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Abstract: In recent years, the defect image classification method based on deep transfer learning
has been widely explored and researched, and the task of source and target domains with the same
painting defect image class has been solved successfully. However, in real applications, due to the
complexity and uncertainty of ship painting conditions, it is very likely that there are unknown
classes of painting defects, and the traditional deep learning model cannot identify a few classes,
which leads to model overfitting and reduces its generalization ability. In this paper, a zero-shot
Image classification method for ship painting defects based on IDATLWGAN is proposed to identify
new unknown classes of defects in the target domain. The method is based on a deep convolutional
neural network combined with adversarial transfer learning. First, a preprocessed ship painting
defect dataset is used as input for the domain-invariant feature extractor. Then, the domain invariant
feature extractor takes domain invariant features from the source and target domains. Finally, Defect
discriminators and domain alignment discriminators are employed to classify the known categories
of unlabeled defects and unknown categories of unlabeled defects in the target domain and to
further reduce the distance between the edge distributions of the source and target domains. The
experimental results show that the proposed model in this paper extracts a better distribution of
invariant features in the source and target domains compared to other existing transfer learning
models. It can successfully complete the migration task and accurately recognize the painting defects
of known categories and new unknown categories, which is a perfect combination of intelligent
algorithms and engineering practice.

Keywords: ship coating defects; transfer learning; defect of unknown category; image classification

1. Introduction

Ship coating runs through the entire shipbuilding process as one of modern shipbuild-
ing’s three central process pillars [1]. Ship hull surface coating can effectively prevent
all parts of the ship from being corroded by the atmosphere and seawater. Still, it also
has anti-fouling, beautification, decoration, and other special functions [2]. The coating
quality is directly related to the ship’s construction cycle and maintenance costs, as well
as an essential factor affecting the hull’s corrosion resistance and the ship’s service life [3].
However, in the process of ship coating construction, due to the joint influence of many
factors such as process parameters, internal and external environment, and coating quality,
many different types of coating defects such as sagging, blistering, cracking, delamination,
etc. will occur [4], These coating defects not only affect the ship’s beauty but also affect the
quality of the ship’s coatings, reduce the ship’s anti-fouling and anti-corrosion function,
which affects the service life of the ship [5]. Therefore, in the whole process of ship con-
struction, it is crucial to carry out intelligent identification of painting defects and feedback
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on painting information to improve the quality of ship painting, prolong the service life of
ships, and enhance the market competitiveness of shipbuilding enterprises.

Feature extraction is to extract effective feature information from images, which is usu-
ally used as the basis of image classification [6,7]. Domestic and foreign research scholars
have carried out a lot of studies on image classification algorithms; Liu et al. [8] combined
multi-dimensional convolutional layers with an attention mechanism model to realize the
satisfactory classification performance of CNNs in the framework of small-sample learning,
which was used to solve the small-sample problem in hyperspectral image classification;
Shi et al. [9] proposed an efficient binary network search method to design lightweight
binary networks, and used it for image classification tasks in CIFAR10 and CIFAR100; Jin
et al. [10] mapped visual feature vectors obtained from fine-tuned ConvNeXt network and
semantic vectors obtained from BioBert coding into a common metric space, and proposed
a new double-weighted metric loss function for metricizing the distance between images
and labels. Zheng et al. [11] used the graph Laplace matrix of the learning dictionary to
preserve the locality information, used the label information of the atoms to construct the
label embedding term, and verified that the optimal coding coefficients obtained from
locality-based and label-based reconstruction are effective for image classification. Cur-
rently, traditional coating defect identification mainly relies on professionals to detect
the coating quality and record the types and grades of defects through their professional
knowledge and work experience. This method is slow [12], inefficient [13], and affected
by the subjective factors of the inspectors, resulting in low reliability of the detection re-
sults. With the popularization and development of modern manufacturing concepts and
intelligent manufacturing technology in ship construction, people gradually begin to apply
intelligent technologies and algorithms to the ship construction process. Still, there are few
reports on the research and application of intelligent detection of painting defects based on
image recognition.

In recent decades, deep learning methods represented by convolutional neural net-
works have attracted extensive attention from relevant researchers engaged in manu-
facturing industries with their ability to extract [14] effective high-level features end-
to-end automatically and have achieved great success in the fields of natural language
processing [15], image recognition [16] and speech recognition [17]. However, there are
still many shortcomings that need to be addressed. First, deep learning methods rely
on large-scale and high-quality labeled training samples. Still, it is difficult to collect
enough labeled training data, and the cost of labeling is too high to guarantee the gen-
eralization performance of deep learning models in real industrial environments [18];
second, existing deep learning models usually assume that the training sample dataset
and the test sample dataset must be independently and identically distributed, which is
unrealistic [19]. According to the research of domestic and foreign scholars, deep transfer
learning methods can relax this restriction by effectively solving new tasks in the target
domain with knowledge learned from the relevant source domain, effectively solving the
above problems, and improving the generalization performance of the target model [20].
Kuang et al. [21] proposed a class-imbalanced adversarial transfer learning (CIATL) net-
work for cross-domain troubleshooting by embedding class-imbalanced learning into the
adversarial training process and bi-level adversarial transfer learning, including marginal
and conditional distribution adaptation performed. The effectiveness and generalization of
the method are verified on a planetary gearbox rig. Lu et al. [22] propose transfer subspace
learning for cross-resolution image classification, introducing transfer subspace learning
techniques and applying low-rank and sparse constraint matrices. The accuracy of the
method was verified on various real image datasets. Li et al. [23] proposed a two-stage
transfer adversarial network to construct a new deep transfer learning model based on
the adversarial learning strategy, followed by an unsupervised convolutional self-encoder
model with silhouette coefficients for multiple novel fault detection of rotating machin-
ery, to solve the fault diagnosis migration task with multiple new faults in the target
domain. Xu et al. [24] proposed a new geometric migration metric learning method that
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integrates pairwise constraints, joint distributional adaption, and manifold regularization
into a unified optimization function, making full use of their complementary properties
to improve SAR ship classification performance. Conducted in both zero-labeled sample
(ZLS) and small-labeled sample (SLS) tasks, experiments show that the proposed method
outperforms most state-of-the-art methods. Li et al. [25] proposed a deep learning model
based on a multi-scale feature extraction module for steel surface defects, deepening the
backbone network by improving the Efficient Feature Fusion (EFF) and Bottleneck mod-
ules. The effectiveness of the designed module and method is verified on the public NEU-
DET dataset.

In summary, deep transfer learning can be broadly categorized into five types: weighted
instance-based migration [26], model parameter-based migration [27], relationship-based
migration [28], feature-based migration [29], and adversarial-based migration [30] (ADTL).
Among them, adversarial-based deep migration methods are most widely used due to their
practicality and good migration results [31].

Although machine learning models based on deep transfer learning algorithms have
achieved great success in many fields, such as machinery fault diagnosis [32], image
classification [33], etc., most of the existing transfer learning methods are based on the
assumption that the source and target domains share the same labeling space, namely, the
source and target domains share the same number of categories [34]. However, in practical
applications, there will likely be unknown class painting defects due to the complexity and
uncertainty of ship painting conditions. These newly appeared unknown class painting
defects in the target domain cannot be aligned with the source domain samples due to the
lack of samples during the training process in the source domain and are often identified as
known class defects in the source domain, which reduces the generalization performance
of existing deep transfer learning models. Therefore, detecting unknown class painting
defects in the target domain is an important task for intelligent inspection of ships.

To address the aforementioned task, an adversarial migration framework model con-
sisting of domain-invariant feature extractor, Defect discriminators, and domain alignment
discriminators is proposed to utilize the known class defects in the source domain to accu-
rately classify the unknown class defects in the target domain. The contributions of this
paper are summarized as follows:

(1) This paper proposes a new zero-sample classification method for ship painting defects
based on deep adversarial transfer learning based on Wasserstein GAN (IDATLW-
GAN) for identifying new unknown class painting defects in the target domain.

(2) In this paper, the Squeeze-and-Excitation (SE) module is introduced in the domain-
invariant feature extractor and used in the transfer learning task, which is more
capable of using global information to acquire important domain-invariant features
selectively and suppress less useful ones.

(3) Domain alignment discriminators are introduced and used in a deep transfer model,
which learns domain-invariant and class-separation features to classify defects accu-
rately through two-stage adversarial training.

The experiments show that the proposed IDATLWGAN model can better perform the
migration task and accurately identify known classes of painting defects and new unknown
classes of painting defects on the ship painting defects dataset compared to other existent
transfer learning models.

2. Theoretical Background
2.1. Classification Domain CNN Structure

Convolutional Neural Networks (CNN) are feed-forward neural networks which is
more widely used in pattern classification because they avoid the complex pre-processing
of the image and can be directly input to the original image [35]. CNN in the classification
field consists of three parts: convolutional layer, pooling layer, and fully connected (FC)
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layer. The convolutional layer is the core layer used to build CNN, and its role is to extract
image features, as defined in Equation (1).

yl
m = σ(∑ xl−1·kl

m·χ + bl
m) (1)

where xl−1 shows the feature map of the l − 1 layer input, ·χ shows the convolution
operation, kl

m and bl
m show the convolution kernel and bias unit corresponding to the l layer

m-channel, respectively, σ shows the activation function, and yl
m shows the convolution

output of the l layer m-channel.
The pooling layer is used to summarize the feature map features and reduce the spatial

size of the feature map. It is defined as shown in Equation (2).

gl
m = VR(yl

m(Uc)) (2)

where Uc shows the location coordinates, VR shows the pooling operation, and gl
m shows

the pooled output of the l layer m-channel.
The fully connected (FC) layer acts as a “classifier” in the whole CNN. While operations

such as convolutional and pooling layers map the original data to the hidden feature space,
the fully connected layer maps the learned “distributed feature representation” to the
sample labeling space.

2.2. SE Attention Mechanisms

The SE module was proposed by Jie Hu et al. [36]. The relationship between channels
is constructed by introducing Squeeze and Excitation operations, where the feature map
is compressed into a c× 1× 1 feature vector zc by global average pooling in the Squeeze
(Fsq(·)) phase, as shown in Equation (3).

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (3)

In the Excitation (Fex(·)) phase, a weight vector S for a channel is learned to be
generated using a fully connected layer (W1,W2) and a nonlinear activation function (ReLU,
Sigmoid). as shown in Equation (4).

s = Fex(z, W) = σ(g((z, W)) = σ(W2δ(W1z)) (4)

A hyperparameter r exists between the two fully connected layers, and in this paper, r
is taken as 16. vector z ( c× 1× 1 ) changes its dimension to ( c/r× 1× 1 ) after passing
through the first fully connected layer and then to ( c× 1× 1 ) again after passing through
the second fully connected layer. The generated weight vectors S( c× 1× 1 ) are applied to
each channel on the feature map U( c× h× w ) to weigh the features of different channels.
In this way, the SE module can adaptively select and emphasize the important features and
improve the discriminative ability of the features, thus improving the model’s performance.
Its structure is shown in Figure 1.
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Figure 1. SE module structure diagram.

2.3. Adversarial-Based Domain Adaptation Training

The Generative Adversarial Networks (GAN) designed by GoodFellow [37] contains
two models: a generator and a discriminator. During adversarial training, the goal of gen-
erator G is to generate real graph deception slices to deceive discriminator D to maximize
the classification error. The goal of discriminator D is to distinguish the picture generated
by generator G from the actual picture to minimize the classification error. The model is
optimized by a minimal-extremum game of G and D. The GAN optimization objective
function V(D, G) is denoted as shown in Equation (5).

min
G

max
D

V(D, G) = Ex ∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (5)

where log(D(x)) is the cross entropy between [1, 0]T and [D(x), 1− D(x)]T .
log(1− D(G(z))) is the cross entropy between [0, 1]T and [D(G(z)), 1− D(G(z))]T .

In domain adaptation, given a predefined Ns ∈ R source domain dataset
Ds =

{
(xi

s, yi
s)
}Ns

i=1 with labels yi
s and Nt ∈ R unlabeled target domain datasets

Dt =
{

xi
t
}Nt

i=1, the source and target domains share the same feature space
(Ds, Dt ∈ χa) and labeling space χb. Still, the source and target domains have different
distributions. The task of the domain adaptation algorithm is to learn a classifier f : α→ β
that utilizes the source domain dataset Ds with labels yi

s to predict the labels of the target
domain dataset Dt.

The domain adaptive neural network (DANN) designed by Yaroslav Ganin [38] et al.
introduced the adversarial idea into the field of transfer learning for the first time. In
domain-adaptive adversarial training, the domain-invariant feature extractor learns high-
level domain-invariant features from Ds and Dt. It characterizes them to be passed to
the domain discriminator, which constantly updates the difference between Ds and Dt
and calculates the loss. The domain discriminator training goal is to classify Ds and Dt
accurately. In contrast, the feature extractor is trained with the opposite goal (due to
the presence of the gradient inversion layer), creating an adversarial relationship. The
difference between Ds and Dt is minimized by backpropagation, and then the domain-
invariant feature extractor learns high-level domain-invariant features.

3. Proposed Methodology
3.1. Problem Definition and Symbolic Description

This paper researches the problem of classifying new unknown class painting defects
without labels in different labeling spaces. Specifically, supervised training data and unsu-
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pervised test data used to drive the painting defect classification model are collected from
the shipyard’s painting logbook, construction accounts, and painting process database. Be-
fore elaborating on the IDATLWGAN framework, the readability of the content is enhanced
by defining the relevant problems through symbols or formulas.

First of all, for deep transfer learning (DTL), there are two basic concepts: domain D
and task T. Among them, the domain D consists of two components: the feature space χ
and the edge probability distribution P(X), as shown in Equation (6).

D = {χ, P(X)} (6)

where X = {x1, x2, · · · , xn} ∈ χ denotes an n-dimensional vector; P(X) denotes the
marginal probability distribution of the feature space χ.

A given predefined Ns ∈ R source domain dataset Ds =
{
(xi

s, yi
s)
}Ns

i=1 with labels yi
s

and Nt ∈ R target domain datasets Dt =
{

xi
t
}Nt

i=1 without labels yi
t (typically, 1 ≤ Nt ≪ Ns)

exists. The source and target domains share the same feature space (namely, Ds, Dt ∈ χ)
but have different edge probability distributions (namely, Ps(Ds) ̸= Pt(Dt)). If Xs ̸= Xt
and (or) Ps(Ds) ̸= Pt(Dt), the source and target domain distributions are different, (namely,
Ds ̸= Dt). Also, task T consists of two parts: the category labeling space Y and the
conditional probability distribution P(Y|X) , as shown in Equation (7).

T = {Y, P(Y|X)} (7)

where Y denotes a category labeling space, the conditional probability distribution P(Y|X)
denotes the target prediction function C(·) of the feature space.

Since the source and target domain datasets have the same classes in the existing deep
transfer learning models, their class labeling space is also the same. However, unlabeled
unknown class defects appear in the target domain, thus Ys ̸= Yt. In addition, in this paper,
the target domain Dt contains two components, namely, njk unlabeled known class painting
defects samples and njn unlabeled unknown class painting defects samples. njk and njn
are satisfied njk + njn = nt. Finally, the high-level invariant feature vectors extracted by
the DCNN model from the source and target domains are defined as Vi

s (xi
s, yi

s) and Vi
t (xi

t).
This paper shows the Important variables and function symbols and their definitions
in Table 1.

Table 1. Important variable and function symbols and their definitions.

Variable and Function Symbols Define

Ds, Dt Source and target domain datasets

Vi
s (xi

s, yi
s), Vi

t (xi
t) High-level domain invariant features of the source and target domains

Ps(Ds), Pt(Dt) Marginal probability distributions for source and target domains

G(·) Domain-invariant feature extractor

D(·) Defect discriminators modeling

Critic(·) Domain alignment discriminators

θG
Set of weight parameters and bias parameters for each layer in the domain-invariant

feature extractor

θD
Set of weight parameters and bias parameters for each layer in the Defect

discriminators model

θCritic
Set of weight parameters and bias parameters for each layer in the domain

alignment discriminators
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Table 1. Cont.

Variable and Function Symbols Define

α Penalty coefficients for the gradient inversion layer

λ Weight balance coefficients for the Defect discriminators model

η, ρ Weight balance coefficients for domain alignment discriminators

ζ Thresholding parameters for Defect discriminator models

α1 The learning rate of domain-invariant feature extractor and Defect discriminator models

α2 The learning rate of domain alignment discriminators

3.2. Overall Network Framework

The IDATLWGAN ship painting defect zero-sample intelligent classification method
based on IDATLWGAN proposed in this paper consists of domain-invariant feature extrac-
tor G, Defect discriminator D, and domain alignment discriminators critic. The model struc-
ture is shown in Figure 2. The acquired ship painting defects dataset is first preprocessed
(proportional resizing, data set partitioning, data smoothing, and data normalization) in this
work. Then, the preprocessed dataset is divided into source and target domain data. The
migratable features of the source and target domain data can be represented as xh

s = G(xi
s)

and xh
t = G(xi

t). The feature extractor G consists of convolutional blocks and SE attention
blocks, which are designed to extract high-level domain-invariant features from the defect
images of the source and target domains, and its structure and network parameters are
shown in Figure 3 and Table 2. Defect discriminator D and domain alignment discrimina-
tors critic is employed to classify the known unlabeled defects and unknown unlabeled
defects in the target domain by the learned high-level domain invariant features and to
reduce further the distributional difference between the edge probability distributions
Ps(Ds) and Pt(Dt) in the source and target domains. The domain-aligned discriminator
critic is connected to the feature extractor G by the FC layer, gradient reversal layer (GRL),
and sigmoid function completion.

Figure 2. Structure and specific process based on the IDATLWGAN model.
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Figure 3. Domain-invariant feature extractor G structure.

Table 2. Detailed description of domain-invariant feature extractor network parameters.

Layer Filter Size Pacemaker Padding Output Size

Input layer real samples x — — — 3 × 128 × 128
Conv2D + BN + LeakyReLU 3 × 3 1 1 128 × 128 × 128

Max pooling layer 2 × 2 2 — 128 × 64 × 64
Conv2D + BN + LeakyReLU 3 × 3 1 1 256 × 64 × 64

Max pooling layer 2 × 2 2 — 256 × 32 × 32
Conv2D + BN + LeakyReLU 3 × 3 1 1 512 × 32 × 32

Max pooling layer 2 × 2 2 — 512 × 16 × 16
Conv2D + BN + LeakyReLU 3 × 3 1 1 1024 × 16 × 16
Global average pooling layer — — — 1024 × 1 × 1

FC + ReLU — — — 64 × 1 × 1
FC + sigmoid — — — 1024 × 1 × 1

Output layer real samples x — — — 1024 × 16 × 16

The training strategy for the IDATLWGAN model is an adversarial learning mech-
anism, which is a min-max game between domain-invariant feature extractor G, Defect
discriminators D, and domain alignment discriminators critic.

3.3. Loss Function

The purpose of iterative adversarial training of the IDATLWGAN model is to minimize
the loss function. Its loss function has four constituents, as shown in Equation (8).

min
θD,θG
{LD(xi

s, yi
s) + λLc(xi

t) + ηmax
θCritic

[Lwd(xs, xt)− ρLgrad]} (8)

where λ, η, and ρ are the weight balance coefficients of the loss function, the hyperparame-
ters λ and η are used to determine the hyper coefficients of the confusion level of the source
and target domains, and 1 and 2 denote the standard cross-entropy loss function of Defect
discriminators model D for fast classification of unlabeled known defective samples in the
target domain and the binary cross-entropy loss function for identifying new unlabeled
unknown painting defects in the target domain, as shown in Equations (9) and (10).

LD(xi
s, yi

s) = − log[D((Vi
s (xi

s, yi
s)))] (9)

Lc(xi
t) = −ζ log(p(y = n + 1|xi

t))− (1− ζ) log(1− p(y = n + 1|xi
t)) (10)

where D((Vi
s (xi

s, yi
s))) denotes the probability of defective samples in the source domain,

and Vi
s (xi

s, yi
s) denotes the high-level domain invariant feature vector extracted by the

DCNN model from the source domain, as shown in Equation (11).

Vi
s (xi

s, yi
s) =


p(y = 1|xi

s)
p(y = 2|xi

s)
...
p(y = n|xi

s)

 =
1

n
∑

j=1
ezj


ez1

ez2

...
ezn

 (11)
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where p(y = n
∣∣xi

s) denotes the probability that the input sample xi
s in the target domain is

classified as a known unlabeled defect class j ∈ {1, 2, · · · , n}, zj = Vs(Vi
s (xi

s, yi
s))j denotes

the jth value, Vi
s (xi

s, yi
s) denotes the normalization term, and n is the number of types of

defects in the known class.
Since a known class defect sample will have a higher probability of being recognized as

a known class defect than a new unlabeled unknown defect sample, a threshold parameter
ζ(0 < ζ < 1) is chosen to determine whether a sample belongs to a known defect sample or
a new unknown class defect sample to quantify the pseudo-decision boundaries between
the known class defect category and the unknown class defect category. The role of the
threshold parameter is shown in Figure 4. If the probability p(y = n + 1

∣∣xi
t) exceeds the

threshold ζ, the sample is recognized as a new unknown class defective sample. This paper
sets the threshold parameter ζ to 0.5, as shown in Figure 4.

Figure 4. Role of threshold parameter ζ.

Domain alignment discriminators loss Lwd(xs, xt) is used to compute the Wasser-
stein distance between edge probability distributions Ps(Ds) and Pt(Dt), as shown in
Equation (12).

Lwd(xs, xt) = Ex∼ps [ fθCritic(x)]− Ex∼pt [ fθCritic(x)] =
1

Ns
∑

xs∈Xs
fθCritic( fθe(xs))− 1

Nt
∑

xt∈Xt

fθCritic( fθe(xt)) (12)

where Lwd denotes the domain alignment discriminative loss of the source domain data Xs
and the target data Xt.

Inspired by Wasserstein Generative Adversarial Networks-Gradient Penalty (WGAN-
GP), this paper adds a gradient penalty term Lgrad (gradient penalty, GP) in Lwd(xs, xt),
which is used to solve the problem with Lipschitz constraints such as vanishing or exploding
gradients, as shown in Equation (13).

Lgrad = (
∥∥∥∇xh f (xh)

∥∥∥
2
− 1)

2
(13)

where xh denotes the vector of high-level invariant feature representations of the source
and target domains.

In summary, based on the proposed adversarial training network architecture, the
optimization objective of domain-invariant feature extractor G is to minimize LD(xi

s, yi
s)

and domain alignment discriminators loss Lwd(xs, xt) and maximize Lc(xi
t) at the same

time. The optimization objective of Defect discriminators model D is to minimize LD(xi
s, yi

s)
and Lc(xi

t) at the same time. The optimization objective of domain alignment discrimina-
tors critic is to minimize Lwd(xs, xt)− ρLgrad and Lc(xi

t) at the same time. Therefore, the
proposed network optimization problem is shown in Equations (14)–(16).

θ̂G = arg{min
θG

LD(xi
s, yi

s), min
θG

Lwd(xi
s, xi

t), max
θG

Lc(xi
t)} (14)

θ̂D = arg{min
θD

LD(xi
s, yi

s), min
θD

Lc(xi
t)} (15)
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θ̂Critic = arg{min
θCritic

[Lwd(xs, xt)− ρLgrad], min
θCritic

Lc(xi
t)} (16)

where θ̂G, θ̂D, and θ̂Critic denote the optimal estimated parameter values for θG, θD, and
θCritic, respectively. At each training turn, the parameters of the model are updated, as
shown in Equations (17)–(19).

θG ← θG − α1∇θG [LD(xs, ys)− λLc(xt) + ηLwd(xs, xt)] (17)

θD ← θD − α1∇θD [LD(xs, ys) + λLc(xt)] (18)

θCritic ← θCritic − α1∇θCritic [λLc(xt)]− α2∇θCritic [Lwd(xs, xt)− ρLgrad(xh)] (19)

where α1 denotes the learning rate of the domain-invariant feature extractor G and De-
fect discriminator model D, and α2 denotes the learning rate of the domain alignment
discriminators critic.

3.4. Training Process Optimization and Implementation Details

Based on the above loss function, to solve the parameter updating and minimal maxi-
mal optimization problems of the unsupervised transfer learning Back Propagation (BP)
algorithm, this paper brings in the Gradient Reversal Layer (GRL), which has two forms,
namely, Forward Propagation and Back Propagation, and its mathematical expressions are
shown in Equations (20) and (21). For forward propagation, GRL is a constancy mapping.
For backward propagation, GRL extracts the gradient from the next layer and multiplies
it by a negative hyperparameter −α (α > 0) to pass it to the previous layer. Thus, GRL
has no parameters that need to be predefined or trained. In this paper, the GRL module
is introduced between domain-invariant feature extractor G and Defect discriminators
model D during backpropagation, which ensures that the feature distributions of different
domains are indistinguishable as a way of facilitating domain-invariant feature extractor G
and Defect discriminators model D to learn high-level domain-invariant features with an
adversarial training strategy.

Gλ(x) = x (20)

dGλ

dx
= −αI (21)

where I is the unit matrix and α denotes the penalty coefficient, as shown in Equation (22).
In this paper, it is simplified and set to 1.

α =
2

1 + exp(−γ·p) − 1 (22)

where γ is the hyperparameter, set to 10 in this paper, and p denotes the relative value
of the iteration process, namely, the ratio of the current number of iterations to the total
number of iterations.

In addition to this, momentum-based optimization algorithms such as Adam’s algo-
rithm perform worse due to the instability of the discriminator loss, whereas the RMSProp
optimizer performs well even in volatile conditions, so we use the RMSProp optimizer for
stochastic gradient descent optimization of the model parameters. The number of epochs is
50. In this work, the initial learning rate is set to 0.001, and the decay rate of the learning
rate equals 0.1.

3.5. Training Process

The overall training process of the proposed IDATLWGAN model is shown in
Algorithm 1, and the whole network training process is divided into the following
eight steps:

STEP1: Data Collection: Original ship painting defect data sets are collected through the
shipyard’s painting log, construction ledger, and painting process database.
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STEP2: Data Preprocessing: Image preprocessing consists of four steps, namely, propor-
tional resizing, data set partitioning, data smoothing, and data normalization.
STEP3: The ship painting defects training set after STEP2 processing is divided into source
and target domain data.
STEP4: The source and target domain defective training sets are used together as input to
the domain-invariant feature extractor G. The extractor extracts high-level domain-invariant
features from the defective images of the source and target domains.
STEP5: The Defect discriminator D and domain alignment discriminators critic is employed
to classify the known unlabeled defects and unknown unlabeled defects in the target
domain by the learned high-level domain-invariant features and to reduce further the
distributional differences between the edge probability distributions of the source and
target domains.
STEP6: Update parameters θG, θD, and θCritic of domain-invariant feature extractor G,
Defect discriminator model D, and domain alignment discriminators critic, respectively.
STEP7: Repeat STEP4~STEP6 to iteratively update the parameters of each module through
the adversarial training strategy until convergence, and store all the parameters to obtain
the trained optimal estimated parameter values θ̂G, θD, and θCritic.
STEP8: All test datasets are used to test and validate the validity of the IDATLWGAN model.

Algorithm 1: The overall training process for the IDATLWGAN model

Require: Source and target domain datasets Ds and Dt; small batch size n; learning rate α1, α2;
number of updates of domain alignment discriminators critic in each iteration; and weight
balance coefficients λ, η, and ρ for each loss function.
Initialize hyperparameters for different networks θ̂G, θD, and θCritic.
While i < Maximum number of iterations or convergence of parameters of each module do
1:

{
(xi

s, yi
s)
}n

i=1 ∼ Ps(Ds)←Randomized small batch sampling from a real ship painting defect
source domain dataset.
2:

{
xi

t
}n

i=1 ∼ Pt(Dt)←Random small batch sampling from a real ship painting defects target
domain dataset.
3: For i = 1, . . ., nD do
4: xh

s ← fθe (xs) ∼ Ps(Ds) , xh
t ← fθe (xt) ∼ Pt(Dt)

5: Sampling from pairs xh
s and xh

t yields xh
r

6: xh ←
{

xh
s , xh

t , xh
r
}

7: Lgrad ← (
∥∥∇xh f (xh)

∥∥
2 − 1)

2

8: Lc(xi
t)← −ζ log(p(y = n + 1

∣∣∣xi
t))− (1− ζ) log(1− p(y = n + 1

∣∣∣xi
t))

9: Lwd(xs, xt)← 1
Ns

∑
xs∈Xs

fθCritic ( fθe (xs))− 1
Nt

∑
xt∈Xt

fθCritic ( fθe (xt))

10: θCritic ← θCritic − α1∇θCritic [λLc(xt)]− α2∇θCritic [Lwd(xs, xt)− ρLgrad(xh)]
11: End For
12: θD ← θD − α1∇θD [LD(xs, ys) + λLc(xt)]
13: θG ← θG − α1∇θG [LD(xs, ys)− λLc(xt) + ηLwd(xs, xt)]
End While
Output Optimal parameter estimates for each module θ̂G, θD, and θCritic.
End

4. Experiments Setup and Results
4.1. Description of the Dataset

In this work, a total of 6 typical ship painting defect types are analyzed, including three
types of painting defects in the wet film state: sagging (SA), orange skin (OS), blistering
(BL), and three types of painting defects in the dry film state: cracking (CR), pinholing
(PH), delamination (DF). To avoid the problem of category imbalance, which leads to
a transfer learning model, results in overfitting of the model, and significantly reduces
generalization performance, the number of samples of each painting defect category is
set to 600 in this paper. Among them, the amount of sample data in the source domain
of various ship painting defect categories is set to 300, while the amount of data in the
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target domain of the training set and the test set is set to 150. Table 3 lists the details of
the ship painting defect dataset. Since the original ship painting defects images collected
were of different sizes and proportions, all the images were resized to 3 × 128 × 128
before carrying out the experiments. The preprocessed ship painting defects dataset was
randomly divided into a training set and test set in the ratio of 0.7:0.3. In addition to the
above preprocessing techniques, data smoothing technique (Gaussian filtering) and data
normalization technique are used in this paper to remove the image noise, improve the
image quality and ensure that each feature is in the same dimension, respectively, which
significantly improves the convergence speed and prediction performance of the neural
network. Based on previous research work, this paper uses the min-max normalization
technique to scale the defective image pixels from [0, 255] to [0, 1].

Table 3. Ship painting defect data set setting.

Defect Class Sample Image
Source Domain

Sample Data
Quantities

Quantity of Data in
the Target

Domain Train Set

Quantity of Data in
the Target

Domain Test Set
Label

Sagging
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4.2. Experimental Environment

The hardware platform used in this experiment is an 11th Gen Intel ®Core TM i7-
11800H @ 2.3 GHz (Intel, Santa Clara, CA, USA) with NVIDIA GeForce RTX 3060 Laptop
GPU (NVIDIA, Santa Clara, CA, USA) and 16.0 GB RAM. The programming language is
Python (version 3.8.4).

4.3. Evaluation Metrics

Different quantitative evaluation metrics are used in the experimental part of the
experiment to accurately and comprehensively assess the overall generative performance
of the model and measure the performance of the comparison model for the migration task
on various defect categories in the ship painting defect dataset. In this paper’s experiments,
four usual evaluation metrics in the confusion matrix are used to quantitatively analyze
the model performance: accuracy, precision, recall, and F1 score. The binary classification
confusion matrix is shown in Table 4.

Table 4. The binary classification confusion matrix.

Class Predicted Positive Class Predicted Negative Class

Actual positive class TP FN
Actual negative class FP TN
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Accuracy and recall are complementary; the higher these metrics are, the better.
Accuracy is the most intuitive model performance metric, and precision is the ratio of
correctly predicted positive observations to total predicted positive observations. The F1
score is the reconciled mean of the lookup accuracy and recall. It considers both precision
rate and recall rate and is often used as a statistical metric to evaluate the performance of a
classifier. These evaluation metrics are defined as shown below:

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Precision =
TP

TP + FP
(24)

Recall = TPR =
TP

TP + FN
(25)

F1-score = 2× Precision × Recall
Precision + Recall

=
2

2TP + FP + FN
(26)

4.4. Experimental Results and Analysis
4.4.1. Performance Comparison of Different Transfer Learning Models on Different
Painting Defect Categories

To further demonstrate the effectiveness and superiority of the method proposed in
this paper, different existing transfer learning models such as Transfer Principal Component
Analysis (TCA), Joint Distribution Adaptive (JDA), Domain Adaptive Neural Network
(DANN), Deep Transfer Learning (DTL), Deep Confrontation Migration Learning Network
(DCTLN), and Two-Stage Migration Confrontation Network (TSTAN) are compared with
the IDATLWGAN model proposed in this paper. The number of parameters and training
time for each model are shown in Table 5. Comparison experiments with various defect
categories in different transfer learning models in a real ship painting defect dataset are
shown in Table 6. The bold values indicate the maximum values of the evaluation metrics
in different migration models. Table 6 shows the average training results of the five-fold
cross-validation to reduce the randomness of the data.

Table 5. Number of parameters and training time.

Model Parameter Time

TCA 182 k 1124 s
JDA 173 k 973 s

DANN 227 k 572 s
DTL 235 k 721 s

DCTLN 166 k 1028 s
TSTAN 112 k 677 s

IDATLWGAN 91 k 559 s

Table 6. Comparison of F1-Score, Precision and Recall Rates of Different Transfer Learning Models
on Various Defect Categories.

Model
F1-Score

Precision Recall
SA OS BL CR PH DF

TCA 0.695 0.676 0.648 0.712 0.768 0.789 0.634 0.637
JDA 0.487 0.497 0.573 0.539 0.572 0.625 0.519 0.485

DANN 0.893 0.735 0.826 0.867 0.848 0.864 0.745 0.812
DTL 0.805 0.756 0.874 0.882 0.865 0.895 0.796 0.854

DCTLN 0.823 0.628 0.889 0.943 0.874 0.913 0.832 0.897
TSTAN 0.945 0.784 0.876 0.834 0.865 0.876 0.873 0.749

IDATLWGAN 0.932 0.912 0.957 0.935 0.881 0.943 0.994 0.995



Coatings 2024, 14, 464 14 of 19

Compared with other existing transfer learning models, although the IDATLWGAN
model proposed in this paper has lower F1 scores of 0.013 and 0.008 for sagging defects (SA)
and cracking defects (CR) compared with TSTAN and DCTLN, respectively, the F1-score
are generally higher in other defects. Meanwhile, defects are much higher than in other
transfer learning models in other evaluation metrics (precision and recall). It reflects the
unstable performance and the low performance of other transfer learning models when
facing different defects. Based on the analysis of the above results, it can be concluded that
the overall performance of the IDATLWGAN model proposed in this paper is better than
that of other transfer learning models on the ship painting defects dataset.

4.4.2. Performance Comparison of Different Transfer Learning Models on Different
Migration Tasks

In this section, to validate the stability and reliability of the proposed IDATLWGAN
model, two groups of experiments, I and II, are designed, each with six migration tasks, as
shown in Table 7. Sagging (SA), orange skin (OS), blistering (BL), cracking (CR), pinholes
(PH), and delamination (DF) were collected to construct the source and target domain
datasets. The collected painting defects were generated at different air temperatures
(15 ◦C, 25 ◦C, and 35 ◦C) and relative humidities (50% and 60%) as shown in Table 8. In
Experiment I, the source domain dataset is labeled SA, OS, CR, and PH, and the target
domain dataset has unlabeled SA, OS, CR, PH, and unlabeled unknown classes BL and DF.
Six migration tasks were designed in scenarios with the same temperature and different
humidities, different temperatures and different humidities, and different temperatures and
same humidities, and a cross-validation strategy was used to validate the IDATLWGAN
model’s performance, migration task 1 (namely, A→C) represents the migration task from
the source domain defective dataset under condition A to the target domain defective
dataset under condition C. The other tasks are similar. The other tasks are similar. To
further reduce the experiment’s randomness and verify the reliability of the IDATLWGAN
model, Experiment II is designed using the cross-validation strategy. In Experiment II, the
source domain dataset has labeled SA, OS, CR, and PH; for the target domain dataset, three
tasks contain unlabeled SA, OS, CR, PH, and BL, and the other tasks contain unlabeled SA,
OS, CR, PH, and DF.

Table 7. Detailed description of different migration tasks.

Task Source Domain→Target Domain Source Domain Dataset Defect Class Target Domain Dataset Defect Class

I

1 A→C SA, OS, CR, PH SA, OS, CR, PH, BL, DF
2 C→A SA, OS, CR, PH SA, OS, CR, PH, BL, DF
3 B→E SA, OS, CR, PH SA, OS, CR, PH, BL, DF
4 E→B SA, OS, CR, PH SA, OS, CR, PH, BL, DF
5 C→D SA, OS, CR, PH SA, OS, CR, PH, BL, DF
6 D→C SA, OS, CR, PH SA, OS, CR, PH, BL, DF

II

7 B→A SA, OS, CR, PH SA, OS, CR, PH, BL
8 B→A SA, OS, CR, PH SA, OS, CR, PH, DF
9 D→E SA, OS, CR, PH SA, OS, CR, PH, BL

10 D→E SA, OS, CR, PH SA, OS, CR, PH, DF
11 F→B SA, OS, CR, PH SA, OS, CR, PH, BL
12 F→B SA, OS, CR, PH SA, OS, CR, PH, DF

The experimental results of all the transfer learning tasks on the ship defects dataset are
summarized in Table 9 and Figure 5, and the bold values indicate the maximum accuracy
values in different transfer learning models on different transfer tasks. Compared with the
traditional methods such as TCA and JDA, the existing deep learning methods (DANN,
DTL, DCTLN) have slightly higher average accuracy due to their relatively good feature
extraction ability to recognize a small number of unknown unlabeled category defects. Due
to their powerful feature extraction ability, the TSTAN and IDATLWGAN models have high
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average accuracy. The quantitative experimental results show that although the accuracy
of the TSTAN model is higher than that of the IDATLWGAN model by 1.19% on task 12
(namely, F→B), the accuracy on the remaining tasks is still low. The proposed IDATLWGAN
model achieves an average accuracy of 91.71 and 94.35 on the ship defects dataset in the
two sets of experiments I and II, which are both higher than the other comparative methods
and can effectively detect unknown class painting defects on ships without labels in the
target domain.

Table 8. Detailed description of different ship painting conditions.

Painting Condition Air Temperature (◦C) Relative Humidity (%)

A 15 50
B 15 60
C 25 50
D 25 60
E 35 50
F 35 60

Table 9. Comparison of accuracy (%) of different transfer learning models on different transfer tasks.

Migration Model TCA JDA DANN DTL DCTLN TSTAN IDATLWGAN

I

1 37.65 38.64 51.63 57.34 67.78 84.08 90.56
2 36.24 41.18 53.15 56.61 69.41 83.23 94.74
3 40.14 40.56 54.48 58.56 71.22 86.89 92.78
4 38.78 37.44 49.67 53.00 64.67 84.33 91.89
5 40.86 40.33 52.29 58.37 66.87 77.87 89.77
6 36.51 38.72 51.11 55.35 68.73 85.63 90.51

Average 38.36 39.48 52.05 56.54 68.11 83.67 91.71

II

7 46.56 49.45 58.73 68.18 78.02 87.75 96.03
8 48.31 46.14 59.41 66.73 76.32 89.98 94.25
9 45.68 48.21 63.59 63.68 74.21 86.23 93.67

10 49.31 50.08 58.73 67.74 72.36 88.43 94.21
11 46.54 46.37 64.67 68.29 73.03 91.71 95.57
12 44.95 46.08 59.96 65.43 79.37 93.58 92.39

Average 46.89 47.72 60.85 66.68 75.55 89.61 94.35

Figure 5. Experimental results of different migration tasks under different methods. I—The target
domain dataset has unlabeled SA, OS, CR, PH, and unlabeled unknown classes BL and DFT. II—The
target domain dataset, three tasks contain unlabeled SA, OS, CR, PH, and BL, and the other tasks
contain unlabeled SA, OS, CR, PH, and DF.



Coatings 2024, 14, 464 16 of 19

Confusion matrices are often used to visually represent the number of accurate predic-
tions and the number of misclassifications for each class in the test results and to interpret
this result at the class level. Figure 6 shows the confusion matrices for all transfer learning
methods on Task 4. The horizontal axis represents the true attributes, and the vertical axis
represents the predicted state of the data. The main diagonal elements indicate the number
of samples correctly categorized by each defective class. In contrast, besides the main
diagonal elements, the remaining elements indicate the number of samples incorrectly
categorized into other defective classes. TCA and JDA are entirely unable to identify the un-
labeled unknown classes BL and DF due to their limited extraction capabilities. They are not
able to efficiently isolate defective samples from other classes. DANN, DTL, DCTLN, and
TSTAN are poor at recognizing defective categories compared to IDATLWGAN. TSTAN,
with limited feature extraction capability, can only achieve about 83.33% accuracy due
to the shadow structure. The results show that IDATLWGAN performs well in painting
defect classification.
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To present the transfer results intuitively, a visual data dimensionality reduction
algorithm-t distribution stochastic neighborhood embedding algorithm (t-SNE) is used to
present the learned feature distribution. For example, Task 9 compares the transferable
characteristics of the TCA, JDA, DANN, DTL, DCTLN, TSTAN, and IDATLWGAN methods.
Severe features are aliasing in the transferable features of TCA and JDA. There is a severe
mixing of known painting defect samples from the source and target domains with the
new unmarked painting defect samples, which are not separated from the painting defect
samples. Therefore, when the model is trained using the prior knowledge of the source
domain, the unmarked target samples cannot be effectively separated using TCA and JDA.
The transferable features learned by DANN, DTL, and DCTLN need to be more effectively
separated. Specifically, although the known painting defect samples have been transferred
from the source domain to the target domain, the new unmarked painting defect samples
are still mixed in the known painting defect samples. TSTAN and IDATLWGAN can not
only cluster the known painting defect samples of the source and target domains clearly
but also separate the new unmarked painting defect samples from the known painting
defect samples, but the IDATLWGAN clearly has fewer new unlabeled painting defect
samples mixed with known painting defect samples compared to TSTAN, so IDATLWGAN
can effectively transfer features from the source domain to the target domain and detect
new unlabeled painting defect samples in the unlabeled target domain. This result also
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illustrates that IDATLWGAN has higher transfer accuracy and better performance than
other methods.

5. Conclusions and Future Work

In this paper, a zero-sample classification method for ship painting defects based on
IDATLWGAN is proposed, which can not only effectively identify the known class of
unlabeled painting defects from the source domain to the target domain but also accurately
identify the unknown class painting defects that are unlabeled in the target domain at the
same time, which can effectively prevent the model from overfitting as well as improve
the model’s generalization ability. The experimental results show that compared with
other existing transfer learning models, the model proposed in this paper extracts a better
distribution of invariant features in the source and target domains, and its Accuracy, F-
Score, Precision, and Recall values are significantly higher than those of other models.
With the above results, using the IDATLWGAN model to classify ship painting defects can
complete the migration task and accurately identify the known classes of painting defects
and new unknown class painting defects, a perfect combination of intelligent algorithms
and engineering practice. It has high engineering research value and application prospects.

Currently, it is proved experimentally that the transfer learning method can be
used for ship painting to identify unknown class painting defects, but experiments have
not yet been conducted on other scenarios to illustrate the general applicability of the
transfer learning method; therefore, in the follow-up work, we will consider diagnosing
unknown faults on troubleshooting to validate the effectiveness and robustness of the
proposed method.

In addition, for real-time or resource-constrained applications, techniques to optimize
the computational efficiency of the proposed model are investigated. Explore the integration
of real-time monitoring systems for continuous defect detection during ship painting.
Develop methods to provide explanations and interpretations for the model’s decisions.
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