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Abstract: This study focuses on the use of superhydrophilic titanium dioxide (TiO2) coatings applied
to the surfaces of water-bearing systems to prevent surface colonization and biofilm formation.
Biofilms in water-bearing systems are a problem in many industrial areas and are associated with risks
to hygiene and health, material damage, and high costs for cleaning and maintenance. We investigated
the suitability of TiO2 coatings activated by UVA irradiation to achieve a superhydrophilic surface.
The well-adherent coatings were deposited on flat and curved substrates (stainless steel, Al2O3) by
pulsed magnetron sputtering. Surface characteristics, wettability, and the influence on microbial
surface colonization were evaluated by WCA measurements, SEM, and XRD. For microbiological
evaluation, Escherichia coli and Staphylococcus warneri were used. An adapted and specialized regime
for sample conditioning and testing was developed that allows comparability with upcoming studies
in this field. The superhydrophilicity was stable for up to 4 days, and an additional UVA reactivation
step revealed comparable results. The microbiological studies proved a successful prevention of
bacterial colonization on the activated coatings, which is attributed to their superhydrophilicity.
The results demonstrate the potential of UV-activated TiO2 as a long-term coating of water-bearing
systems, like pipes, on which it assists in avoiding biofilm formation.

Keywords: titanium dioxide; photo-induced superhydrophilicity; long-term stability; reactivation;
biofilm prevention; surface sanitation; bacteria-repelling effect; water-bearing pipes; Escherichia coli;
Staphylococcus warneri

1. Introduction

Titanium dioxide (TiO2) is a suitable candidate for superhydrophilic surface equip-
ment as it is a well-known photocatalyst. It can be deposited by sol–gel processes but
also by various physical vapor deposition methods, such as pulsed magnetron sputter-
ing [1–3]. The photoactive phases of TiO2 can be activated by the absorption of ultraviolet
(UV) radiation, which results in the formation of electron–hole pairs. This can initiate two
mechanisms on the surface: (1) photocatalytic oxidative decomposition, often described as
photocatalysis, and (2) photo-induced hydrophilicity or superhydrophilicity [4,5]. Photo-
catalysis refers to various oxidation and reduction reactions induced by the electron–hole
pairs reacting with molecules adsorbed on the surface. As a result, radicals and ions are
formed, which leads to the decomposition of organic matter present at the surface. The
final products of photocatalytic decomposition reactions are carbon dioxide, water, and
inorganic ions [4,6,7]. In addition to photocatalytic decomposition, UV radiation induces
hydrophilicity. Superhydrophilicity describes a condition where a water contact angle
(WCA) of less than 10◦ can be observed on a surface [5,8]. The underlying mechanisms are
still not fully understood, and various mechanisms have been proposed that attempt to
explain photo-induced hydrophilicity [5,8–10]. One theory describes a superhydrophilic
surface in its initial state directly after TiO2 deposition that becomes more hydropho-
bic by the adsorption of organic molecules from its surroundings. By photocatalytically
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driven degradation of these adsorbed organic molecules, the surface can return to its initial
superhydrophilic state [9]. Another proposed theory connects the occurrence of superhy-
drophilicity to the thermal effect of irradiation. In this theory, the infrared component of the
UV radiation source heats the surface, causing water molecules bound by hydrogen bonds
to desorb and additionally causing adsorbed hydrocarbons to be partially degraded by
photocatalysis. This increases the surface energy and, thus, the hydrophilicity of the surface.
If the surface cools down after irradiation, water and hydrocarbons reabsorb, which results
in the formation of the original structure of the hydrated layer and a reduction in surface
energy and hydrophilicity [9]. The oldest and most widely accepted theory relies on the
photoexcitation of electrons and the associated formation of surface defects or vacancies in
terms of electron–hole pairs caused by UV irradiation [5,8–10]. Water molecules are bound
to the surface due to the reaction of oxygen and water with the electron–hole pairs (surface
defects), which results in an increase in the hydrophilicity of the surface [5,8].

Both photo-induced mechanisms, photocatalytic degradation and hydrophilization,
have the potential to contribute to the sanitation of surfaces. Photocatalytic oxidative
decomposition is a frequently used mechanism for the partial removal or even inactivation
of microorganisms and other organic contamination. Currently, research focuses on nanos-
tructured TiO2 materials, composite coatings with additional photocatalysts, or doping of
the coatings to improve the photocatalytic activity [2,3,11].

However, we consider the effect of superhydrophilicity to be the most suitable for
use in water-bearing systems. No permanent activation by irradiation but only intervals
of reactivation are necessary. For this reason, we investigated the superhydrophilicity
of TiO2 and its long-term stability as a means to enable the permanent prevention of
microorganism adhesion and, hence, subsequent biofilm formation. We also checked
whether the superhydrophilic behavior could be reactivated after a certain time. This fact is
rarely considered in the literature but represents a key factor when addressing a long-term
stable effect.

Adhesion and adsorption of microorganisms to a surface are influenced by physico-
chemical and morphological parameters as well as by molecular and cellular interactions.
Significant influence on bacterial adhesion can be achieved by controlling any of the related
surface parameters, such as charge, roughness, topography, or wetting properties [12].
Therefore, superhydrophilic surfaces can be used to develop easy-to-clean surfaces. In-
fluencing microbial adhesion can help to prevent biofilm formation, as biofilm formation
always has its origin in the adhesion of single microorganisms [12–14].

Biofilms on surfaces in general, and especially fluid-carrying systems, are a widespread
problem and occur in many industries, such as the food and dairy, marine, medical sup-
plies, water, optical, paper, and oil industries [13]. For example, biofilms are involved
in the contamination of food processing equipment, which can impair food quality and
safety [15,16]. In the oil industry, corrosion caused by biofilms is responsible for 40% of all
corrosion events in oil pipelines [17]. From a medical point of view, biofilms have critical
implications, as they are major contributors to infection transmission and are estimated
to be responsible for the development of 65% of all nosocomial infections [16]. Especially
disease spreading through the water systems of hospitals, which is directly connected
with biofilm formation in these systems, is a significant risk to the health of hospitalized
patients [18,19].

Biofilm formation enables microorganisms to survive in adverse environmental and
nutritional conditions, as well as in the presence of high concentrations of antimicrobial
agents such as antibiotics and disinfectants [16,20]. Additionally, microorganisms are
more persistent in humid settings than on dry surfaces, where they may already live for
months [21]. Thus, biofilm growth and its negative effects lead to high costs for cleaning and
maintenance, especially in water-bearing systems like pipes, where mechanical cleaning is
often impossible. This demonstrates the need for the development of materials that help
to prevent bacterial adhesion and the formation of biofilms [13]. Due to limited access to
many pipe systems, the mechanical cleaning of them is considerably impaired. It has been
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shown that after chemical disinfection of such difficult-to-clean systems, microbiological
contamination was still apparent [22].

To counteract the formation of biofilms in water-bearing systems, it is reasonable to
prevent microbial adhesion in the first place, as the adhesion of microorganisms is assumed
to be the start of biofilm formation [12–14]. This can be achieved by adapting the surface
wettability using TiO2 coatings and their activation by UV irradiation to establish superhy-
drophilic surfaces for microbial adhesion prevention, as described above. This is the aim of
our study. For this purpose, we investigated microbial colonization on superhydrophilic
TiO2-coated half pipes and the time-dependent stability of superhydrophilicity. We chose
half pipes with a diameter of 36 mm as a model system for biofilm-burdened water-bearing
pipe systems. Initial microbial adhesion has its origins usually in the lower half of pipes
due to gravity effects and a continuous abundance of liquid residue. The half pipes were
coated with TiO2 by pulsed magnetron sputtering. The coated samples were activated
using UVA irradiation with a wavelength of 365 nm until superhydrophilicity was con-
firmed. For the evaluation of the influence of superhydrophilicity on microbial colonization,
a specialized test regime was developed to represent the usual loading and unloading
of liquid in a pipe-based water-bearing system. As test organisms, both Gram-negative
and Gram-positive bacteria strains were used: Escherichia coli (E. coli) and Staphylococcus
warneri (S. warneri). Both strains are reported to be involved in healthcare-associated in-
fections [18,23,24]. S. warneri was chosen as a representative for Staphylococcus aureus (S.
aureus) and its methicillin-resistant variant (MRSA), one of the most dangerous hospital
germs. MRSA and human pathogenic strains of E. coli are among the most common biofilm-
forming bacteria that cause hospital-related infections [24]. S. warneri likewise tends to
form biofilms and, hence, is a suitable representative to investigate the initial events of
biofilm formation, in particular microbial adhesion [23]. E. coli is a commonly identified
organism in water-bearing system-related outbreaks in hospitals and was therefore selected
as a second microorganism to be investigated [18].

2. Materials and Methods
2.1. UV Irradiation Setup for Surface Activation

Two UV irradiation setups (planar and curved) using UVA LEDs were constructed
to activate the coatings on flat (Figure 1a) and curved samples (Figure 1b). The setup
for flat samples in Figure 1a uses a 365 nm LED (NDU1104ESE-365-TR, Stanley Electric,
Meguro, Japan), and the setup for curved samples in Figure 1b uses two 365 nm LEDs
(ELUA3535OGB series, Everlight Electronics, New Taipei, Taiwan). The irradiation distance,
the distance between the UVA LED and the sample surface, was 36 mm. This was based
on the standardized diameter of a common drainage pipe (DN 40) according to standard
specification [25].
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Figure 1. UV LED irradiation setup for sample activation on (a) flat and (b) curved samples.

2.2. Determination of UV Dose Distribution

For surface activation, the coated samples were irradiated with UVA radiation using
the setup described in Section 2.1 and Figure 1. UVA irradiation results in dose application
onto the sample surface. To evaluate the relative dose distribution during sample irradia-
tion, B3 film dosimeters (WINdose B3, GEX Corporation, Palm City, FL, USA) were applied
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to several positions on the samples (see Figure 2). The film dosimeters (10 mm × 10 mm)
were irradiated for 25 min and afterwards stored in the dark under ambient conditions for
24 h. During this storage time, irradiation-induced color development took place. The film
dosimeters were scanned (Epson Perfection 4490 Photo, Seiko Epson Corporation, Suwa,
Japan), and their resonance was determined via gray shades (Risø Scan, Risø High Dose
Reference Laboratory, Roskilde, Denmark). The resonance was used as measure for the
applied UVA dose. To evaluate the relative dose distribution, the central measurement
point was set to 100%, and all other points were normalized to this one.
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Figure 2. Relative dose distribution of the 365 nm LEDs on curved samples (left) and schematical
drawing of the setup (right). The measured values were normalized to the dose measured at the
central point (100%).

The irradiance of the LEDs on the center of the sample surface was measured by UV
radiometer equipped with a UVA sensor (RMD Pro, UV Messtechnik Opsytec Dr. Göbel,
Ettlingen, Germany). This point represents the measurement point “c” (see Figure 2) and
was set to 100%, as described above.

2.3. Sample Coating, Conditioning, and Activation

Sample Coating: The coating deposition process was bipolar pulsed magnetron sput-
tering in the medium frequency range (some 10 kHz) [26]. The plant UNIVERSA of
Fraunhofer FEP was used for coating the samples used in this study. A pair of rectangular
magnetron sources arranged side by side were equipped with titanium (Ti) targets of
dimensions 508 mm × 127 mm and reactively sputtered in an argon–oxygen atmosphere at
pressures in the range of 1.03–1.13 Pa.

The TiO2 coating was deposited on flat substrates by rotating the substrates around
an axis parallel to the target surface in front of the magnetrons, as described by Fietzke and
Zywitzki (deposition parameters in Table 1) [27]. The flat samples were used to determine
the effect of UVA irradiation during coating activation in terms of surface hydrophilization,
investigated by WCA measurements. Pieces of aluminum oxide ceramic (Al2O3; Rubalit®

710, 50 mm × 50 mm) and stainless steel (X5CrNi18-10, material No. 1.4301, surface finish
2R: cold rolled and bright annealed, 100 mm × 60 mm) with a thickness of 0.95 mm were
selected as substrates. These two substrate materials with differences in surface roughness
and chemical composition were chosen to evaluate coating deposition on strongly varying
substrates and its influence on layer properties. Stainless steel represents a relevant material
type for application in water-bearing pipes. The TiO2 coating was deposited on these
substrates directly or with an additional adhesion-promoting Ti interlayer. For coating of
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the curved samples (X5CrNi18-10, 0.5 mm thickness), the concave side was coated using
analog process parameters (Table 1).

Table 1. Data of the titanium dioxide (TiO2)-coated samples and the coating parameters for deposition
by pulse magnetron sputtering. Coating times for the TiO2 coatings were 55–60 min (flat and curved)
and 5 min for the Ti interlayer.

Sample Type Substrate T
Heater [◦C]

Pulse
Pattern [µs]

ΓAr
[sccm]

ΓO2
[sccm] p [Pa] Coating Rate

[nm/min] Coating

SS-TiO2 stainless steel 250 16:10 100 38–39 1.12 47–51 pure TiO2

SS-Ti-TiO2 stainless steel 250 16:10 100
40 1.03 50–51 Ti interlayer

39 1.13 200–210 TiO2 coating

Al2O3-TiO2 Al2O3 ceramic 250 16:10 100 38–39 1.12–1.13 47–51 pure TiO2

Al2O3-Ti-TiO2 Al2O3 ceramic 250 16:10 100 40
1.03 50–51 Ti interlayer

1.13 200–210 TiO2 coating

curSS-TiO2 stainless steel 250 15.5:10:
16.5:10 100 38 1.12 53 pure TiO2 on curved

samples

Sample Conditioning: To obtain a comparable initial state of the coating surface, the
TiO2-coated samples were conditioned by 90 min UVA irradiation using the irradiation
setup described in Section 2.1. Afterwards, the samples were stored in water under dark
conditions for 24 h. Then, the water was drained off, and the samples were stored for a
further 5 days under ambient conditions in the dark. This procedure for optimal sample
conditioning was evaluated in preliminary tests to achieve similar initial wetting character-
istics (see Section 3.2). Until usage, the samples were stored under ambient conditions in
the dark. No further change in WCA was observed under these storage conditions.

For microbiological investigations, the samples were autoclaved (121 ◦C, 20 min,
210 kPa) before use and stored under sterile conditions.

Sample Activation: The TiO2-coated samples were activated by UVA irradiation
directly before the start of the respective microbiological experiments using the setup
described in Section 2.1 and underwent continuous irradiation for 30 min.

2.4. Sample Characterization
2.4.1. Determination of Layer Thickness

The layer thickness was determined by weighing the samples on an analytical balance
(AT261 DeltaRange, Mettler-Toledo, Greifensee, Switzerland) before and after coating. The
weight gain after the coating process was normalized to the overall coated surface per
sample, and, considering the estimated density of the coating (anatase: 3.89 g/cm3 [28]),
the layer thickness was calculated.

2.4.2. Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and X-ray
Diffraction (XRD) Measurement

AFM: The surface roughness was determined by AFM measurements in non-contact
mode at the center of the flat samples according to [29] using NaniteAFM (Nanosurf,
software: C3000 controller (version 3.8.4.2), Liestal, Switzerland). The evaluation of the
measurements was performed in the program MountainsSPIP Expert (version 8.0.9286,
DigitalSurf, Besançon, France).

SEM: Characterization of the surface morphology and layer structure of the TiO2
coatings was performed using a field emission scanning electron microscope (SU8000,
Hitachi, Tokyo, Japan). Cross sections were obtained by breaking the substrates, which, in
individual cases, was followed by ion polishing. This method was also used to determine
the approximate lateral size of the anatase crystals.

XRD: Measurements were performed using a D8 Discover (Bruker Corporation, Biller-
ica, MA, USA) with a grazing incidence of 1◦ and copper Kα-radiation on one representative
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sample of each coating deposited on flat substrates. Measurements were conducted to
determine the effects of the substrate and/or the interlayer on the composition and phase
of the final TiO2 surface. The JCPDS-International Center for Diffraction standard plots
#21-1272 (anatase) and #21-1276 (rutile) were used to evaluate the crystal phases [30].

2.4.3. Contact Angle Measurement, Superhydrophilicity, and Stability

WCA measurements were used to examine the wetting behavior of the TiO2 coatings.
The measurements were performed using an OCA 20/6 (software: SCA20.2 (version 4.1.16
build 1023), DataPhysics, Filderstadt, Germany) and the sessile drop method with a drop
volume of 0.3 µL of deionized water. The water contact angle was measured ten times in
the middle of the flat samples; the average value and standard deviation were calculated.
The OCA 20/6 device has a minimum measurable contact angle of 4◦, meaning that actual
contact angles below 4◦ are presented as 4◦ as well.

WCA measurements were used to determine the optimal sample conditioning pro-
cedure, to evaluate hydrophilicity upon UVA activation, and to investigate the long-term
stability. Samples were activated by 90 min UVA irradiation. Stability investigations regard-
ing the hydrophilicity were conducted for up to 8 days at the following intervals: before
UVA irradiation, directly after irradiation, 0.5 h and 1.0 h after irradiation, and every 24.0 h
after irradiation.

According to the literature, samples were designated as superhydrophilic if the WCA
was below or equal to 10◦ [5,8].

Each type of sample was measured in triplicate in three independent experiments.

2.5. Microbiological Evaluation
2.5.1. Stock Culture and Sample Inoculation

Microbiological tests were performed using E. coli (Gram-positive bacteria) and S.
warneri (Gram-negative bacteria).

Cultivation of E. coli: For the stock culture, 100 mL of standard I nutrient broth (15 g/L
peptone, 3 g/L yeast extract, 6 g/L sodium chloride, 1 g/L glucose, Carl Roth, Karlsruhe,
Germany) were inoculated with a stock aliquot of E. coli K12 (DSM 498) (stored at −80 ◦C)
in a 300 mL Erlenmeyer flask and incubated for 24 h at 37 ◦C under ambient conditions in
a shaking incubator at 125 rpm.

Cultivation of S. warneri: For the stock culture, 100 mL of CASO broth (16 g/L peptone
from casein, 3 g/L peptone from soy, 2.5 g/L di-potassium hydrogen phosphate, 5 g/L
sodium chloride, 2.5 g/L glucose monohydrate, Carl Roth) were inoculated with a stock
aliquot of S. warneri (DSM 20036) (stored at −80 ◦C) in a 300 mL Erlenmeyer flask and
incubated for 24 h at 37 ◦C under ambient conditions in a shaking incubator at 125 rpm.

To determine bacterial density, after 24 h, the cultures were diluted 1:100 with the
respective culture medium, and 10 µL aliquots each were pipetted into a Neubauer counting
chamber (Neubauer-Improved, Paul Marienfeld, Lauda-Königshofen, Germany). The
number of apparent bacteria in the counting grid was counted under a light microscope
(B3 professional series, MoticEurope, Barcelona, Spain), and bacterial density in the stock
was calculated considering the dilution.

For impedance calibration (Section 2.5.2) as well as for every experiment during
microbiological investigation of the coated curved samples (Section 3.3), a new stock of E.
coli and S. warneri was grown for each.

For inoculation of the coated curved samples (curSS-TiO2), the stock cultures were
diluted with 1× PBS (Dulbecco’s, Capricorn Scientific, Ebsdorfergrund, Germany) to a
bacterial density of 103 mL−1.

Curved samples were inoculated (after their activation) with bacterial suspension,
which was dropped centrally onto the concave side of the sample. For a detailed expla-
nation of the sample preparation and subsequent microbiological procedures, please see
Section 3.3.
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2.5.2. Impedance Measurement

Impedance describes the resistance to flow of an alternating electric current through a
conducting material. It is a complex quantity consisting, amongst others, of a conductive
component [31]. In microbiology, impedance measurement can be used to determine initial
bacterial concentration in solutions by recording the change in impedance of the solution
over time and relating the results to a calibration. The change in impedance is caused by the
release of ionic metabolites from viable bacteria in the solution. It is usually measured by
the so-called direct method, with a pair of electrodes in direct contact with the solution and
the bacteria therein [31,32]. Impedance meters measure the relative or absolute changes in
impedance, capacitance, or conductivity at a given temperature (incubation temperature)
at regular time intervals. The impedance meter used in the experiments, BacTrac 4100
(software: Y1.49r/D7 (5.10.2004), SY-LAB, Neupurkersdorf, Austria), uses the impedance
splitting method. The total impedance is the sum of two components, the electrode or
interface impedance (E value) and the electrolyte or media impedance (M value), which can
be measured in different frequency ranges. The BacTrac systems are capable of measuring
both components at 1 kHz [33]. Due to its higher sensitivity to changes as well as its
reliability in media within a wide range of salt concentrations, the E value was selected for
our experiments [32].

It has already been shown that this method is suitable for the detection of E. coli and S.
warneri, e.g., to record the delay in impedance curves of microorganism suspensions with
different initial densities of microorganisms [34]. The usual detection limit of the device
is 1 bacteria/mL, which therefore allows the detection of low bacterial concentrations in
liquids.

The time the impedance value of a sample needs to reach or exceed the previously
defined threshold is called the detection time. It depends directly on the used microbial
strain and the initial number of viable bacteria. The detection thresholds were chosen in
such a way that the exceedance occurs in the lower third of the impedance curves for all
bacterial concentrations according to [35,36]. Within preliminary investigations, thresholds
of E% = 10 (E. coli) and E% = 7 (S. warneri) were determined.

Direct impedance measurement was used to determine the amount of viable bacteria
on the sample surface after activation and UVA irradiation. The method was calibrated for
both bacterial strains.

Calibration was performed separately for both bacteria strains in the respective culture
medium (see Section 2.5.1) in the impedance meter. Stock cultures were diluted in a 1:10
series with the respective medium from 109 to 100 bacteria/mL. Each impedance cell
was filled with 6 mL of the dilution. Each dilution was measured in triplicate. As the
negative control, triplicates of 6 mL of the respective sterile culture medium were used. All
impedance samples were incubated in the impedance meter for 24 h at 37 ◦C, recording
the impedance value every 10 min. In parallel, an aliquot of all dilutions was plated in
triplicate on nutrient agar to determine the actual number of viable bacteria by counting
colony-forming units (CFUs) after incubation (for details, see Section 2.5.3).

For each dilution, the obtained detection times were plotted against the viable number
of bacteria achieved by the plate count method to obtain the calibration curve for both
bacterial strains. The calibration curves can be found in Figure 3.

By using the acquired detection time for a solution of unknown bacterial load, this
calibration allows the calculation of the initial number of viable bacteria in the solutions
and on the investigated samples.

For investigations on coated samples, impedance measurement was used to determine
the remaining concentration of viable bacteria on the sample surface after performing the
developed experimental regime described in Section 3.3. Five aliquots per sample, with a
volume of 6 mL each, were transferred into impedance cells. A triplicate of 6 mL sterile
culture medium was used as negative control, and a triplicate of 6 mL stock culture diluted
to 103 CFU/mL as positive control. The measurement cells remained in the impedance
meter for up to 5 days, or until bacterial activity was detected by exceeding the previously
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defined threshold. Investigations were performed in triplicate, with three independent
experiments per sample.
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Figure 3. Calibrations of the direct impedance methodology for (a) Escherichia coli (E. coli) and
(b) Staphylococcus warneri (S. warneri). The blue diamonds represent individual measuring points on
the basis of which the calibration (black line) was created.

2.5.3. Plate Count Method

The plate count method was used as a reference to determine the amount of viable
bacteria for the calibration of the impedance measurement. A total of 100 µL of all calibra-
tion suspensions added to the impedance measurement cells were plated in triplicate on
nutrient agar after dilution to 103 bacteria/mL with the respective nutrient medium. The
post-dilutions were done in 1:10 or 1:100 steps with a final volume of 10 mL. The 102, 101,
and 100 bacteria/mL suspensions were also plated in triplicate with a volume of 100 µL
each. Positive controls were 100 µL of the stock solution diluted to 103 bacteria/mL in
triplicate, and negative controls were 100 µL of sterile nutrient medium on nutrient agar
and pure nutrient agar. E. coli was grown on standard I nutrient agar (15 g/L peptone,
3 g/L yeast extract, 6 g/L sodium chloride, 1 g/L glucose, 12 g/L agar, Carl Roth), and S.
warneri was grown on CASO agar (15 g/L peptone from casein, 5 g/L peptone from soy,
5 g/L sodium chloride, 15 g/L agar, Carl Roth) with 3 g/L yeast extract (Carl Roth). For E.
coli, the agar plates were incubated for 20 h at 27 ◦C under ambient conditions and 70%
humidity, followed by 5 h at 37 ◦C under ambient conditions and 70% humidity. For S.
warneri the agar plates were incubated for 24 h at 37 ◦C under ambient conditions and 70%
humidity. The number of CFUs was determined afterwards by optical counting of apparent
colonies. The number of viable cells in the sample medium was calculated according to the
following formula:

CFU/mL = (mean value colonies of all plates of one dilution level × dilution
factor)/(plated volume of bacterial suspension [mL]).

(1)

2.6. Statistics

Microsoft 365 Excel (version 2401) was used for the calculation of the mean values
and standard deviations within evaluations of the radiation characteristics of the LEDs, the
water contact angle measurements, the calculation of the impedance calibrations, and the
microbiological analysis of the coatings.

BacEval (version Y1.25r/D7 (19.08.2004), SY-LAB, Neupurkersdorf, Austria) is an
analysis program for impedance meters that was used to evaluate the detection times and
corresponding concentrations of viable bacteria.

For testing the statistical significance, the data were checked for Gaussian distribution
(Kolmogorov/Smirnov test, Lilliefors test: p-value) after exclusion of outliers (ROUT,
Q = 5%). If the data were normally distributed, statistical significance was tested with an
unpaired, two-tailed t-test (Welch’s correlation, confidence level: 95%). If there was no
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normal distribution or it could not be tested, the unpaired, two-tailed Mann–Whitney test
(confidence level: 95%) was used. Statistically significant differences are highlighted with *.

3. Results and Discussion
3.1. Dose Distribution and Influence of UV Wavelength on Sample Activation

The determined dose distribution on the curved sample is shown in Figure 2. The
measured values are expressed in percent, and the value of the central point of the sample
was set to 100%. As can be seen from Figure 2, the highest dose is applied to the uppermost
point of the side walls of the curved surface and is 9–10% higher compared to the central
point. The reasons for this are the smaller distance to the LEDs compared to the other
measurement points and that, due to the central positioning between both LEDs, radiation
from both LEDs contributes to the dose input (see Figure 1). The lowest dose is applied in
a vertical direction beside the central point at a distance of 15 mm. On these points, the
two LEDs do not contribute equally to the applied dose. Accordingly, a dose loss of up to
11% is measured at a vertical distance of 15 mm to the central point. For the envisioned
application, the homogeneity of dose distribution on the surface seems acceptable.

It is known that both the light irradiance and the wavelength of the light have a
decisive influence on the process of photocatalytic degradation [7]. It is also a known
theory that short UV wavelengths increase the photocatalytic efficiency of TiO2, as it is
supposed that the formation of electron–hole pairs is efficiently promoted by suppressing
their recombination to a greater extent than at longer UV wavelengths [37,38]. Thus, there
is a higher probability of recombination of electron–hole pairs with our experimental setup
due to the chosen wavelength of 365 nm, which is longer compared to UVC radiation
with wavelengths below 280 nm. It was reported by Herrmann as a hypothesis that
the recombination of electron–hole pairs formed by UV radiation is negligible at low
light irradiances (far below 25 mW/cm2) [39]. In our experimental setup, the UVA LEDs
apply an irradiance of 8.2 ± 0.6 mW/cm2 (flat samples) and 9.8 ± 0.7 mW/cm2 (curved
samples, central point). These values are far below the above-mentioned irradiance level of
25 mW/cm2 described by Herrmann [39]. Therefore, it can be assumed that the electron–
hole pair recombination in our experiments will be correspondingly low. Furthermore,
Venkatchalam et al. found that wavelengths of 365 nm enable better activation of TiO2 than
wavelengths of 254 nm, as the longer wavelengths enable deeper penetration of absorbed
contaminations on the surface [38]. In our envisioned application, water-bearing pipe
systems, it can be expected that other contaminants besides bacteria are present. These
could absorb the UV radiation before it reaches the surface of the TiO2 coatings. With
the relatively long wavelength chosen for our setup, this impairment of UV activation is
mitigated to some extent.

Assuming the most accepted theory that superhydrophilicity on TiO2 is caused by
the formation of electron–hole pairs upon UV irradiation and avoiding recombination, the
superhydrophilicity of the investigated coatings should not be significantly impaired by
the chosen wavelength and the irradiance of the UV sources, since the recombination of
electron–hole pairs should be low, as explained above.

3.2. Surface Characterization and Superhydrophilicity

The AFM, SEM, and XRD measurements used for surface characterization revealed
surface morphological and structural differences between the samples coated on differ-
ent substrates. This affects the activation of the different coatings and the associated
superhydrophilicity.

The AFM measurements reveal that the coatings on ceramic substrates show higher
roughness than on stainless steel (Table 2). In addition, the deposition of the Ti interlayer
leads to an increased roughness of the final TiO2 coating. Thus, comparing all coatings,
SS-TiO2 has the lowest roughness with Ra = 21.3 nm, and Al2O3-Ti-TiO2 has the highest
with Ra = 67.4 nm. Accordingly, the SEM images of the different samples show comparable
differences in the surface structure (Figure 4).
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Table 2. Thickness of deposited coatings, arithmetic average deviation of the roughness profile, and
lateral size of TiO2 crystallites.

Sample Type Coating Thickness [nm] Roughness Ra [nm] Lateral Size TiO2 Crystallites [nm]

SS substrate - 5.0 -

Al2O3 substrate - 120.0 -

SS-TiO2 2600 21.3 ≈150

SS-Ti-TiO2
1200 (Ti interlayer) 44.5 ≈5002800 (TiO2 coating)

Al2O3-TiO2 2600 56.4 ≈200

Al2O3-Ti-TiO2
1200 (Ti interlayer) 67.4 ≈3502800 (TiO2 coating)

curSS-TiO2 3200 - ≈200Coatings 2024, 14, x FOR PEER REVIEW 11 of 23 
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Figure 4. Scanning electron microscope (SEM) images of TiO2 coating on (a,b) aluminum oxide
ceramic substrate (Al2O3); (c,d) Al2O3 substrate with Ti interlayer; (e,f,l) stainless steel substrate;
(g,h) stainless steel substrate with Ti interlayer; (i–k) curved stainless steel substrates. (k,l) Higher
magnifications of the coatings on the geometrically different stainless steel substrates (flat and
curved) for better comparison of the influence of substrate geometry (flat (l) or curved (k)) on coating
formation. The red arrows in (d) mark gaps in the coating.

The layer thicknesses given in Table 2 were determined by weighing. Compared with
the SEM cross sections in Figure 4, there are deviations of a maximum of 20%, which are
attributed to the porosity of the coatings.

The SEM images reveal significant differences in the layer structure that depend
on the substrate material and the deposition of an interlayer (Figure 4). The substrate
material has the greatest impact on the layer formation, as it affects the structure of the Ti
interlayer and, as a result, the structure of the final coating. The stainless steel substrate
has a lower roughness, in the range of Ra = 5 nm, while the Al2O3 ceramic has a higher
roughness, in the range of Ra = 120 nm, due to its grain structure (manufacturer’s data).
This leads to the formation of gaps in the TiO2 layer, which are wider and deeper than those
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between the individual crystallites (Figure 4d). These gaps extend into the Ti interlayer on
Al2O3 substrates, while the interlayer on stainless steel is uniformly dense and pore-free
(Figure 4h).

The interlayer influences the grain growth of the final coating and thus affects the
lateral grain size of the crystallites. On the Al2O3 substrate, this influence is less pronounced
than on stainless steel, on which at least a doubling of the lateral expansion of the crystallites
and thus an increase in surface roughness is observed (Figure 4 and Table 2).

TiO2 occurs in different phases with different facets of the crystallites. XRD mea-
surements can be used to investigate the layer composition with respect to these two
aspects [3,40]. The results of the XRD measurements show that TiO2 consisting of pure
anatase is deposited on both substrate materials without interlayers (Figure 5a,c). The
final coating on stainless steel substrates (Figure 5a) shows a very strong texture; for the
coatings on ceramic substrates, this effect is less pronounced (Figure 5c). The texturing is
also evident on the coating surface visualized by SEM (Figure 4). TiO2 coatings deposited
on Ti interlayers (Figure 5b,d) are predominantly anatase phase but contain an amount
of rutile phase that appears to be independent from the substrate material. Accordingly,
the Ti interlayer has a significant effect on the texture and phase of the TiO2 coating. The
texture of anatase deposited on Ti interlayers is clearly visible only on stainless steel sub-
strates (Figure 5b), whereas no preferred orientation of anatase is observed on the ceramic
substrates (Figure 5d).

Coatings 2024, 14, x FOR PEER REVIEW 12 of 23 
 

 

 

Figure 5. X-ray diffraction (XRD) determined composition of TiO2 coatings on (a) stainless steel 

substrate, (b) stainless steel substrate with Ti interlayer, (c) Al2O3 substrate, (d) Al2O3 substrate 

with Ti interlayer. 

It is also evident from the diagrams in Figure 5 that the faceting of the anatase crys-

tallites is influenced by both the substrate material and the interlayer. The (101) facets 

occur on stainless steel only in combination with the Ti interlayer, while they are ob-

served on ceramic substrates independently from the interlayer. 

In summary, the substrate material leads to differences in the surface morphology 

of the final coatings, but the greater influence results from the deposition of a Ti inter-

layer, which additionally influences the phase of the final TiO2 coating. 

The layer formation on flat or curved geometries is strongly affected by the sub-

strate geometry. The geometry influences the angular distribution of incident particles 

during layer deposition as well as the associated energy distribution. A complex geome-

try like the one used for the curved samples can induce shadowing effects and lead to al-

terations in the deposited coatings. This results in an inhomogeneity of the layer thick-

ness, roughness, and crystallite structure (Figure 4i,j, Table 2). Taking changes in inter-

ference color as a qualitative sign for inhomogeneity in coating thickness, a slight but 

symmetrical decrease in coating thickness from the center to the top and bottom of the 

curved samples was observed . 

Compared to the TiO2 coating on flat samples, no gaps formed between the crystal-

lites in the curved geometry (Figure 4k,l). 

WCA measurements were performed to investigate the wetting behavior and su-

perhydrophilicity of the TiO2 coatings after UVA activation. From the literature, it is 

known that major problems for the investigation of photo-induced hydrophilicity on 

TiO2 are the non-reproducibility of the initial state of a coating and the different methods 

A
n
at
as
e 
(1
1
2
)

A
n
at
as
e 
(2
0
0
)

A
n
at
as
e 
(1
0
5
)

A
n
at
as
e 
(2
1
1
)

20 30 40 50 60

2 Theta in deg

0

1000

2000

3000

4000

5000

In
te
n
si
ty
 in

 a
rb
. 
u
n
it

A
n
at
as
e 
(1
0
1
)

A
n
at
as
e 
(0
0
4
)

A
n
at
as
e 
(2
0
0
)

A
n
at
as
e 
(1
0
5
)

A
n
at
as
e 
(2
1
1
)

20 30 40 50 60

2 Theta in deg

0

500

1000

1500

2000

2500

In
te
n
si
ty
 in

 a
rb
. 
u
n
it

A
n
at
as
e 
(1
0
1
)

A
n
at
as
e 
(0
0
4
)

A
n
at
as
e 
(2
0
0
)

A
n
at
as
e 
(1
0
5
)

A
n
at
as
e 
(2
1
1
)

R
u
ti
le
 (
1
1
0
)

R
u
ti
le
 (
1
0
1
)

20 30 40 50 60

2 Theta in deg

0

500

1000

1500

2000

2500

In
te
n
si
ty
 in

 a
rb
. 
u
n
it

A
n
at
as
e 
(1
0
1
)

A
n
at
as
e 
(0
0
4
)

A
n
at
as
e 
(2
0
0
)

A
n
at
as
e 
(1
0
5
)

A
n
at
as
e 
(2
1
1
)

R
u
ti
le
 (
1
1
0
)

R
u
ti
le
 (
1
0
1
)

20 30 40 50 60

2 Theta in deg

0

500

1000

1500

2000

2500

In
te
n
si
ty
 in

 a
rb
. 
u
n
it

a b

c d

SS-TiO2 SS-Ti-TiO2

Al2O3-TiO2 Al2O3-Ti-TiO2

JCPDS #21-1272 - anatase JCPDS #21-1276 - rutile

Figure 5. X-ray diffraction (XRD) determined composition of TiO2 coatings on (a) stainless steel
substrate, (b) stainless steel substrate with Ti interlayer, (c) Al2O3 substrate, (d) Al2O3 substrate with
Ti interlayer.
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It is also evident from the diagrams in Figure 5 that the faceting of the anatase crystal-
lites is influenced by both the substrate material and the interlayer. The (101) facets occur
on stainless steel only in combination with the Ti interlayer, while they are observed on
ceramic substrates independently from the interlayer.

In summary, the substrate material leads to differences in the surface morphology of
the final coatings, but the greater influence results from the deposition of a Ti interlayer,
which additionally influences the phase of the final TiO2 coating.

The layer formation on flat or curved geometries is strongly affected by the substrate
geometry. The geometry influences the angular distribution of incident particles during
layer deposition as well as the associated energy distribution. A complex geometry like the
one used for the curved samples can induce shadowing effects and lead to alterations in
the deposited coatings. This results in an inhomogeneity of the layer thickness, roughness,
and crystallite structure (Figure 4i,j and Table 2). Taking changes in interference color
as a qualitative sign for inhomogeneity in coating thickness, a slight but symmetrical
decrease in coating thickness from the center to the top and bottom of the curved samples
was observed.

Compared to the TiO2 coating on flat samples, no gaps formed between the crystallites
in the curved geometry (Figure 4k,l).

WCA measurements were performed to investigate the wetting behavior and super-
hydrophilicity of the TiO2 coatings after UVA activation. From the literature, it is known
that major problems for the investigation of photo-induced hydrophilicity on TiO2 are
the non-reproducibility of the initial state of a coating and the different methods for the
pretreatment of the coatings (“sample conditioning”) as well as conditions during sample
storage. All of this leads to WCA variations in the range of 20–60◦. This severely compro-
mises the determination of relevant factors influencing the hydrophilicity of the surface
and a comparison with results obtained by different research groups [9]. By conditioning
all our coatings in a defined procedure (see Section 2.3), we created comparability of all
samples per sample type and additionally enabled the reproduction of this way of sample
conditioning in other studies. This good comparability within our own study is supported
by very low standard deviations in WCA measurements before UVA activation, i.e., at
point “−1.5 h” (max. 4◦ for each sample type (Figure 6)).
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Figure 6. Water contact angle (WCA) before and after activation by UVA irradiation of the samples.
Activation was performed a second time after 8 days (192 h). Samples: TiO2 on stainless steel substrate
(SS-TiO2, triangle, blue) and with Ti interlayer (SS-Ti-TiO2, circle, red), TiO2 on Al2O3 ceramic
substrate (Al2O3-TiO2, diamond, green) and with Ti interlayer (Al2O3-Ti-TiO2, square, yellow).
Significant differences are marked with an * and assigned to the color of the respective sample.

In the first step, we investigated the initial WCA of our conditioned samples. With 12◦

(Al2O3-Ti-TiO2) and 9◦ (Al2O3-TiO2), the initial WCAs of the conditioned TiO2 coatings on
ceramic substrate are lower than the WCA of the coatings on stainless steel substrate with
19◦ (SS-Ti-TiO2) and 13◦ (SS-TiO2) (“−1.5 h” in Figure 6). Additionally, the WCA is higher
on the samples with Ti interlayer. It is well known that surface morphology has a great
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influence on the contact angle [10,41]. It has been shown that rough TiO2 surfaces have a
lower contact angle than smooth TiO2 surfaces (roughness approx. ≤10 nm) [10,14]. In our
case, this relationship can be generally confirmed: TiO2 coatings (SS-TiO2, SS-Ti-TiO2) with
lower roughness show higher WCA than coatings (Al2O3-TiO2, Al2O3-Ti-TiO2) with higher
roughness (Table 2 and Figure 6). However, when comparing the coatings regarding the
presence of the Ti layer, the opposite trend is observed. The coatings with higher roughness
(due to the interlayer) show a higher WCA. The surface roughness thus cannot be the
sole cause of these observed WCAs. In addition, the chemical composition has a major
influence on surface hydrophilicity. With increasing amounts of chemisorbed OH groups,
the hydrophilicity increases as well [42].

After activation by UVA irradiation, all coatings show a WCA below 4◦ (“0 h” in
Figure 6), which is below the defined threshold for superhydrophilicity. This superhy-
drophilicity manifests as a strongly increased spreading of aqueous fluids on the surface
(Figure 7b). During 8 days of storage, the WCAs almost recovered, and after 8 days, the
second activation by UVA irradiation was performed (Figure 6, “192 h”), and again, WCAs
below the threshold for superhydrophilicity were observed. Thus, reproducible activa-
tion of superhydrophilicity by multiple UVA irradiation is possible for all TiO2 coatings
investigated, regardless of the coating composition and the existence of an interlayer.
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Figure 7. Spreading behavior of water on the TiO2 coating on stainless steel before (left) and after
(right) activation: (a) WCA measurement with 0.3 µL H2O; 1 mL H2O (b) on flat samples and
(c) curved geometries.

Furthermore, the long-term stability of the achieved superhydrophilic effect was
investigated by WCA measurements (Figure 6). In the first hour after UVA activation, the
WCA increases only by a few degrees for all coatings. In the following four days, the WCA
of the TiO2 coating on stainless steel substrates (SS-TiO2) continues to increase slightly, up
to about 10◦. After exceeding this threshold for superhydrophilicity, the coating’s WCA
further increases slowly, reaching a value of 12◦ after 7 days (“168 h”). The WCA of SS-
Ti-TiO2 already reaches the threshold for superhydrophilicity after 24 h. Up to 96 h, this
coating shows no further increase in WCA; afterwards, an increase up to 17◦ is observed
(“144 h” in Figure 6).
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The coatings on Al2O3 ceramic substrates also show a further increase in WCA. The
samples of Al2O3-Ti-TiO2 are superhydrophilic up to 48 h after activation by UVA irra-
diation; after 72 h, the threshold of 10◦ is exceeded. For Al2O3-TiO2, the WCA reaches
the threshold for superhydrophilicity 48 h after activation by UVA irradiation, but during
the following two days (“72 h” and “96 h” in Figure 6), the WCA decreases again and
reaches values below this threshold. After 6 days (“144 h”), the WCA increases up to 15◦

and stagnates in this range. No further change in WCA was observed for any coating
7 days (“168 h”) after irradiation. After the second activation by UVA irradiation, sim-
ilar observations of the WCA for all coatings are made (see Figure 6). Due to the low
standard deviations of the WCA measurements after the two activations, we assume that
the reproducibility of the wetting behavior is also given with further reactivations of the
coatings. TiO2 coatings with constant wetting behavior during cyclic reactivation have
already been described in the literature [43,44]. Therefore, we assume that our coatings
offer the prospects of long-term use by periodic reactivation.

It is known that the anatase phase of TiO2 has better photocatalytic efficiency compared
to other pure phases, such as rutile, brookite, amorphous TiO2, and mixed anatase/rutile
phases [3]. With regard to the formation of superhydrophilicity, coatings of rutile, but
also anatase and mixtures of the two phases, have been increasingly investigated in the
past [40–42,45]. Due to the fast electron–hole pair recombination of pure TiO2 coatings,
these surfaces lose their hydrophilic properties immediately when UV radiation is turned
off [10,46]. For example, Watanabe et al. showed that their polycrystalline anatase coatings
and rutile single-crystal coatings on glass reach the superhydrophilic state, but the effect
lasts only a few minutes [45]. Lv et al. observed on thin TiO2 coatings that, for the same
irradiation time, the superhydrophilicity of the anatase coating could be activated by UV
radiation, while the WCA of the rutile coating increased, i.e., no superhydrophilicity was
observed [40]. The group of Vrakatseli et al. investigated anatase–rutile mixed coatings.
Superhydrophilicity was observed for all coatings, with the most stable superhydrophilicity
lasting up to 2 days on coatings with the lowest rutile fraction (2%). Both the pure rutile
layer and the other mixed layers exhibited superhydrophilicity only for a few hours [41]. Yu
et al. showed on thin anatase, rutile, and anatase (77%) and rutile (23%) mixed coatings that
the mixed layer maintained superhydrophilicity for up to 24 h, followed by pure anatase
and rutile. They explained the differences in the long-term stability of superhydrophilicity
with the fact that fine roughness or porous structures and the number of hydroxyl groups
on the surface favor the adsorption of water molecules and reduce the rate of conversion
from the photo-induced hydrophilic to the hydrophobic state. Accordingly, the lowest
hydrophobicity rate of the mixed layer is due to the synergistic effects of the chemical and
geometric properties of the surface. Rutile exhibited the lowest stability because, first, the
hydroxyl content on the surface was the lowest, and second, water evaporated more easily
from the comparably larger pores of rutile [42].

Compared with the literature, our coatings show good properties in terms of super-
hydrophilicity, as even the coatings with the lowest stability showed superhydrophilicity
for up to 24 h (SS-Ti-TiO2, Figure 6). Lasting up to 4 days, SS-TiO2 shows significantly
better stability in terms of superhydrophilicity than the coatings discussed in the literature.
It is remarkable that apparently pure anatase coatings or a very high anatase content in
mixed coatings normally show the highest stability [40–42]. This observation also correlates
with our findings, as the pure anatase coatings (coatings without Ti interlayer) show a
longer stability of superhydrophilicity than the coatings with rutile fraction. Based on the
statements of Yu et al., the lower stability in our investigations of superhydrophilicity can
be attributed to the larger pores (higher roughness) of the coatings with rutile fraction, and
the 4-day-stable superhydrophilicity can be attributed to the absence of these pores and the
absence of rutile.

In addition to the phases of TiO2, the facets of the crystallites have an influence on the
photoactivity of TiO2 [10,45,47]. It has been proven both theoretically and experimentally
that the (101) facets of anatase surfaces are expected to be rather unreactive. Furthermore,
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the (001) facets are expected to have higher reactivity due to their larger size compared to
the (101) facets. Because of the higher reactivity of (001) facets, an increased formation of
electron–hole pairs is expected [47]. For rutile TiO2, the crystal planes (110) and (100) with
bridging oxygen sites were found to have higher efficiency for hydrophilic conversion than
(001) planes without bridging oxygen sites [10]. In addition, the adsorbed OH groups on
surfaces without bridging oxygen are considered unstable, so they tend to desorb more
easily, and the surface hydrophilicity decreases [45]. Thus, our coatings consist of rutile with
higher reactivity, but unreactive anatase was also proportionally deposited in the cases of SS-
Ti-TiO2, Al2O3-Ti-TiO2, and Al2O3-TiO2, as can be seen from Figure 5. The fact that anatase
(101) is rather unreactive is supported by our findings. Samples of SS-TiO2 that revealed no
anatase (101) have the highest reactivity and the most stable superhydrophilicity. This also
applies to the reactivation of these samples (Figure 6). Therefore, the SS-TiO2 system was
chosen for deposition on curved samples and application in microbiological studies (see
Sections 3.3 and 3.4).

3.3. Development of the Microbiological Test Regime for the Application-Oriented Evaluation of
Bacterial Colonization in Water-Bearing Pipes

The aim of our study was to investigate whether microbial colonization in water-
bearing systems (such as pipes) can be prevented by equipping the surface with super-
hydrophilic characteristics using TiO2 coatings. Therefore, the coating with the longest
superhydrophilic activity (SS-TiO2, see Section 3.2) was chosen and deposited on curved
substrates (curSS-TiO2). The microbiological test regime was adapted to the application
scenario of water-bearing pipes: the samples for microbiological evaluation are TiO2-coated
half pipes, as persistent water contact and microbial adhesion are more likely to take place
in the lower half of pipes.

In the literature, bacterial adhesion behavior in relation to the wetting characteristics
of surfaces is controversially discussed [48,49]. However, it has been demonstrated by
a variety of research groups that extreme hydrophilic surfaces can prevent bacterial ad-
hesion [14,50–54]. Therefore, our microbiological test regime focuses on detecting viable
bacteria on the sample surface.

The complete microbiological evaluation was designed as follows: In the first step,
the coated and conditioned samples were placed under the LEDs and activated by UVA
irradiation (see Section 2.3, Figure 1b). The second step of our microbiological test regime
simulated the bacterial contamination of the pipe, with subsequent retention of the con-
taminated liquid on the surface. Therefore, the samples were removed from the irradiation
setup after activation, and the surface was inoculated with 1 mL of bacteria suspension
of E. coli (103 CFU/mL) or S. warneri (103 CFU/mL). Although in the literature higher
concentrations of 103–1010 CFU/mL have also been reported [19,55,56], we chose this
concentration as we assumed, for the envisioned application, a new and clean pipe where
bacterial contamination principally arises from the inflow of liquid, e.g., after hand wash-
ing (max. 102 CFU/mL) [57–59]. The bacteria suspension was dropped centrally onto the
concave side of the sample (Figure 7c). The sample was then incubated for 45 min in the
dark at room temperature and under ambient conditions. As there is no liquid flow during
the incubation, this setup represents a worst-case scenario where microbial adhesion is
very likely due to sedimentation and the absence of shear stresses caused by continuous
liquid flow. Additionally, S. warneri tends to form biofilms and hence can be assumed as
representative of biofilm formation in a pipe, where microorganism dislocation is impeded
due to the good adhesion of the microorganisms to each other and to the substrate [23].

After this incubation, the sample surface was immediately rinsed with 20 mL of
sterile deionized water using a sterile syringe. Afterwards, a second activation of the
still-moist samples by UVA irradiation was conducted, simulating the step of reactivation
of the surface. For non-activated control samples, the irradiation periods were replaced by
storage in darkness. Assuming the superhydrophilic surface prevents bacterial adhesion,
there should be no viable bacteria remaining on the sample surface. To confirm this
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assumption, in the next step of our microbiological test regime, we tested for viable bacteria
on the surface.

To evaluate the number of viable bacteria on the sample surface, the samples were
overlaid with 40 mL of sterile culture medium and incubated for 22 h at 17 ◦C and 70%
humidity under ambient and sterile conditions in the dark. After incubation, the overlaid
medium was investigated concerning bacterial concentration using the direct impedance
measurement (see Section 2.5.2). The calibrations created for this purpose are shown in
Figure 3.

The results of the study of bacterial colonization on the surface using this test regime
can be found in Section 3.4.

In this regime, reactivation of the coating by a second irradiation was conducted since
regular reactivation of the coating will also be necessary for the envisioned application of
water-bearing pipes to enable long-term use. Based on the results of the WCA measure-
ments (see Section 3.2, Figure 6), it is confirmed that the coatings show superhydrophilicity
upon activation by UVA irradiation. The superhydrophilicity was maintained for up to
4 days. Nevertheless, we assume a daily activation would be suitable to guarantee a
constantly superhydrophilic surface and avoid bacterial adhesion. Hence, we defined a
daily reactivation of the coating by UVA irradiation.

3.4. Investigation of Bacterial Colonization on TiO2 Coatings

In the microbiological studies, we evaluated whether viable bacteria were present
on the surface of the inoculated curved samples. The evaluation was performed using E.
coli and S. warneri, with S. warneri as a representative of a biofilm former and E. coli as a
common pathogen in waterborne system-related outbreaks in hospitals [18,23]. For some
samples, no viable bacteria were detected. On the other samples, small amounts were
detected (Figure 8 and Table 3). On the positive controls and the samples without UVA
activation, both E. coli and S. warneri were detected using the impedance measurement
(example impedance curves, see Figure 8). The detected bacterial concentrations of the
non-activated samples were 0.939 CFU/mL (S. warneri) and 0.015 CFU/mL (E. coli) (Table 3).
Thus, the bacterial contamination with the Gram-positive S. warneri is 100-fold higher than
the Gram-negative E. coli., which can be attributed to the tendency of aggregation and
preferred biofilm formation of Staphylococcus species [60].
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Table 3. Viable bacteria determined by direct impedance measurement.

Sample Type Microorganism UVA Dose [J/cm2] Viable Bacteria [CFU/mL]

curSS-TiO2

E. coli
17.6 ± 1.2 0.000 ± 0.000

no activation 0.015 ± 0.002

S. warneri
17.6 ± 1.2 0.000 ± 0.000

no activation 0.939 ± 1.359

The low number of viable bacteria on the sample without UVA activation (Table 3)
indicates that generally only a small fraction of the inoculated bacteria colonizes the surface.
From the literature, it is known that the characteristics of the material, such as the surface
wettability, the properties of the bacteria, and the environmental conditions, significantly
affect bacterial adhesion on the surface [12,14,49,61]. If microbiological adhesion is consid-
ered in relation to the wetting properties of a surface, very different statements can be found
in the literature [12–14,48,50,61–65]. In general, superhydrophobic (WCA > 150◦) and super-
hydrophilic (WCA < 10◦) surfaces have been reported to have an adverse effect on bacterial
adhesion, as bacteria are more likely to adhere to moderately wettable surfaces (WCA
40–130◦) than to extremely wettable surfaces like superhydrophilic surfaces [12,14,48,63].
Studies with a wetting range of WCA between 54◦ and 130◦ showed that the adhesion of
bacteria is favored with an increasing WCA because an increase in surface hydrophobicity
promotes the adsorption of adhesive proteins like peptidoglycans [61,64]. For E. coli, it
is known that hydrophobic surfaces are preferred for adhesion due to the hydrophobic
lipopolysaccharide bacterial surface [48,50]. In contrast, Koubali et al. showed that the
adhesion of the hydrophilic bacterium S. aureus is better on very hydrophilic surfaces (WCA
15–36◦) than on moderately hydrophilic surfaces (WCA 46–68◦) [48,62]. Based on the WCA
measurements of our samples (Figure 6), an initial WCA below 20◦ is to be expected for all
our samples. Thus, even without UVA activation, the samples show a strongly hydrophilic
surface, which, based on the above-mentioned results of other research groups, explains
the higher bacterial concentration of S. warneri on the samples compared to E. coli. E. coli,
as a hydrophobic bacterium, preferentially binds to hydrophobic surfaces, while S. warneri
seems to preferentially adhere to hydrophilic surfaces similar to S. aureus [50,62]. The
adhesion of microorganisms to a surface is furthermore influenced by hydration effects,
which are a result of the balance between hydrophilicity and hydrophobicity between
microorganisms and the surface as well as the hydrophobic–hydrophilic properties of the
surface [13,65]. The prevention of microbial adhesion on superhydrophilic TiO2 surfaces is
attributed to the hydration layer formed on the TiO2 surface, as this inhibits the interaction
between the bacterium and the surface [14,51–54]. This explains the result of no bacterial
colonization on the UVA-activated samples in our studies.

Additionally, surface roughness has an influence on bacterial adhesion to the surface.
High values of roughness (values above the lateral size of relevant bacteria) can lead to an
increase in surface area, which facilitates adhesion for bacteria [12,14,49,63,65]. In addition,
the surface morphology (size and spacing of features) at the scale of the bacterial cells
provides protection from the shear forces of fluids and supports initial adhesion on the
surface [12,63]. But as the size and shape of bacteria vary and environmental conditions
are also subjected to variations, there is reportedly no consistent relationship between
bacterial adhesion and surface roughness [12,14,48]. In addition, differences in surface
nano-roughness can lead to fundamental changes in adhesion behavior [63]. Since the
roughness of the investigated surfaces (<100 nm) is two dimensions smaller than the size of
the bacteria used (≥1 µm), we assume that bacterial adhesion is impaired by these rather
smooth surfaces.

However, for our study, we cannot exclude that, besides superhydrophilicity, other
mechanisms influence microbial colonization of the surface. Besides surface roughness/
smoothness, the effect of photocatalysis due to UVA activation and the inactivating effect of
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UVA irradiation itself (during the second activation step) might influence the adhesion and
abundance of viable bacteria on the sample surface. For this reason, we want to address
these points in the subsequent section.

In our setup, we used UVA irradiation with a wavelength of 365 nm. UVA irradiation
can inactivate microorganisms by oxidative stress through the formation of reactive oxygen
species, but the mechanisms are much less effective and more time-consuming than the
damage mechanisms by UVB or UVC radiation, which damage the DNA directly and lead
to the effective inactivation of bacteria [66–68]. Since no literature data for the inactivation
of S. warneri with UVA radiation were found, we discuss inactivation values for the closely
related bacterium S. aureus. Regarding the inactivation doses at 365 nm for S. aureus
and E. coli (our second model organism), controversial statements can be found in the
literature [66–70]. It has been reported that, for a 1 log reduction of viable bacteria in
suspensions containing E. coli, doses of 55.2 [68], 13.8 [67], 62.6 [66], and 122.2 J/cm2 [70]
had to be applied. For S. aureus, a required dose of 44.2 J/cm2 was found [68]. However,
inactivation below 1 log at 720.0 J/cm2 has also been reported for both microorganisms [69].
Prasad et al. also found that the doses required for inactivation depended additionally on
the irradiance of the UVA source. The higher the irradiance, the lower the doses required
for inactivation. The reported inactivation doses were obtained with higher irradiances
(17–70 mW/cm2) [66–70] than the irradiance in our setup (9.8 mW/cm2). Thus, we assume,
based on the reported correlation between irradiance and dose, that the doses applied
to our samples (17.6 J/cm2 to 19.4 J/cm2) are not sufficient for inactivation by 1 log of
both bacteria strains investigated. Hence, direct inactivation by UVA radiation within our
experiments has a negligible effect.

Even though photocatalysis and superhydrophilicity are two different processes, it is
assumed that they occur simultaneously on the surface of TiO2 coatings upon activation
with UVA radiation and the subsequent formation of electron–hole pairs [5,7,8]. The
generated electron–hole pairs can either increase hydrophilicity or support photocatalysis.
Therefore, it is concluded that one of these two processes is preferred, which in turn
depends on the processing and composition of the coating [7]. Thus, it is possible that
photocatalysis occurs during the second UVA irradiation in our microbiological regime,
which contributes to the inactivation of the bacteria as well. When comparing UVA, UVB,
and UVC radiation of the same irradiance, it has been reported in the literature that the
efficiency of photocatalytic inactivation of bacteria on TiO2 is the highest for UVC and
UVB [71]. Considering this fact and the observation that our surfaces preferably seem
to have a strongly hydrophilic character (Figures 6 and 7), the reduction of bacteria on
TiO2 in our experiments can be attributed mainly to the prevention of adhesion due to
superhydrophilicity. However, even if photocatalytic behavior might contribute in small
amounts to the inactivation of bacteria, this would pose an advantageous effect for the
envisioned application in water-bearing systems, as it additionally assists the cleanliness
of the surface by photocatalytic decomposition of adhered particles or other sorts of dirt
and organic contaminants. Possible photocatalytic effects only occur during irradiation
with UV light [10,40,42]. In the time between two steps of UVA irradiation for activation,
the superhydrophilicity provides the long-term sanitation of the surfaces by adhesion
prevention, as it lasts more than 24 h to up to 4 days, as shown in Section 3.2 (Figure 6).

We showed with our study that the investigated TiO2 coatings on stainless steel
can be activated by UVA irradiation. This leads to hydrophilization of the surface and
thus prevents microbial adhesion and colonization, which are the initial steps of biofilm
formation. The stability of superhydrophilicity upon surface activation by UVA irradi-
ation and regular reactivation within 24 h allows this setup to be used for the selective
sanitation of water-bearing pipes by the prevention of biofilm formation or spread in
pipes. Thus, biofilm-induced problems in pipe systems, such as the spread of infections in
hospitals [18,19], the corrosion of pipelines [17], or the contamination of food processing
equipment [15,16] can be prevented.
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4. Conclusions

Within our study, TiO2 films were deposited on various substrates, and their surface
characteristics were analyzed by WCA, SEM, and XRD. Samples were conditioned for
our experiments in a defined manner to guarantee reproducible initial conditions. Using
WCA measurements, we demonstrated that the deposited TiO2 coatings can be activated
by UVA irradiation, resulting in superhydrophilicity. Superhydrophilicity (WCA < 10◦)
appears regardless of the substrate material or the presence of a Ti interlayer. However, the
differences in the coatings, such as roughness, microscopic morphology, and composition,
affect the stability of superhydrophilicity. The longest-lasting superhydrophilicity was
observed up to 4 days for TiO2 on stainless steel substrates. Reactivation of the coatings by
UVA showed reproducible wetting behavior, which highlights the potential for the long-
term stability of superhydrophilicity by periodic reactivation. However, this point should
be confirmed by several reactivation cycles in further studies. Because of the good results of
TiO2 coated on stainless steel, this coating–substrate combination was selected for further
microbiological investigations on curved samples. In the microbiological studies with a
specially developed regime adapted to the envisioned application in water-bearing pipes,
we inoculated the activated samples with 103 CFU/mL of E. coli and S. warneri and showed
that the selected TiO2 coating completely prevents microbial surface colonization for the
waterborne pathogen E. coli and the biofilm former S. warneri. With these results, we were
able to show that our developed setup provides a good basis for the envisioned application.
To confirm the benefits for other use cases and more complex systems, further application-
relevant microorganisms, such as Legionella or Pseudomonas aeruginosa, could be tested in
future studies. Although our coating has shown very good superhydrophilic performance,
to confirm its efficacy in different applications, it should be tested whether application-
dependent parameters of water chemistry (pH, organics, salts) affect the performance of
the coating.

The presented results and the long-term stability of superhydrophilicity that can be
achieved by reactivation demonstrate the potential of the TiO2 coating to sanitize water-
bearing pipes in terms of preventing microbial surface colonization and biofilm formation.
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