to the classification principle, Figure 2 shows the current mainstream
prediction models, mainly including mathematical curve models, artificial neural networks,
decision trees, support vector machines, and combined models.
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With the rapid development of modern industry, the concentration of carbon dioxide
in the environment is also increasing daily. Data indicate that the average concentration
of carbon dioxide in the global atmosphere in 2020 was 413.2 ppm (1 ppm is one in a
million) [16]. The average concentration of carbon dioxide in 2021 was 414.7 ppm, 2.3 ppm
higher than in 2020 [17]. The average global carbon dioxide concentration in 2022 is
415.7 ppm [18]. The global concentration of carbon dioxide will continue to rise in 2023.
It can be concluded that the concentration of carbon dioxide in the air is increasing year
by year, and the problem of concrete carbonation is becoming increasingly prominent.
Therefore, preventing the carbonation of concrete is an issue that cannot be ignored, and
studying the carbonation of concrete has practical significance. Under this background, it
is very important to accurately evaluate the carbonation depth of concrete. Therefore, the
purpose of this paper is to summarize the research results on the evaluation of concrete
carbonation depth in recent years. According to the analysis of the advantages and disad-
vantages of various models, some suggestions are put forward for developing more mature
and reliable concrete carbonization prediction models in the future. These models are very
helpful to prevent carbonation of concrete structures and take timely protective measures.

2. Mathematical Curve Models for Concrete Carbonation Depth

Mathematical curve models are widely used in concrete strength evaluation, carbona-
tion depth prediction and chloride ion penetration. The mathematical prediction models
have two main advantages. (1) Each parameter in the mathematical model has a clear
physical meaning. (2) Only a small amount of experimental data are needed for curve
fitting, which is very simple in calculation. For concrete strength evaluation, the common
mathematical models are hyperbolic models [19,20], exponential models [21,22], polyno-
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mial models, and mixed models [23,24]. For carbonation depth prediction, the basic idea of
mathematical prediction model is to directly establish the relationship between carbonation
depth and age of concrete by using some function curve [25–30]. The earliest mathematical
model for predicting carbonation depth is Fick’s Law [31] shown in Equation (5) as:

x = α
√

t (5)

where x denotes the depth of carbonation in concrete, t denotes the carbonation time, and
α is the carbonation coefficient that reflects the rate of concrete carbonation in a comprehen-
sive manner. Fick’s law holds that the carbonation depth of concrete is proportional to the
square root of carbonation time [32,33].

The advantage of the model of Equation (5) is that it only contains an unknown
carbonation coefficient α, so it is very convenient to apply. However, the limitation of this
model is that it is difficult to reflect the influence of many factors on the carbonation depth
of concrete. In order to overcome this limitation, many new mathematical models have been
developed to consider various influencing factors, such as temperature, relative humidity,
concentration, aggregate, curing time, and external loads. For example, reference [25]
considers the influence of aggregate water absorption, temperature, humidity, carbon
dioxide concentration, and other factors on the carbonation depth. By integrating these
factors, the accuracy of Fick’s law is optimized, and the specific mathematical model is
as follows:

x = m · kA · 4√T · ke ·
√

kc · W
f 3
c · C

· kCO2 ·
√

t (6)

Reference [28] optimizes Fick’s law by using 28-day compressive strength of concrete,
clinker content, carbon dioxide content, and equivalent water absorption of aggregate
mixture. The developed mathematical model is as follows:

x = Kc
√

t = (72.470 − 0.772 fc − 0.117C0 + 4.617c + 1.594EWA) ·
√

t (7)

Reference [34] considers the influence of carbon dioxide concentration, effective dif-
fusion coefficient, and carbon dioxide absorption per unit volume of concrete on the
carbonation depth of concrete, and the developed mathematical model is as follows:

x =

√
2DcCc

mc

√
t (8)

Based on Equation (8), reference [35] considers the concentration of Ca(OH)2, CSH,
C3S, and C2S to replace the carbon dioxide absorption per unit volume of concrete, and
further develops the mathematical model as follows:

x =

√
2DcCc

CCa(OH)2
+ 3CCSH + 3CC3S + 2CC2S

√
t (9)

Reference [36] considers the effects of water–cement ratio and different material
properties on the carbonation depth. The specific mathematical model is as follows:

x =

k · kg · ks

√
w/c−0.25

0.3(1.15+3(w/c))

√
t, w/c > 0.6

k · kg · ks
4.6(w/c)−1.76√

7.2

√
t, w/c ≤ 0.6

(10)

Reference [37] mainly considers the influence of water–cement ratio on the carbonation
process of concrete. The specific mathematical equations are as follows:

x = −0.56213 − 8.792√
t

+ 17.8372(w/c) (11)



Coatings 2024, 14, 386 5 of 20

For comparison, Table 1 gives the specific parameter information, application scope,
and reliability of the above mathematical curve models.

Table 1. Comparison of mathematical prediction models.

Model Application Scope and Reliability

Model of Ref. [25]:
x = m · kA · 4

√
T · ke ·

√
kc ·W
f 3
c ·C

· kCO2 ·
√

t
kA: the water absorption rate of the aggregate;
T: temperature;
ke = RH1.5(1 − RH), where RH represents relative humidity;
kc: the execution transfer parameter;
fc: the 28 day compressive strength (MPa);
W: the water content; C: the cement content;
kco2 : the concentration of CO2;
m: a constant parameter.
Parameters to be measured in application: RH, W, C, kco2

1. This model is mainly suitable for recycled aggregate
concrete.

2. fc, kc, T in the model all adopt the theoretical values,
which may deviate from the true values.

Model of Ref. [28],
x = Kc

√
t

= (72.470 − 0.772 fc − 0.117C0 + 4.617c + 1.594EWA) ·
√

t
C0: the clinker content (kg/m3);
c: the content of CO2 (%);
EWA: the equivalent water absorption rate of aggregate mixture (%).
Parameters to be measured in application: C0, c, EWA

1. This model is mainly suitable for recycled aggregate
concrete.

2. The model mainly considers the effect of EWA on
carbonation.

Model of Ref. [34], x =
√

2DcCc
mc

√
t

Dc: the effective diffusion coefficient of CO2 in concrete;
Cc: the concentration of CO2 in the environment;
mc: the CO2 absorption per unit of concrete.
Parameters to be measured in application: Cc, mc

1. The parameter Dc is difficult to determine in
practice.

2. The model mainly considers the effect of CO2 on
carbonation.

Model of Ref. [35],
x =

√
2DcCc

CCa(OH)2
+3CCSH+3CC3S+2CC2S

√
t

CCa(OH)2
, CCSH , CC3S, and CC2S: the initial concentrations of

Ca(OH)2, CSH, C3S, and C2S, respectively.
Parameters to be measured in application: Cc, CCa(OH)2

,
CCSH , CC3S, CC2S

1. This model is only applicable to ordinary Portland
cement concrete.

2. There are too many parameters to be measured in
the model, which is inconvenient to apply.

Model of Ref. [36],

x =

k · kg · ks

√
w/c − 0.25

0.3(1.15 + 3(w/c))

√
t, w/c > 0.6

k · kg · ks
4.6(w/c) − 1.76√

7.2

√
t, w/c ≤ 0.6

k: the coefficient of influence of cement variety;
kg: the coefficient of influence of aggregate variety;
ks: the coefficient of influence of concrete additives;
w/c: the water–cement ratio of concrete.
Parameters to be measured in application: w/c

1. This model relies too much on the accuracy of
water–cement ratio.

2. The model mainly considers the influence of cement
varieties, aggregate varieties, and concrete additives
on carbonation.

Model of Ref. [37],
x = −0.56213 − 8.792√

t
+ 17.8372(w/c)

w/c: the water–cement ratio of concrete.
Parameters to be measured in application: w/c

1. This model relies too much on the accuracy of
water–cement ratio.

2. The later prediction results do not conform to the
carbonation law.

It can be seen from Table 1 that the number of parameters to be measured in models of
references [36,37] is the least, while the number of parameters to be measured in the model
of reference [35] is the most. The model of reference [25] mainly considers the effects of
RH, W, C, and kco2 on concrete carbonation. The model of reference [28] mainly considers
the effect of EWA on concrete carbonation. In reference [25], Zhang and Xiao proved that
Equation (6) is better than Equation (7) in predicting the carbonation depth of RAC. The
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parameters in the model of reference [34] are all affected by the concentration of CO2 in
the environment. This may lead to low independence among the parameters in this model.
The models of references [35,36] mainly consider the influence of concrete compressive
strength on concrete carbonation. It is known that the compressive strength can reflect
the influence of water–cement ratio, construction quality, and curing conditions on the
quality of concrete. Therefore, the essence of this model is to indirectly reflect the influence
of water–cement ratio and other factors on concrete carbonation through compressive
strength. The models of references [36,37] mainly consider the effects of the water–cement
ratio on concrete carbonation. However, the water–cement ratio is only one of the important
indicators of concrete and cannot fully reflect the performance of concrete. In addition, it is
quite complicated to accurately determine the water–cement ratio in practical engineering.

Other scholars have made application and optimization research on the above various
carbonization depth curve models. Papadakis et al. [31,38,39] suggested an improved
Fick’s model to illustrate the physical and chemical processes in concrete carbonation
using regular Portland cement, which takes into account both particular elements and
external variables. Possan et al. [40] established a mathematical model for assessing
the depth of concrete carbonation and forecasting the service life of concrete buildings
exposed to CO2 action. Liang et al. [41] optimized Fick’s law by correlating coefficient α
with material and environmental factors. Ekolu [42] presented a model for forecasting
natural carbonation in concrete structures with reinforcement, which is mostly made up
of computational equations that anticipate the implications of concrete composition and
the surrounding environment on natural carbonatation. Liang and Lin [43] developed a
new one-dimensional mathematical model, derived from a one-dimensional linear partial
differential equation, and demonstrated through variable separation and Laplace transform
methods combined with some alternative methods that concrete carbonation is determined
by parameters such as diffusion coefficient, CO2 concentration, and time that occur in
concrete structures. Based on the diffusion theory of carbon dioxide gas in concrete and
the carbonation mechanism of concrete, Lu et al. [44] conducted a thorough analysis
of the variables influencing the carbonation depth of concrete, derived a quantitative
relationship between the primary variables affecting the carbonation depth of concrete and
the carbonation depth of concrete, and put forward an innovative forecasting model for the
carbonation depth of concrete structures. Li et al. [45] incorporated Papadakis’ concrete
carbonation depth prediction model and investigated the impact of different parameters on
the cement hydration process. They investigated the development and changes in cement
hydration degree, porosity, and hydration products with age and suggested a concrete
carbonation depth prediction technique centered around the hydration of cement.

Generally, the advantage of mathematical curve model is that it can establish a direct
functional relationship between carbonation depth of concrete and various influencing
factors, such as water–cement ratio, the material’s temperature, pressure, and chemical
composition. These models can accurately describe the relationship between time and
carbonation depth and help engineers to prepare concrete that meets specific performance
requirements. However, the application scope of a single curve model is relatively narrow,
so it is difficult to consider the influence of many factors on concrete carbonation at the
same time. Therefore, more scholars have recently begun to pay attention to the application
of machine learning model in the prediction of concrete carbonation depth.

3. Machine Learning Prediction Model

As stated before, the machine learning models mainly include artificial neural net-
works, decision trees, support vector machines, and other combined models. Table 2 gives
the abbreviations of the professional terms used in these models.
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Table 2. Abbreviations of professional nouns.

Abbreviations of Professional Nouns

Adaptive network fuzzy inference system ANFIS
Artificial bee colony expression programming ABCEP

Artificial neural network ANN
Back propagation BP

Back propagation differential evolution DE-BP
Decision tree DT

Convolutional neural network CNN
Deep neural network DNN
Genetic programming GP

Least squares support vector machine LSSVM
Multi-gene genetic programming MGGP

Multiple linear regression MLR
Particle swarm optimization PSO

Principal component analysis PCA
Radial basis function RBF

Random forest RF
Recycled aggregate concrete RAC

Support vector machine SVM
Support vector regression SVR
Wavelet neural network WNN

Whale algorithm WOA

3.1. ANN-Based Prediction Model

The notion of ANNs is based on early sensory processing models of the brain. It
refers to a soft computing approach that includes input layers, one or more hidden layers,
and output layers. The hidden layer communicates with the other layers via weights,
deviations, and transfer functions. The disparity between the network output and the goal
value determines the error function. This error is then propagated back, and optimization
techniques are used to alter weights and biases to reduce estimate errors. The entire
procedure is often known as training. By applying algorithms that simulate actual neural
processes, the network can “learn” to solve many types of problems, repeating them
for specific periods until the output reaches the required accuracy. Once the network is
trained, trained weights and biases can validate unseen data [46,47]. An illustration of
the fundamental architecture of ANN can be seen in Figure 3. With time, these networks
have made significant progress, leading to the development of several network models
that enhance the efficiency of machine learning models. These models are constructed on
various neural network methods and have undergone thorough investigation. Examples
include BP, CNN, WNN, and many other neural network models that are widely used [48].
Each of these models has its unique characteristics and is designed to tackle specific
problems related to machine learning. For example, the CNN model is widely used for
image recognition tasks, while the WNN model is used for signal processing. These neural
network models are constantly evolving with new research and advancements, making
them an essential tool in the field of architecture. ANNs have two significant advantages:
direct learning and data analysis and the ability to handle complex modeling processes such
as outliers. Specifically, ANNs allow for direct data analysis, making identifying patterns
in vast datasets easier. Furthermore, these networks can handle sophisticated modeling
procedures, including outliers in the study. As a result, ANNs are a valuable tool for data
analysis and modeling, especially when the data are complicated and convoluted [49].
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The BP neural network is a multilayer feedforward network propagation algorithm
trained by error inversion with strong nonlinear mapping ability [50]. Many scholars have
studied and optimized the BP neural network, which has been applied to predict concrete
carbonation depth. For example, Luo et al. [51] used a PSO algorithm to optimize the BP
neural network and established a local carbonation zone length model for concrete. After
training, it has been proven that the improved model has a fast convergence speed and
good predictive ability. Wei et al. [52] used the BP neural network and SVM algorithm to
estimate concrete carbonation depth and created a comprehensive database. Following a
thorough study, comparison, and analysis process, the results revealed that both models
had good potential for forecasting the carbonation depth of mineral additive concrete.
However, the BP neural network model predicted more accurately than the SVM model.
These findings imply that the BP neural network model might be a valuable tool in fore-
casting concrete carbonation depth, with practical implications for the construction sector.
Xu et al. [53] created an optimization model that uses BP neural networks to forecast RAC
mechanical properties. The model is based on large experimental datasets and is intended
to determine the carbonation depth of RAC. The combination of experimental data with
BP neural networks enables the model to forecast the mechanical characteristics of RAC
precisely, which is very relevant in producing environmentally friendly and cost-effective
building materials. Liu et al. [54] used the WOA to optimize the BP neural network and
create a topological structure. A comparison of the prediction results indicates that the
neural network model is a promising method for forecasting the depth of carbonation.
These findings are crucial because they show how WOA-optimized BP neural networks can
effectively forecast carbonation depth. A complex model was created by Gan and Guo [55]
to assess the level of carbonation in concrete. Their strategy used a PCA-BP neural net-
work, whereby PCA decreased input data complexity and efficiently solved the problem of
multicollinearity among independent variables. The carbonation depth forecasts made by
the model were surprisingly accurate, with very little error. Bu et al. [56] proposed a DE-BP
neural network model for predicting concrete carbonation depth at the third International
Symposium on Intelligent Information Technology Applications in 2009. The proposed
model was found to have high accuracy compared to other models. While the BP-ANN
algorithm is widely used due to its good universality and solid structural foundation, it
suffers from certain limitations. Specifically, the slow convergence speed of the learning
algorithm and the lack of theoretical support for selecting the number of hidden nodes can
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lead to local errors during training [57]. Therefore, there is a need for further research to ad-
dress these limitations and improve the accuracy of predictions. In recent years, researchers
have tried to improve the performance of ANN algorithms, particularly the BP algorithm.
In this regard, some scholars have focused on optimizing the BP algorithm by incorporating
other optimization techniques to enhance its accuracy and efficiency. One such study is by
Gao et al. [58], who utilized the PSO algorithm to optimize the BP neural network. Their
study aimed to establish a relationship model between various influencing factors and
the length of the partial carbonation zone. The researchers identified the shortcomings
of the BP algorithm, including slow search speed and susceptibility to local extremum,
and sought to overcome them using the PSO algorithm. The results of their simulation
applications indicated that the proposed model’s network output values matched well with
the expected values, and the convergence speed was faster. This study demonstrates the
potential of incorporating optimization techniques to improve the performance of neural
network algorithms, notably the BP algorithm, in solving complex problems.

Apart from the BP neural network model, researchers have also explored various other
neural network models. Each of these models has unique characteristics and applications,
and researchers continue to study and develop new neural network models for concrete
carbonation depth. Akpinar and Uwanuakwa [59,60], for example, used ANN models on
large datasets to study the effects of different input parameters on concrete carbonation
depth measurements. Kellouche et al. [61] conducted a study to develop ANN models for
predicting carbonation depth values. The models were prepared, trained, and tested to
evaluate their predictive accuracy. The study revealed a strong correlation between the
experimental and predicted values, indicating the effectiveness of the proposed predictive
model. Notably, the results showed that the proposed model outperformed existing models’
ability to predict carbonation depth values accurately. These findings highlight the potential
of ANNs as a valuable tool for predicting carbonation depth in various applications. Londhe
et al. [62] conducted a study on concrete carbonation using data from the literature. The
study employed ANN and GP techniques for modeling and calculations, and the results
were compared with those obtained using MLR. The findings highlighted that the ANN and
GP models performed better than MLR, as they could handle the nonlinear effect of relative
humidity on concrete carbonation. Liu et al. [63] conducted an in-depth analysis of concrete
carbonation’s causes and influencing factors and developed an RBF neural network model
to predict carbonation depth. The results of their study indicate that this model can serve
as an innovative and effective tool for evaluating concrete carbonation. The predictive
performance of the RBF network model is superior to other existing models, with higher
recognition accuracy. Therefore, their findings suggest that the RBF network model can be
a promising approach for predicting concrete carbonation depth. Felix et al. [64] thoroughly
analyzed nonaccelerated carbonation experiments utilizing a literature review. To predict
the diffusion of carbon dioxide into concrete and determine the carbonation depth over
time, they opted to employ an ANN model. Their approach offers a promising avenue for
accurately forecasting the extent of carbonation in concrete structures. Tran [65] conducted
a comprehensive review of the existing literature and collected 300 experimental datasets
to develop an effective ANN model for predicting carbonation depth. The model takes
into account various factors, including cement content, fly ash content, moisture content,
relative humidity, carbonate concentration, and exposure time. While ANN models have
been a popular approach for predicting carbonation depth, the advent of deep learning
algorithms, which can be considered as more advanced versions of ANN models, has
recently gained significant attention in this field [8,66–69].

3.2. DT-Based Prediction Model

In the field of predictive modeling, DTs are a prevalent method that have undergone
significant development in the past two decades. This powerful method can extract knowl-
edge from complex databases and create accurate predictive models. The DT algorithm
recursively splits a given dataset into smaller subsets using rules until a tree-like structure



Coatings 2024, 14, 386 10 of 20

is generated. This structure may then be used to make somewhat accurate predictions and
decisions [70–72]. A DT [73] is a machine learning method that infers the classification
labels of samples by learning a series of problems based on the features of the training
set. The DT is a fundamental tool in the fields of machine learning and decision theory.
It is comprised of a root node, numerous internal nodes, and several leaf nodes. The leaf
nodes represent the decision outcomes, while each internal node indicates a feature test.
Figure 4 [74] shows the DT structure. DTs may efficiently solve a variety of practical issues.
One significant use of DTs is forecasting the compressive strength of concrete, an essential
component in the construction industry that influences the longevity and safety of concrete
constructions. DTs have also been used to estimate the elastic modulus of concrete, an
important mechanical parameter affecting concrete deformation behavior when loaded.
DTs are considered one of the most widely used algorithms in machine learning and data
mining due to their advantages [75,76]. Despite their complex construction process, the
final models are often intuitive and straightforward, making them ideal for practical ap-
plications. The ability of DTs to provide their predictions as rules is another significant
advantage, as it enables users to understand how the model arrived at a specific prediction,
facilitating model interpretation. Moreover, DTs are computationally efficient, requiring no
sophisticated calculations to categorize data, which makes them suitable for large datasets.
Finally, DTs can reveal which variables or features are crucial in predicting or categorizing a
particular outcome, providing valuable insights for decision-making. The application of DT
models has enabled researchers to discover various ways of predicting concrete carbonation
depth. Taffese et al. [77] have developed three carbonation depth prediction models using
DT methods, including regression trees, bagging ensemble, and reduced bagging ensemble
regression trees. Evaluation of the predictive performance of the models has demonstrated
that all three models perform remarkably well. Notably, the reduced-bagged integrated
regression tree has the highest prediction and generalization ability. This highlights the
effectiveness of DT models in predicting the depth of concrete carbonation, which could
inform practical applications in civil engineering.
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Different from many other artificial intelligence prediction models, DT models are
understandable and visual and do not need data pretreatment. On the other hand, DT
models do not perform well in dealing with complex datasets and various problems,
resulting in overfitting. In addition, the DT model is very unstable when faced with minor
changes in large datasets, and any sudden changes can lead to entirely different results [78].
In order to avoid these shortcomings, it is suggested that DTs should be used as the basic
model in the integration algorithm, and the integration algorithm should combine a large
number of DTs to improve prediction accuracy [79]. RF is an ensemble learning approach
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that builds upon the DT algorithm. Forests and Breiman [80] proposed this technique,
which is frequently used in regression and classification problems because of its excellent
accuracy and resilience. During the training phase, RFs create several DTs and combine
them to make more precise and dependable predictions. Due to the fact that vectors are
individually sampled and follow the same distribution, each tree is trained on a separate
dataset, resulting in different decisions for each tree, further leading to the possibility of
different prediction results for the entire forest [81]. In addition, RFs can also be combined
in parallel, as each tree can be independently constructed and can be combined with each
other, making them suitable for training on large datasets and distributed computing
environments [82]. For example, RF was developed by Bryman [80] in 2001 as a machine
learning algorithm to generate innovative DT. It is a collective learning strategy that predicts
target variables by combining several subsets of educational data using bagging and lifting
methods. RF aggregate assessments from several trees, resulting in more accurate and
consistent predictions [83–85]. Wu et al. [86] developed a prediction model using the
RF algorithm, established training and testing sets based on raw data, and successfully
predicted concrete carbonation depth. Similarly, Londhe et al. [87] employed Model Tree,
RF, and MGGP methods to predict the carbonation coefficient of concrete. These studies
demonstrate the efficacy of the RF algorithm as a powerful tool for machine learning and
its application in predicting concrete-related properties.

3.3. SVM-Based Prediction Model

The SVM is a popular supervised learning approach in machine learning for classi-
fication and regression analysis [88]. The SVM is well-known for its high generalization
capabilities [89,90]. The SVM technique is implemented by using a nonlinear mapping func-
tion to transform nonlinear interactions in low-dimensional space into linear relationships
in high-dimensional space. The program then looks for the best regression hyperplane
in this high-dimensional space to reduce the distance between all samples and the hyper-
plane [91]. Figure 5 [92] depicts the SVM’s basic operating structure. It is important to
note that as long as the input data’s dimension is finite, there is always a high-dimensional
space in which the data display linear patterns. The SVM is a popular algorithm used to
accurately predict data with high dispersion and small sample sizes, thanks to its excellent
generalization ability [93]. However, for predicting the depth of concrete carbonation,
the LSSVM is a better optimization method for SVMs that incorporates all of the SVM’s
advantages [94]. LSSVM uses two optimization methods [95,96]: (1) using the squared
training error in the cost function instead of the insensitive loss function and (2) replacing
inequality constraints with equality constraints. This optimization significantly improves
computational accuracy and speed compared to SVM. However, determining hyperparam-
eters in LSSVM can directly affect performance [97,98], and they are usually selected and
determined through personal experience or grid search techniques.

SVMs have several advantages [99]: 1⃝ they can minimize values with high discrete-
ness by setting the parameters correctly; 2⃝ can efficiently classify data regardless of their
distribution; 3⃝ can process noise conditions through automatic recognition and merging
of support vectors; and 4⃝ some key training vectors can improve prediction results by
tracing the historical model.

The drawbacks of SVMs [99] include the following: 1⃝ the main problem with SVMs
is that the process of selecting kernel functions and hyperparameters requires a lot of
time; 2⃝ the task of comprehending and describing the behavior of nonlinear SVR models
can be a daunting challenge. This is primarily due to the intricate nature of mapping
nonlinear inputs to high-dimensional feature spaces, which entails a considerable degree
of complexity. It is worth noting that, compared to linear models, the training process of
nonlinear SVR models demands a more substantial investment of time and computational
resources; 3⃝ due to SVMs’ goal being point prediction, probability prediction may not
be possible; and 4⃝ due to the model’s reliance on past data records, if the past data are
inconsistent, the model’s extrapolation performance may not be satisfactory.
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The field of concrete has recently witnessed the emergence of SVMs as a promising
method. SVMs have gained significant attention due to their remarkable efficacy in predict-
ing the mechanical properties of concrete. Their ability to accurately forecast the strength
and durability of concrete structures has made them a preferred choice among researchers
and engineers alike. SVMs have proven to be a valuable asset in the construction industry,
where reliable and precise predictions of mechanical properties are crucial for ensuring the
safety and longevity of concrete structures. The initial SVM algorithm was introduced by
Vepnik in 1963 and later extended to a nonlinear model by Vepnik and Kurt [75] in 1995.
Since then, numerous researchers have optimized and improved SVM algorithms, resulting
in a plethora of research outcomes that demonstrate the potential of SVM in the field of con-
crete research. For example, Éevik et al. [99] summarized and discussed the application of
SVM in structural engineering, confirming its applicability in the field. Chaabene et al. [100]
developed an SVR prediction model using SVM for regression analysis. Zhang et al. [101]
proposed a hybrid prediction framework based on the LSSVM and metaheuristic algorithm.
Li et al. [102] proposed the SVM method to predict the carbonation of concrete, and testing
revealed that the prediction accuracy of SVMs is much higher than that of the BP network.
Ruan Xiang [103] proposed an SVM regression model to predict concrete carbonation depth.
Moein et al. [104] reviewed several modeling algorithms, focusing on their applications,
performance, current knowledge gaps, and recommendations for future research. Further-
more, researchers have explored the combination of SVM and optimization methods, such
as firefly algorithm, genetic algorithm, network search, cuckoo optimization algorithm, and
PSO [92,100,104], to improve the efficiency, accuracy, and computational speed of machine
learning in predicting the carbonation depth of concrete.

3.4. Other Prediction Models

Apart from the predictive models such as the ANN, DT, and SVM, there is a carbon-
ation prediction model that employs deep learning techniques to forecast the process of
carbonation. Deep learning is a highly effective machine learning technique that enables
computers to learn from large datasets. This method relies on neural network architec-
tures, which are commonly referred to as DNN models. To achieve high levels of accuracy,
DNN models are typically trained using large-scale data labeled with neural network
architectures that include multiple layers [105]. This approach is highly effective in various
academic and scientific contexts. Deep learning is a paradigm of machine learning that
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incorporates DNN with various nonlinear analysis techniques [106,107]. It is often consid-
ered to be a sophisticated form of an ANN. Compared to traditional ANNs, DNNs their
more robust learning ability and can achieve self-identification of variables and weight
adjustment [108]. For example, Lee et al. [69] employed a deep learning model to calculate
the carbonation rate coefficient. The outcomes demonstrated that the predicted carbonation
degree of the model had a small error compared to the experimental data. Notably, the
error was much smaller within a specific range than the empirical model proposed by finite
element analysis and the Japan Institute of Architecture. These findings suggest that deep
learning models hold the potential for accurately predicting carbonation rate coefficients in
building materials.

In concrete durability, predicting the carbonation depth is of utmost importance. While
machine learning and theoretical research methods have been employed to achieve this,
accelerated carbonation experiments have also been explored. Such experiments have been
utilized to construct prediction models, which have the potential to enhance the accuracy
of carbonation depth prediction. For example, Loo et al. [109] conducted carbonation
acceleration experiments for 1, 2, 3, 4, 5, 6, and 7 weeks in an accelerated carbonation
chamber. They proposed a carbonation prediction model that includes standard 28-day
compressive strength, hydration time twc, CO2 concentration, and ambient temperature
T. Duprat et al. [110] proposed a Bayesian network-based model and studied it through
experiments combining carbonation models and accelerated carbonation testing under high
pressure. The model explains the effect of high carbon dioxide pressure on carbonation.
Khunthongkeaw et al. [111] introduced a mathematical model that predicts carbonation
depth in natural environments through accelerated testing and applying the square root t
law. This proposed approach is valuable to advancing our understanding of carbonation
processes, particularly in concrete structures. The model’s accuracy and reliability are
supported by its effective prediction of the carbonation depth, indicating its practical
relevance in civil engineering. It is worth noting that several scholars have employed
simulation techniques to study the carbonation process in concrete. For instance, Pan
et al. [112] presented a three-dimensional lattice model capable of simulating microscale
concrete carbonation. Similarly, Bao et al. [113] proposed a new supercritical carbonation
model that accounts for the effects of randomly distributed coarse aggregates and porosity
on the irregularity of concrete carbonation depth. These simulation methods hold promise
for advancing our understanding of the complex chemical and physical phenomena that
occur during the carbonation process in concrete, which could ultimately inform the
development of more durable and sustainable building materials. Several researchers
have attempted to predict concrete carbonation depth by combining different algorithms.
For instance, Paul et al. [114] have designed an empirical model using Automatic Neural
Network Search to investigate the impact of concrete mix composition, weathering, and
exposure time on the depth of concrete carbonation. Moghaddas et al. [115] have developed
several ABCEP architectures utilizing ABCEP, conducted various analyses, and compared
the optimal ABCEP model with previous models published in the literature for centralized
prediction of the carbonation depth of RAC. Similarly, Kumar et al. [116] have proposed
an adaptive neural fuzzy inference system method based on machine learning to predict
the carbonation depth of fly ash concrete structures. The input parameters to develop
the ANFIS model included cement content, fly ash, water–cement ratio, relative humidity,
duration, and CO2 level. Liu and Bai [117] introduced a novel model called PCA-ANFIS
that uses the ANFIS and PCA to predict the carbonation of reinforced concrete. To make
accurate forecasts, the model considers seven critical parameters: compressive strength,
service life, carbonation time, carbon dioxide concentration, operating stress, temperature,
and humidity. This model might be helpful in constructing and maintaining concrete
structures, particularly for determining the endurance of reinforced concrete. Agustin and
Silva [118] developed a sophisticated hybrid model by integrating neural network and PSO
techniques. The model was employed for predicting the carbonation depth of RAC and
optimizing the results.
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3.5. Comparison between Various Machine Learning Models

Some scholars have compared the applicability and reliability of these machine learn-
ing models. For example, Hao et al. [119] predicted the carbonation depth of concrete by
SVM and ANN prediction models with the same experiment data as the learning samples.
The prediction results of SVM models are more accurate than those of ANN models. The
relative error of a SVM model is less than 0.5%. Felix et al. [4] used an ANN model to
accurately predict the carbonation depth of concrete, by considering the humidity and CO2
concentration. The maximum error of prediction results is less than 5 mm. Liu et al. [120]
used nine parameters, including the inherent characteristics of RAC and environmental
conditions, as input variables to train DT and ANN models. The results indicate that
the predictive performance of the DT model is superior to that of a single ANN model.
When combined with swarm intelligence algorithm, the prediction accuracy of the ANN
model can be further improved. As a conclusion, Table 3 presents the main advantages and
disadvantages of the common machine learning models.

Table 3. Advantages and disadvantages of common machine learning models.

Model Advantage Defect

ANN

1. Good universality.
2. Strong structural foundation.
3. Many kinds of ANNs are available.

1. Convergence speed may be slow.
2. The number of hidden layer nodes is determined

by experience.
3. Training may fail for data with gross errors.

DT

1. Easy to understand.
2. The expression of results is more intuitive.
3. High computational efficiency.

1. Overfitting is easy to occur when dealing with
complex data.

2. It is difficult to identify small changes in the
experiment data.

SVM

1. It has better ability to resist data noise.
2. The ability to classify data is stronger.
3. Future predictions can be improved by

tracing historical modeling.

1. Choosing the appropriate kernel function and
hyperparameters is time-consuming.

2. It is difficult to explain the behavior of nonlinear
SVR models.

3. Probabilistic forecasting may not be performed.

4. Challenges and Suggested Improvements

(1) The mathematical curve model can only consider the influence of a few factors on
concrete carbonation, and the prediction accuracy of a single curve model is often not
high. The future development direction may be to combine various curve models to
develop a unified curve model which can be applied to predict the carbonation depth
of concrete under various environmental conditions;

(2) Although many mathematical theoretical models have been developed, there are
few models with small errors that can be widely applied in practical engineering. In
the future, attention should be paid to starting the mathematical curve model from
engineering practice, which can have a practical application significance;

(3) The SVM prediction models can better handle small sample size datasets, while ANN
and DT prediction models are more suitable for analyzing large sample size datasets.
The future development trend is to combine advanced intelligent optimization algo-
rithms with these models to improve their learning ability and application scope;

(4) At present, the machine learning model needs to use a lot of experimental data to train
for obtaining the prediction ability. Therefore, the accuracy of experimental data and
the size of sample set have a decisive influence on the prediction accuracy of machine
learning model. In the future, the intelligent level of machine learning models can
be further improved by deep learning algorithm, so as to enhance the ability of these
models to resist data measurement noise;
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(5) In the case of less experimental data, more data can be generated by using the ap-
propriate mathematical curve model for the training of machine learning model. By
combining the curve model with the machine learning model, a mature and reliable
evaluation method of concrete carbonation depth with less experiment cost is expected
to be developed.

5. Conclusions

The existing prediction models of concrete carbonation depth are summarized in this
work, and the main conclusions can be drawn as:

(1) The advantage of the mathematical curve model is that it can directly establish the
functional relationship between carbonation depth of concrete and interested factors.
Each parameter in the mathematical theoretical model has a clear physical meaning
and is easy to solve. Therefore, the mathematical curve model is simpler than the ma-
chine learning model in application. However, a single curve model cannot effectively
reflect the influence of different factors on concrete carbonation. The result of this is
that each curve model can only be applied to carbonation evaluation under a certain
environmental condition;

(2) The ANNs are algorithms that simulate actual neural processes, allowing for direct
learning, data analysis, and relatively complex modeling processes containing outliers.
They have the advantages of good universality and a solid structural foundation and
are one of the most widely used algorithms in various fields. However, due to the
slow convergence speed of the ANN-model learning algorithms and the inability to
obtain theoretical support for selecting the number of hidden nodes in the network,
some uncertain factors may arise during the training process, resulting in local errors;

(3) The DT is a machine learning approach for extracting knowledge from databases
and creating prediction models. The results are simple to understand despite the
technical complexity of building the DT. This model can give prediction results in a set
of rules and eliminate the need for sophisticated calculations in data categorization.
In addition, DTs can highlight the most important factors or contexts influencing
prediction and categorization;

(4) The SVM is a machine learning approach that has demonstrated significant potential
for forecasting concrete carbonation depth. However, the efficacy of SVM models is
heavily determined by the kernel function used. It is critical to pick a suitable kernel
function to obtain excellent results using SVM models. Furthermore, incorporating
optimization approaches into SVM models can considerably improve their efficiency,
accuracy, and computing speed;

(5) The outstanding advantage of machine learning model is that it can consider the
influence of many factors such as CO2 concentration, water–cement ratio, tempera-
ture, humidity, and compressive strength on concrete carbonation at the same time.
However, the efficiency of machine learning approaches primarily depends on the
dataset quality used during training, and these methods cannot adequately capture
the particular carbonation process and its underlying mechanism.
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