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Abstract: To explore the corrosion of Q235 steel in sand containing a simulated haze aqueous solution
(HA solution) under a natural air-dried state, the effect of moisture (age) on the corrosion of Q235
steel in sand was comprehensively studied by EIS, polarization curve, SEM, EDS and XPS. The
physical and chemical properties of the sand showed that the sand containing the HA solution was
basically neutral under natural air drying, and the temperature was around 20 ◦C. After 14 days,
the moisture content gradually decreased from 30% to 0%, and the salinity decreased from 1.26% to
0.04%. With the increase in age, the Eocp gradually positively skews, indicating the corrosion kinetics
of the Q235 steel decrease. The impedance spectra showed that in the frequency of 10−2–103 Hz, the
impedance spectra exhibited a flat capacitive loop, and the corrosion of Q235 steel was the strongest
in the sand containing HA solution on the 8 d. The polarization curves showed that with increasing
age, the degree of corrosion of Q235 steel changed from medium or above to slight corrosion in the
sand containing HA solution. The pitting characteristics of anode branch for polarization curve also
indicate the faster corrosion kinetics of Q235 steel in the early age (1–5 d). The corrosion current
density Io first increased and then decreased, and the highest value was 3.44 × 10−5 A/cm2 at
6 d. The average corrosion rate was 0.1629 mm/a. HA solution accelerates the corrosion of Q235
steel in sand without HA solution (average corrosion rate, 1.51 × 10−2 mm/a). A large amount of
brown-yellow corrosion products (iron oxides, about 70–200 µm) presented on the surface of the Q235
steel. The corrosion of Q235 steel belonged to local corrosion, and the corrosion pits were connected
to form a large dimple-like area. The HA solution and the porous structure of sand jointly affect the
electrochemical corrosion of Q235 steel.

Keywords: HA solution; sand; Q235 steel; natural air drying; electrochemical corrosion

1. Introduction

Q235 steel has good plasticity, toughness and weldability and is widely used in
construction and engineering structures, such as vehicles, boilers, containers, etc. In
addition, before the end of the 1940s, ordinary carbon steel (Q235) was used for pipeline
steel [1]. However, the corrosion resistance of Q235 steel is poor, and Q235 steel will suffer
corrosion in weakly alkaline, neutral and acidic environments (including the atmosphere,
water and soil), which will cause significant losses of economy, resources and energy and
threaten the safety of the corresponding grounding infrastructure and personnel. The
rapid development of urbanization and industrialization has led to the deterioration of the
environment. “Smog weather” usually occurs in winter, but pollutants are present in the air
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all year round. Fine particulate matter (PM 2.5) in the atmosphere enters the soil with rain,
which causes the transformation of soil quality [2,3]. Rainfall, growth absorption, water
loss from terrain, and human activities all affect changes in the water content in the soil
environment and subsequently affect soil corrosion. In addition, soil corrosion is affected
by soil resistivity, soluble salts, water content, pH and the interactions of the factors. The
factors often vary with time and space, and they are very complex [4]. Therefore, the rules
and mechanism of soil corrosion still need to be further explored and studied.

Soil corrosion is one of the main causes of grounding infrastructure failure, and it is
hidden and difficult to detect. Soil is a complex electrolyte system. Water provides soil
with an electrolyte [5]. There are many kinds of soil in China, and the corrosion resistances
of the same material in different soils are very different. Currently, natural environment
corrosion test nets have been built in our country. Particles in sand have no adsorption
effect on ions, and the corrosion of metal materials has certain characteristics [6]. Studying
the electrochemical corrosion mechanism of Q235 steel in sand under a natural air-dried
state (moisture from saturated to dry) is helpful for evaluating the corrosion status of Q235
steel through rainfall or human activities to guide engineering application.

In recent years, the corrosion of Q235 steel in soil environments with different proper-
ties [6], such as magnesium chloride polluted sandy silt soil, silt soil containing sodium
chloride, sand [7], diatomite soil [8], sodium bentonite [9], bentonite clay [10] and al-
ternating wet and dry soil [11] was studied by electrochemical testing techniques and
morphological composition testing techniques. The simulated acid rain heavily increased
the corrosion rate of Q235 steel in the acidic soil in Yingtan [12]. The Q235 steel in acidic
soil in Singapore was mainly corroded locally and with severe corrosion [13]. The electro-
chemical characteristics of the sand were analyzed from the characteristics of the interfaces
of the three phases, the basic model and the equivalent circuit fitting. In sandy soil (gas,
liquid, solid multiphase corrosion system), the cathode distribution on the metal surface
depends on the total length of the three phases boundary per unit area (Ltpb), which is an
important factor affecting the corrosion behavior [14]. To further explore the influence of
pore fluid on the electrochemical corrosion of Q235 steel in sand containing simulated haze
aqueous solution (HA solution), the electrochemical corrosion of Q235 steel in sand under
a natural air-dried state was studied based on electrochemical theory.

2. Materials and Methods
2.1. Materials

The test employed Xiamen ISO standard sand with a SiO2 content exceeding 98%.
The maximum dry density (ρdmax) and minimum dry density (ρdmin) were 1.86 g/cm3 and
1.56 g/cm3, respectively. The grain size accumulation curve shows that the gradation of
the sand is discontinuous, but the soil is a good grade of coarse sand, which meets the
two conditions of Cu ≥ 5 and Cc = 1–3 at the same time [15]. The composition and content
of the HA solution are shown in Table 1. The ratio of SO4

2−, NO3
−, NH4

+ and Cl− ions
is 5:4:1:2 [16]. Pure water was used in this work. The representative pipeline steel Q235
was selected as the working electrode and was characterized by a low carbon content. The
components are shown in Table 2. The samples were Q235 steel sheets with dimensions
of Φ15 mm × 2 mm. The samples were successively polished with #360, #800 and #1500
SiC sandpapers before testing and subsequently blown dry after ultrasonic cleaning in an
acetone solution for 10 min. Afterwards, a working area of 1 cm2 was left on the surface of
the working electrode through wax sealing. The electrolytic cell was a rubber soil sample
box with an internal volume of 70.7 × 70.7 × 70.7 mm3. The weight of the sand soil was
300 g and the initial weight of the water was 90 g. The precision of the Libra was 0.01.

Table 1. Composition and content of the simulated haze aqueous solution (HA solution).

Composition Na2SO4 NaNO3 NH4Cl NaCl H2O

Content (mol·L−1) 0.05 0.04 0.01 0.01 BAL.
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Table 2. Chemical composition of Q235 steel (wt.%).

Composition C Si Mn P S Fe

Content (wt.%) 0.22 0.48 0.01 0.22 0.022 Bal.

2.2. Methods

The initial water content was 30% (saturated state), and the test ages were 1 d, 2 d, 3 d,
. . ., until the sand was air-dried. The electrochemical impedance spectra and polarization
curves of the Q235 steel in sand were obtained by an electrochemical workstation (CS350H,
Wuhan Corrtest Instruments Corp., Ltd., Wuhan, China). A Q235 steel electrode (WE,
working electrode), saturated calomel electrode SCE (RE, reference electrode) and titanium
mesh (CE, counter electrode) were, respectively, the three electrodes. The open-circuit
potential (OCP) was measured for 20 min. Electrochemical impedance spectra were tested
under the condition of an AC amplitude of 5 mV and scanning frequency of 10−2–105 Hz.
The potentiodynamic polarization test was proceeded under the parameters of a potential
range of −1–2 V near the open-circuit potential and a scanning rate of 3 mV/s. The
temperature, moisture, salinity and pH of the sand were tested by soil meter (FK-WSYP).
The height of 300 g of sand was 3.5 cm, and the soil was loose. The working electrode was
buried in sand at a depth of 2 cm. The properties test height of the sand was consistent
with the height of the working electrode [15].

An optical digital microscope (Olympus DSX1000, Tokyo, Japan) was used to study
the macroscopic corrosion morphology of the corrosion products. A scanning electron
microscope (JSM-6510, Japan Electronics Co., Ltd., Hachioji, Japan) was used to observe the
micromorphology of the corrosion products and Q235 steel at magnifications of ×50, ×100,
×200, ×500 and ×1000. An energy spectrometer (GENESIS, EDAX, Mahwah, NJ, USA)
and X-ray photoelectron energy spectrometer (Thermo Scientific EscaLab Xi+, Thermo
Fisher Scientific, Waltham, MA, USA) were used to test the energy dispersive spectroscopy
(EDS) and X-ray photoelectron spectroscopy (XPS) of the corrosion products, respectively.
The pickling solution used for cleaning rust was a 1000 mL solution consisting of 500 mL
hydrochloric acid (HCl, ρ = 1.19 g/mL), 3.5 g hexamethylenetetramine and distilled water.
The temperature was 20–25 ◦C, and the soaking time was 5–10 min.

3. Results
3.1. Properties of Sand Containing HA Solution

The physical and chemical properties of sand containing the HA solution under a
natural air-dried state are shown in Table 3. The pH fluctuated in the scope of 6.34–7.01,
and the sand was basically neutral. The temperature also changed by approximately 20 ◦C.

Table 3. Physical and chemical properties of sand containing HA solution.

Age (d) Salt Content (%) pH Water Component (%) Temperature (◦C)

1 1.26 6.55 30.0 21.8
2 1.14 6.34 26.0 21.4
3 1.06 6.61 19.0 20.5
4 0.79 6.68 18.8 19.2
5 0.88 6.63 17.5 19.3
6 0.59 6.70 15.9 19.9
7 0.63 6.64 14.4 21.5
8 0.43 6.99 12.5 18.7
9 0.31 6.85 11.3 19.4

10 0.19 6.92 8.5 20.3
11 0.12 6.96 6.2 18.6
12 0.04 7.01 3.4 19.4
13 0.04 6.88 0.5 19.0
14 0.04 6.94 0.0 21.9
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The sand containing the HA solution gradually dries from 30% to 0% within 14 days.
The salt gradually decreased from 1.26% to 0.04% within 14 days.

3.2. Open-Circuit Potential of Q235 Steel in Sand Containing HA Solution

Figure 1 presents the open-circuit potential (Eocp) of Q235 steel in sand containing HA
solution under natural air drying. It is stable with time. With the increase in age, that is, the
decrease in moisture content in the sand, the Eocp of Q235 steel in sand gradually-positively
skews.
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Figure 1. Open circuit potential of Q235 steel in sand containing HA solution: 1–14 d.

3.3. Electrochemical Impedance Spectra of Q235 Steel in Sand Containing HA Solution

Figure 2 shows the Nyquist diagrams of Q235 steel in sand containing HA solution in
the natural air-dried state. With the increasing age, that is, decreasing moisture content, the
impedance spectra fluctuate greatly in the frequency area of 103–106 Hz after 8 days. The
parts with large fluctuations are not presented and analyzed here. In the frequency area of
10−2–103 Hz, the impedance spectra present a flat capacitive loop, the intersection point
with the real axis shifts to the left, and the radius of the capacitive loop decreases first and
then increases.
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Figure 3 is the modulus value and Figure 4 is the phase angle of Q235 steel in natural
HA-containing sand. The impedance spectra are not the type of onetime constant, which is
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consistent with the impedance spectra. After 8 d, the impedance spectra fluctuate greatly
in the frequency range of 103–106 Hz.
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To further study the characteristics, the non-fluctuation part of the impedance spectra
of Q235 was fitted by the equivalent circuit Re(Cs(Rs(Qdl(RctW)))) (Figure 5) according to
the characteristics of the modulus and phase angle [15]. The fitting results are shown in
Figures 6 and 7 and Table 4, which are obtained by the fitting software ZSimDemo 3.30d.
Figures 6 and 7 show that the fitting effect of the equivalent circuit is good.
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HA solution (1d–7d). 

Figure 6. Equivalent circuit fitting results of the impedance spectra of Q235 steel in sand containing
HA solution (1 d–7 d).
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HA solution (8d–14d). 
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Table 4. Equivalent circuit fitting results of the impedance spectra of Q235 steel in sand containing
HA solution.

Age (d) Re (Ω·cm2) Cs (F·cm−2) Rs (Ω·cm2)
Qdl

Rct (Ω·cm2) W (S·s0.5·cm−2)
Yo (S·s−n·cm−2) n

1 1.26 × 102 1.55 × 10−8 6.50 × 101 1.99 × 10−4 0.84 2.36 × 103 1.56 × 1010

2 1.08 × 102 1.26 × 10−8 6.91 × 101 7.79 × 10−4 0.65 2.09 × 103 4.20 × 108

3 1.08 × 102 1.33 × 10−9 1.09 × 102 5.85 × 10−4 0.72 1.63 × 103 1.56 × 10−3

4 1.07 × 102 3.43 × 10−9 7.00 × 101 7.01 × 10−4 0.71 1.42 × 103 1.19 × 10−2

5 1.12 × 102 3.51 × 10−9 7.60 × 101 1.73 × 10−3 0.57 1.51 × 103 7.58 × 10−3

6 1.19 × 102 2.84 × 10−9 8.84 × 101 3.05 × 10−3 0.49 2.83 × 103 6.02 × 10−3

7 1.91 × 102 1.22 × 10−9 1.78 × 102 4.30 × 10−3 0.41 1.98 × 103 1.02 × 103

8 8.37 × 102 8.63 × 10−10 1.93 × 103 2.35 × 10−3 0.40 7.42 × 102 6.13 × 107

9 6.68 × 102 9.43 × 10−10 2.96 × 103 1.27 × 10−3 0.61 5.34 × 102 4.84 × 10−2

10 3.35 × 103 5.87 × 10−8 3.53 × 102 1.56 × 10−3 0.60 4.62 × 102 4.28 × 10−2

11 1.16 × 102 4.61 × 10−9 3.72 × 104 5.19 × 10−7 0.51 2.09 × 105 3.90 × 10−5

12 3.16 × 102 1.03 × 10−9 5.09 × 103 3.24 × 10−3 0.20 4.07 × 103 5.72 × 108

13 6.64 × 102 7.76 × 10−8 4.24 × 102 4.27 × 10−3 0.61 2.44 × 102 1.93 × 10−2

14 9.43 × 103 9.23 × 10−13 4.52 × 103 7.76 × 10−6 0.41 7.18 × 104 5.88 × 10−4

3.4. Polarization Curve of Q235 Steel in Sand Containing HA Liquid

Figure 8 is the polarization curves of Q235 steel in sand containing HA solution under
a natural air-dried state. With the increase in age, that is, as the moisture content in the sand
decreases continuously, the polarization curve shifts upward overall, and the corrosion
of Q235 steel gradually weakens. During 1 d–7 d, the corrosion potential of the Q235
steel is around −1 V, and passivation of the anode branch is obvious. After 8 days, the
corrosion potential gradually increased to about −0.8 V. At 1 d, a wide platform appeared
in the anode branch of the polarization curve, showing a relatively stable current density,
which may be related to the solid–liquid path in the initial saturation state in the sand.
During 2–5 d, an activation–passivation transition zone appears in the range of −1–0 V of
the anodic branch. On the one hand, the water content in the sand decreases, forming a
solid–liquid–gas three-phase path; On the other hand, the pore liquid contains Cl−, and the
anode branch presents the characteristics of pitting. Over 1–5 d, pitting potential gradually
shifts from around 0 V to about −0.5 V.
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Table 5. Rp fitting results of the polarization curves of Q235 steel in sand containing HA solution. 

Age (d) Corrosion Rate (mm/a) Rp (Ω/cm2) Io (A/cm2) Eo (V) 
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Figure 8. Polarization curves of Q235 steel in sand containing HA solution: (a) 1 d–7 d; (b) 8 d–14 d.

To further study the corrosion rate of Q235 steel in sand containing HA solution, the
polarization curves were fitted by Rp weak polarization at ±50 mV near the open circuit
potential. The results are shown in Table 5. The polarization resistance Rp decreases first
and then increases, reaching a peak value at 7 d. Io is the corrosion current density. The
corrosion grade of Q235 steel first increases, reaching the highest level (3.44 × 10−5 A/cm2)
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at 6 d, and then decreases. The corrosion potential E0 basically shifts to the negative
direction.

Table 5. Rp fitting results of the polarization curves of Q235 steel in sand containing HA solution.

Age (d) Corrosion Rate (mm/a) Rp (Ω/cm2) Io (A/cm2) Eo (V)

1 1.10 × 10−1 2.59 × 103 1.01 × 10−5 −0.95
2 1.50 × 10−1 1.92 × 103 1.36 × 10−5 −0.98
3 1.80 × 10−1 1.69 × 103 1.55 × 10−5 −0.99
4 2.40 × 10−1 1.24 × 103 2.11 × 10−5 −1.00
5 3.30 × 10−1 9.23 × 102 2.83 × 10−5 −0.99
6 4.00 × 10−1 7.59 × 102 3.44 × 10−5 −0.99
7 3.90 × 10−1 7.74 × 102 3.37 × 10−5 −0.93
8 1.17 × 10−1 2.62 × 103 9.95 × 10−6 −0.72
9 1.05 × 10−1 2.93 × 103 8.90 × 10−6 −0.71

10 7.53 × 10−2 4.08 × 103 6.40 × 10−6 −0.74
11 6.65 × 10−2 4.61 × 103 5.65 × 10−6 −0.72
12 5.13 × 10−2 5.98 × 103 4.36 × 10−6 −0.68
13 6.01 × 10−2 5.11 × 103 5.11 × 10−6 −0.69
14 5.97 × 10−3 5.14 × 104 5.08 × 10−7 −0.64

3.5. Electrochemical Corrosion Mechanism of Q235 Steel in Sand Containing HA Solution

Figure 9 shows the macroscopic corrosion morphology of Q235 steel in sand containing
HA solution under natural air-dried state, and the magnification of the picture is 18×. The
results indicate that the surface of Q235 steel has highly variable brown-yellow corrosion
products (iron oxides). Figure 9b shows that the thickness of the corrosion products is
about 70–200 µm and the height varies. The SEM images of the corrosion products are
show in Figure 10. The corrosion products were in the shape of lamellar, flocculent clusters,
rice grains, etc.

The EDS and XPS analysis were further performed on the corrosion products on the
Q235 selected in Figure 9. The EDS results (Table 6) indicate that the corrosion products
are mainly composed of Fe, O and C. And small amounts of Na, S and Cl are present.
The XPS analysis results of the corrosion products are shown in Figure 11. As shown
in the full spectrum XPS scanning diagram in Figure 11a, the elements in the corrosion
products mainly include Fe, O and C. The C may come from the matrix of the sample and
adventitious carbon, Na may be the precipitation of sodium salts, and Fe and O may come
from the surface corrosion products.
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Figure 9. Macroscopic corrosion morphology of Q235 steel in sand containing HA solution: (a) 2D
image; (b) 3D image (The area in the red circle will be further analyzed by EDS and XPS).
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Figure 10. SEM images of corrosion products on the surface of Q235 steel in sand containing HA
solution: (a) ×50; (b) ×100; (c) ×200; (d) ×500; (e) ×1000.

Table 6. Elemental content analysis (EDS) of corrosion products for different selections: (a) all
selection; (b) protrusion region; (c) flat region.

Section Element CK OK NaK SiK SK ClK MnK FeK Matrix
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Figure 11. XPS of the corrosion products on Q235 steel: (a) full spectrum and elemental chemical
bond analysis: (b) O1s fine spectrum; (c) Fe2p fine spectrum; (d) Na1s fine spectrum; (e) C1s fine
spectrum.

The corrosion morphology of Q235 steel was further analyzed via SEM after removing
the rust. The magnifications were ×50, ×100, ×200, ×500 and ×1000 (Figure 12). The
corrosion of Q235 steel is local corrosion, and corrosion pits are connected to form a large
area of dimples.
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4. Discussion

The Eocp of Q235 steel in sand gradually positively skews, indicating that the corrosion
kinetics of Q235 steel in sandy soil decrease with the increase in age [17]. In the high-
frequency region, solid, solution and gas in sand containing HA solution will all form
conductive paths, and the impedance spectrum will fluctuate greatly when the water
content is low [15,18]. In sandy soil, Cl− has greater mobility and aggression, while SO4

2−

has more charge. The impedance spectrum radius of Q235 steel in sand containing HA
solution is smaller than that in sand without HA solution [15]. At 8 d, the water component
of the sand containing the HA solution is 12.5%, which is near the limit volume content
of the liquid bridge (6%–12%). The arc radius of the capacitive loop reached a minimum,
and the sand had the strongest corrosion on the Q235 steel. The water content in the liquid
bridge limit volume is respectively about 6% and 12% for the loose simple cube arrangement
and the compact tetrahedron arrangement. When the water content is 6%–12%, the water
content in the sand is near the liquid bridge limit volume. Water content continues to
decrease, and there are lenticular or annular water films on the contact points of sand
particles that are not connected with each other [15].

Table 4 shows that after the water component reaches less than the limit liquid bridge
volume (8 d), the fitting parameters of the impedance spectra change greatly, which may
be caused by the complex distribution of the pore liquid. With decreasing water in sand,
the solution resistance (Re), sand layer resistance (Rs) and charge transfer resistance (Rct)
increase, but the order of magnitude of Rs changes little. In addition, the order of magnitude
the diffusion impedance (W) representing tortuosity fluctuates greatly, which is probably
because the complex pore structure of sand containing HA solution [19]. Qdl is a constant
phase element, the values of n are all less than 0.8 and the interface capacitance deviates
from the ideal capacitance.

The pitting characteristics of anode branch for polarization curve also indicate the
faster corrosion kinetics of Q235 steel in the early age (1–5 d) [17]. The Io of Q235 steel
is above 3 µA/cm2 at 1 d–13 d, the corrosion degree of Q235 steel is above medium, the
corrosion degree is below 3 µA/cm2 at 14 d and the corrosion of Q235 steel is mild [19]. The
overall corrosion rate decreases gradually from 10−1 to 10−3 and the average corrosion rate
is 0.1629 mm/a. HA solution accelerates the corrosion of Q235 steel in sand without HA
solution (average corrosion rate, 1.51 × 10−2 mm/a). The addition of HA solution increases
the corrosion rate of Q235 steel by orders of magnitude, and the corrosion potential E0
basically shifts to the negative direction, which increases the corrosion tendency [15].

The surface of Q235 steel has highly variable brown-yellow corrosion products (iron
oxides, about 70–200 µm), which is closely related to the porous structure of sand containing
the HA solution. The part in contact with the pore solution (HA solution) can directly carry
out electrochemical corrosion, and the corresponding product presents a darker color [20].
The SEM images of the corrosion products (Figure 10) showed that the corrosion products
were in the shape of lamellar, flocculent clusters, rice grains, etc.

The EDS results (Table 6) indicate that the corrosion products are mainly composed
of Fe, O and C. And small amounts of Na and Cl are present. Therein, Fe and O are in
compositions of brown and yellow iron oxides. In the O1s fine spectrum (Figure 11b), the
peak at 529.34 eV represents the formation of iron oxides, while the peak at 530.99 eV may
be caused by the coexistence of various iron oxides and adhesive sand particles (SiO2),
with multiple overlapping components [21]. In the Fe2p fine spectrum (Figure 11c), the
characteristic peak at 710.74 eV represents the formation of Fe2p3/2(Fe2O3), and the peak
at 724.14 eV represents the formation of Fe2p1/2(Fe2O3) [22]. In the Na1s fine spectrum
(Figure 11d), the peaks at 1071–1071.5 eV represent sodium compounds. In the C1s fine
spectrum (Figure 11e), the peak at 284.8 eV represents the chemical state of C-C, while
the peak at 288.46 eV represents the chemical state of O-C=O. On the one hand, the metal
matrix is an iron–carbon alloy, and on the other hand, adventitious carbon is adsorbed on
the sample [23].
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Fe2O3 is the main component of the corrosion products. Anode dissolution will
produce Fe2+, which may react with H2O in the neutral pore liquid to form Fe(OH)2
(Formula (3)) and further oxidize to form Fe2O3 on the Q235 steel [24,25]. When the steel is
in contact with the sand, a circuit is formed through the sand to form a corrosion battery,
and an electrochemical reaction can occur.

Fe − 2e → Fe2+ (1)

O2 + 4H+ + 4e → 2H2O (2)

Fe2+ + 2H2O → Fe(OH)2 + 2H+ (3)

4Fe(OH)2 + O2 → 2Fe2O3 + 4H2O (4)

Fe + 2Cl− → FeCl2 + 2e (5)

2H2O + 4e + 4Na+ + O2 → 4NaOH (6)

FeCl2 + NaOH + O2 → Fe2O3·H2O + NaCl + H2O (7)

2FeSO4 + O2 + H2O → Fe2O3·H2O + H2SO4 (8)

The HA solution and porous structure of sand affect the electrochemical corrosion
of Q235 steel, and Figure 12 shows that HA solution strongly aggravates the corrosion of
Q235 steel in sand [15].

5. Conclusions

Based on electrochemical theory and the corrosion principle of Q235 steel, the electro-
chemical corrosion of Q235 steel in sand containing HA solution under a natural air-dried
state was comprehensively studied. The following conclusions are obtained:

(1) The pH of the sand containing the HA solution fluctuated within the range of 6.31–7.01,
the sand was basically neutral and the temperature changed by around 20 ◦C. The
moisture gradually decreased from 30% to 0%, and the salt decreased from 1.26% to
0.04% within 14 days;

(2) The Eocp of Q235 steel is stable with time. With the increase in age, the Eocp gradually-
positively skews indicating the corrosion kinetics of Q235 steel in sandy soil decrease.
In the frequency of 10−2–103 Hz, the impedance spectra present a flat capacitive
loop. The water component of the sand is near the limit volume content of the liquid
bridge (6%–12%) at 8 d. The radius of capacitive loop is the smallest, and sand erodes
steel the most. After 8 d, the impedance spectra fluctuate greatly in the frequency of
103–106 Hz;

(3) As age increases, the polarization curve of Q235 steel moves upward overall, and the
corrosion tendency of Q235 steel in sand containing HA solution gradually weakens.
The pitting characteristics of the anode branch for polarization curve also indicate
the faster corrosion kinetics of Q235 steel in the early age (1–5 d). The corrosion
grade of Q235 steel first increases and then decreases, reaching the highest level
(3.44 × 10−5 A/cm2) at 6 d. The corrosion degree of Q235 steel varies from medium
to mild corrosion. The average corrosion rate is 0.1629 mm/a. HA solution accelerates
the corrosion of Q235 steel in sand without HA solution (average corrosion rate,
1.51 × 10−2 mm/a).

(4) The surface of the Q235 steel was stacked with highly different brown–yellow cor-
rosion products (iron oxides, about 70–200 µm), and the corrosion products were
lamellar, flocculent clusters, rice grains and other shapes. The corrosion of the Q235
steel was local corrosion, and corrosion pits connected to form a large area of dim-
ples. The HA solution and porous structure in sand jointly affect the electrochemical
corrosion of Q235 steel.
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