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Abstract: A disadvantage of using linear polarization resistance (LPR) in the measurement of
corrosion current density is the need to partially destroy a concrete cover. In this article, a new
technique of predicting the corrosion current density in reinforced concrete using a self-organizing
feature map (SOFM) is presented. For this purpose, air temperature, and also the parameters
determined by the resistivity four-probe method and galvanostatic resistivity measurements,
were employed as input variables. The corrosion current density, predicted by the destructive
LPR method, was employed as the output variable. The weights of the SOFM were optimized using
the genetic algorithm (GA). To evaluate the accuracy of the SOFM, a comparison with the radial basis
function (RBF) and linear regression (LR) was performed. The results indicate that the SOFM-GA
model has a higher ability, flexibility, and accuracy than the RBF and LR.
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1. Introduction

Corrosion of steel reinforcements has recently become a major problem in civil engineering [1-3].
Thus, the attention of researchers is nowadays devoted to the protection of concrete and steel
reinforcements against corrosion [4-7]. One of the main issues of this protection is the proper prediction
of the corrosion rate [8-13]. A direct method of providing an evaluation of the corrosion rate based on
a corrosion current density (icorr) measurement is linear polarization resistance (LPR). In LPR method
a small direct current (DC) electrical signal (Al) is introduced to a steel reinforcement bar. A surface
electrode is applied for this purpose (Figure 1a).

When a suitable time for equilibrium is established, the change in potential (AE) is measured and
the polarisation resistance (Rp) is given by the Stern-Geary Equation [14]:

AE
Rp = 57 @

An equivalent electrical Randle’s circuit can be used to model corrosion process [15]. According
to Figure 1b Randle’s circuit consists of a concrete cover resistance (Rp) with the combination of the
double-layer capacitance (Cq;) and a charge transfer resistance (Ret):

Ret = Rp — Ry @)
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where R; is the concrete cover resistance. Finally, the icorr is given by:

. B
leorr = m (©)]

where B is a Stern-Geary proportionality constant [16] and A is the area of steel being perturbed.
A disadvantage of using the LPR method for a corrosion current density measurement is that it
requires the partial destruction of a concrete cover in order to provide an electrical connection to the
steel [17,18]. To avoid this shortcoming in [19] the proposal of a new corrosion rate assessment method
was offered. The principle of this model is primary to take a four-point resistivity measurement using
an alternating current (AC) passed through Cq (Figure 1b). Thus, the resistivity first is measured over
(PAC,bar) OF aWay (PAC,conc) from the steel bar. Then, the same measurement has to be taken once more
using a DC current to measure the resistivity ppc.
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Figure 1. Scheme of (a) linear polarisation resistance measurement (LPR) and (b) Randle’s equivalent
electrical circuit [19].

In the last few years, artificial neural networks (ANNSs) have emerged as powerful devices that
can be used in many civil engineering applications [20-25]. Thus, researchers have developed a series
of models of steel corrosion using an ANN [26-32]. In previous research, ANN models based on a
conventional multilayer perceptron (MLP) were established [33]. These models have a theoretical
value as they can predict the corrosion current density without the need for a connection to the steel
reinforcement. The MLP has a satisfactory performance for reinforced concrete slabs with a high
corrosion rate (R? = 0.9436 for training and R? = 0.9843 for testing), while the observed performance
for reinforced concrete slabs with a moderate corrosion rate was lower (R? around 0.9109 for training
and 0.9801 for testing). Considering the above, the imperialist competitive algorithm (ICA) was used,
but the obtained values of determination coefficients R? of around 0.8019 and 0.9045 (for training and
testing, respectively) were not satisfactory [34].

It should be noted that a great deal of progress has been made in the field of artificial intelligence
modelling in the last few years. One result of this progress is the self-organizing feature map (SOFM).
The SOFM was established by Kohonen [35,36] and described in detail [37,38]. The SOFM is developed
based on the unique nature of the human brain and its specific characteristics. In a SOFM, processing
units are placed in nodes of multi-dimensional networks (usually one-dimensional or two-dimensional,
as indicated in Figure 2). The learning process is competitive. The obtained coordinate system forms
a topographic map of input patterns in order to compete with each other at each step of learning.
Only one unit wins at the end of this competition [35]. The total weight of the entries in various units
come out of an output [36,38-40]. Recently, the SOFM has become more frequently used when solving
civil engineering problems [41-45]. In this research, better prediction results are more probable with
the use of the SOFM than with the use of previous models.

Considering the above, the article presents a new technique of predicting the corrosion current
density in reinforced concrete using a SOFM. For this purpose, air temperature and also parameters
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determined by the resistivity four-probe method and galvanostatic resistivity measurements were
employed as inputs. The corrosion current density, predicted by the destructive LPR method,
was employed as the output. The weights of the SOFM were optimized using the genetic algorithm
(GA). To evaluate the accuracy of the SOFM, a comparison with the radial basis function (RBF) and
linear regression (LR) was performed.
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Figure 2. Model of (a) a one-dimensional structural model of the SOFM [35] and (b) a two-dimensional
structural model of the SOFM [45].

2. Experimental Setup

Reinforced concrete slab specimens with dimensions 400 mm x 300 mm x 100 mm were prepared.
Each specimen contained a single steel bar with the diameter equal to 30 mm. The steel bar was made
from class A-III grade 34GS steel. The concrete cover was equal to 20 mm. The reinforced concrete slabs
were made from class C 20/25 concrete. The concrete was composed of Portland cement CEM 1 42.5R.
The coarse aggregate with a maximum grain size Dmax of 8 mm has been used.

The specimens were corroded in natural environment. Then the samples were stored in laboratory
conditions: the ambient air temperature of 20 °C (£1 °C) and an air relative humidity of 65% (£1%).
The AC resistivity measurements were performed on two positions: directly over the bar (Position 1)
and away the bar (Position 2), as presented in Figure 3b. As described in [19], a modified electrode array
was used to perform DC resistivity measurements (at Position 1). For this purpose, two copper-copper
sulphate reference electrodes were used to replace the two inner standard resistivity probes (Figure 3a).
Repeated measurements were taken over several days. Then, LPR method has been applied to measure
the actual icorr. The exemplary data were presented in Table 1.

Position 2 Position 1

1OOI

300
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Figure 3. Scheme of (a) DC resistivity equipment on reinforced concrete specimen and (b) resistivity
measurement locations on concrete specimen [19].
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Table 1. Exemplary steel corrosion data with moderate corrosion rates [33].

No. T (°O PAC,bar (kQ2-cm) PAC,conc (k2-cm) ppc (k2-cm) icorr (WA/cm?)

1 21.00 19.31 2227 21.81 0.422
2 20.80 19.33 22.28 21.83 0.423
3 20.50 19.34 22.30 21.85 0.421
4 20.10 19.35 22.31 2191 0.439
5 19.80 19.36 22.32 21.92 0.439
6 19.50 19.36 22.33 21.94 0.456
7 19.20 19.37 22.36 21.96 0.466
8 19.00 19.38 22.38 21.98 0.476
9 20.90 19.24 22.09 21.62 0.373
10 20.70 19.25 2212 21.63 0.380
68 19.10 19.30 22.22 21.77 0.421

The statistical characteristics of the database are summarized in Table 2. As presented in Table 2
bar had an icory between 0.37 and 0.49 pA /cm? with the coefficient of variation of 7.09%. Judging by
this, the conditions have been steady and close to passivity. They are low compared to others [46,47].
The measured air temperature T during the investigations was 20 °C (£1 °C) with the coefficient of
variation equal to 3.28%. The resistivity measurements exhibits low scatter with coefficient of variation
below 1% (Table 2). The Shapiro-Wilk compliance test with normal distribution was also conducted
(Table 3), in accordance with [48]. In this test the hypothesis of compliance with normal distribution is
rejected, if the level of W probability is lower than the determined probability Wy («) under the level of
the significance ().

Table 2. Statistical characteristics of the database (based on data presented in [33]).

No. Type Psa;‘;lnl;ztler Unit Maximum Minimum Mean 322:3:;1 C(;Zfli:;:; of
1 Input T °C 21 19 19.988 0.656 3.28%
2 Input PAC,bar kQ-cm 19.38 19.23 19.304 0.041 0.21%
3 Input PAC,conc kQ-cm 22.39 22.09 22.246 0.089 0.40%
4 Input PDC kQ-cm 21.98 21.60 21.778 0.119 0.55%
5 Output icorr 1A /cm? 0.487 0.373 0.423 0.030 7.09%

Table 3. Results of the Shapiro-Wilk test.

No. Type Parameter Symbol Unit w o4 Wh(x)
1 Input T °C 0.923 0.01 0.956
2 Input PAC bar kQ-cm 0.957 0.01 0.956
3 Input PAC,conc kQ-cm 0.942 0.01 0.956
4 Input PDC kQ-cm 0.924 0.01 0.956
5 Output icorr uA/cm? 0.962 0.01 0.956

For « = 0.01, the hypothesis regarding compliance of the distribution of all the parameters with
normal distribution desires to be rejected for T, pac conc and ppc (Table 3). Thus, the most useful
input parameter will be the psc par and icorr as an output variable. Then, the correlations between the
input parameters and icorr, Were investigated using Pearson’s (p), Spearmann’s (ps) and Kendall’s (7)
correlation coefficients (Figure 4). Parameters are considered to be useful when the values of p, ps and
T are in a range from £1 to £0.4.

The correlation coefficients p, ps and T obtain the highest value in a range between 0.73 and 0.85
for the resistivity parameters (Figure 4). It may indicate the key importance of these parameters for the
SOFM. The negative values of correlation coefficients in the case of parameter T indicate a decrease of
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their values with an increase of the output variable icorr. The values of coefficients p, ps and T obtained
in the range between —0.46 and —0.62 affirm the lack of correlation between T and the icor.

1.0
08 |
06 |
04 |
02
0.0
02
04 |
06 BKendall
08
-1.0

B Pearson

@ Spearman

Correlation coefficient values [-]

T pAC,bar pAC,conc Ppc
Name of the parameter

Figure 4. Pearson’s (p), Spearmann’s (ps), and Kendall’s (T) rank correlation coefficient values between
input parameters and the icorr.

3. Results and Discussion

3.1. Selection of the Optimum Prediction Model Using the SOFM

From the database presented in Table 1, 80% of the samples (54 samples) were used for training,
10% (seven samples) for validation and 10% (seven samples) for testing. Equation (4) was used to
determine the number of nodes in the hidden layer (HL) [49]:

Ny <2Np+1 4)

where Ny is the maximum number of nodes in the HLs and N is the number of inputs. Considering
that the effective number of inputs is equal to 4, the maximum number of nodes in the HL is equal to 9
(Table 4).

Table 4. Different SOFM models.

Neighborhood Starting No. of Transfer Training
No Shape Radius Network  No. of HL Nodes Function Algorithm
1 SquareKohonenFull 2 5x5 1 9 TanhAxon Momentum
2 LineKohonenFul 2 6x6 2 5-4 Sigmoid Axon QuickProp
. Linear
3 DiamondKohonenFul 2 7x7 3 3-3-3 TanhAxon Step

For each model the equation has been provided together with the value of the determination
coefficient (R?) for training, validation and testing (Table 5). Table 6 presents the errors: mean (ME),
mean absolute (MAE), root mean squared (RMSE), and mean squared (MSE). The optimum structure
is 1-9-4. The detailed results are then presented in Figures 5 and 6.

Table 5. Results of the different SOFM models in the training, validation, and testing phases.

Training Validation Testing
No.
Equation R? Equation R? Equation R?
1 y =0.9292x + 0.0299 0.9333 y =0.5884x + 0.1717 0.9240 y = 0.8329x + 0.0682 0.9786
2 y =0.0008x + 0.4109 0.2649 y =0.0012x + 0.4107 0.6785 y =0.0009x + 0.4108 0.7263

3 y = 0.8406x + 0.0694 0.8093 y =0.8477x + 0.0659 0.8194 y = 0.8705x + 0.055 0.8968
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Table 6. Statistical analysis of the different SOFM models in training, validation, and testing.

Training Validation Testing
Model Number
1 2 3 1 2 3 1 2 3
ME 0.0050 —0.0068  0.0061 —0.0142 —0.0238 —0.0091 —0.0121 —0.0158 —0.0112
MAE 0.0241 0.0068 0.0249 0.0142 0.0238 0.0118 0.0183 0.0158 0.0189
MSE 0.0009 0.0000 0.0007 0.0004 0.0006 0.0004 0.0005 0.0002 0.0006
RMSE 0.0295 0.0068 0.0269 0.0194 0.0238 0.0206 0.0230 0.0158 0.0247
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Figure 5. Corrosion current density prediction using the different SOFM models in the processes of

(a) training, (b) validation, and (c) testing.
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Figure 6. Comparison of corrosion current density prediction using the different SOFM models in the

processes of (a) training, (b) validation, and (c) testing.

3.2. Sensitivity Analysis of the Selected SOFM—-GA Model

To determine the effect of input parameters on output parameters, the sensitivity analysis

technique is used (Table 7).

Table 7. Analysis of the sensitivity of the output in the SOFM-GA model in comparison to the

input parameters.

Row Symbol of the Input Parameter icorr
1 T 0.0006
2 PDC 0.0040
3 PAC,conc 0.0040
4 PAC,bar 0.0046

According to Table 7, parameters T and ppc have the least and greatest impact respectively on the
output of SOFM-GA Model 1. The best network for matching the input data in the SOFM—GA model
isa 5 x 5 structure, which is indicated in Figure 7 for the training, validation, and testing phases.
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Hits Hits

Figure 7. Structure for matching the input data in the processes of (a) training, (b) validation,
and (c) testing.

3.3. Comparison of the Selected SOFM—-GA Model with Linear Regression (LR) and the Radial Basis Function
(RBF) Neural Network

The SOFM-GA model was compared with LR models and these statistical models are presented in
Equations (4)—(6). To determine the statistical equations, MINITAB Student 14 software was used [50]:

LR 1: icorr = —9.95 + 0.446p oc + 0.07920 AC conc (4)
LR 2: icorr =-9.19 + 0.03529]3(: + 0.392()AC + O~O577pAC,Conc (5)
LR 3: icom = —3.10 — 0.01537T + 0.1143ppc — 0.049p ¢ + 0.1028p AC conc 6)

The results are shown for four models for the training, validation and testing of data for the
statistical indicators in Tables 8 and 9. Table 8 deals with investigating the results with respect to the
straight line slope and the R?, while the statistical indicators are presented in Table 9. The results
indicate that LR 3 model is more accurate than the other models.
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Table 8. Results of different models of LR in the training, validation, and testing phases.

Training Validation Testing

Model . 2 N 2 N 2
Equation R Equation R Equation R

LR1 y =0.7884x + 0.0877 0.8159 y =0.3989x + 0.2514 0.2369 y = 0.8965x + 0.0483 0.7989

LR2 y = 0.7895x + 0.0932 0.8183 y = 0.3949x + 0.2588 0.2307 y = 0.8638x + 0.066 0.8367

LR3 y = 0.8695x + 0.0561 0.8771 y = 0.5181x + 0.2003 0.4536 y = 0.7695x + 0.0939 0.8946

Table 9. Statistical analysis of different models of LR in the training, validation, and testing phases.

Training Validation Testing
Error
LR1 LR 2 LR 3 LR1 LR 2 LR 3 LR1 LR 2 LR 3
ME 0.0032 0.0092 0.0059 —0.0142 —0.0085 —0.0147 —0.0040 0.0008  —0.0108

MAE 0.0226 0.0232 0.0238 0.0175 0.0143 0.0173 0.0225 0.0218 0.0215
MSE 0.0007 0.0008 0.0008 0.0005 0.0003 0.0004 0.0006 0.0006 0.0005
RMSE 0.0266 0.0279 0.0287 0.0215 0.0183 0.0211 0.0247 0.0239 0.0233

For comparing the SOFM-GA model to an ANN, the RBF network was used. NeuroSolutions 5.0
software [51] was used to determine the optimal structure of the RBF model regarding the number
of hidden layers, the number of nodes in the hidden layers, the learning algorithm of the network,
the transfer function, and the GA. Table 10 indicates the optimal structure of the RBF model. Moreover,
Table 11 deals with the results with respect to the indexes of the straight line slope and coefficient of
convergence. The statistical indicators are evaluated in Table 12. The results indicate that RBF model 3
shows great and logical accuracy when compared to the other two models.

According to analysis of all the models, the three models of SOFM-GA, LR Model 4,
and RBF model 3 were selected as the best and are presented in Tables 13 and 14.

Table 10. The structure of different RBF models optimized with the GA.

Network Structure

Model Number of  Numberof = Number of No. of Transfer Function Training
Inputs Outputs HL Nodes unctt Algorithm

RBF 1 4 1 1 9 Sigmoid Axon QuickProp

RBF 2 4 1 1 4 LinearSigmoiAxonr Step

RBF 3 4 1 2 4-4 LinearAxon Delta Bar Delta

Table 11. Results of different RBF models in the training, validation and testing phases.

Training Validation Testing
Model
Equation R? Equation R? Equation R?
RBF1 y = 0.2242x + 0.3288 0.8026 y =0.0941x + 0.3811 0.3243 y = 0.2044x + 0.3373 0.8421
RBF 2 y=0.711x +0.1231 0.8039 y = 0.3205x + 0.2852 0.2278 y =0.7452x + 0.1151 0.9307
RBF 3 y =1.0124x + 0.0024 0.895 y = 0.6348x + 0.1565 0.7908 y=0.9116x + 0.0433 0.8943

Table 12. Statistical analysis of the different RBF models in the training, validation and testing phases.

Training Validation Testing
Model
RBF1 RBF 2 RBF 3 RBF1 RBF 2 RBF 3 RBF1 RBF 2 RBF 3
ME 0.0054 0.0052 0.0116  —0.0140 —0.0137 —0.0089 —0.0050 —0.0029 —0.0058

MAE 0.0065 0.0189 0.0268 0.0140 0.0164 0.0107 0.0066 0.0165 0.0201
MSE 0.0001 0.0005 0.0010 0.0002 0.0004 0.0003 0.0001 0.0004 0.0006
RMSE 0.0089 0.0229 0.0322 0.0144 0.0191 0.0167 0.0073 0.0188 0.0239
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Table 13. Results of the different models in training, validation and testing.

Training Validation Testing
Model
Equation R? Equation R? Equation R?
SOFM-GA y =0.9292x + 0.0299 0.9333 y =0.5884x + 0.1717 0.924 y = 0.8329x + 0.0682 0.9786
LR y =0.8695x + 0.0561 0.8771 y =0.5181x + 0.2003 0.4536 y = 0.7695x + 0.0939 0.8946
RBF y =1.0124x + 0.0024 0.895 y = 0.6348x + 0.1565 0.7908 y =0.9116x + 0.0433 0.8943
Table 14. Statistical analysis of the different models in training, validation and testing.
Training Validation Testing
Error
SOFM-GA RBF 3 LR3 SOFM-GA RBF 3 LR 4 SOFM-GA RBF 3 LR 4
ME 0.0050 0.0116 0.0059 —0.0142 —0.0089 —0.0147 —0.0121 —0.0058 —0.0108
MAE 0.0241 0.0268 0.0238 0.0142 0.0107 0.0173 0.0183 0.0201 0.0215
MSE 0.0009 0.0010 0.0008 0.0004 0.0003 0.0004 0.0005 0.0006 0.0005
RMSE 0.0295 0.0322 0.0287 0.0194 0.0167 0.0211 0.0230 0.0239 0.0233

According to analysis of the three models, the SOFM—-GA has higher precision and flexibility than

the other two models and these results are shown in Figure 8.
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Figure 8. Comparison of corrosion current density prediction using the different SOFM models in the
processes of (a) training, (b) validation, and (c) testing.

4. Conclusions

Based on the research and analysis presented in the article, the following conclusions can be made:

e It is possible to predict corrosion current density using a SOFM that is optimized with the
GA on the basis of parameters determined by non-destructive resistivity measurements and
temperature monitoring.

e  The GA optimization feature can be used as a powerful tool for optimizing the weights of a SOFM.

e  When comparing the results of training, validation and testing of different models of a SOFM,
it can be seen that the SOFM model with a 1-9-4 structure, transfer function of TanhAxon, and a
momentum training algorithm has a higher ability and accuracy in predicting the corrosion
current density of steel in concrete.

e In the SOFM-GA model, the determination coefficient R? in the training, validation and testing
phases is respectively 0.9333, 0.924, and 0.9786, and the slope of the straight line for this parameter
is equal to 0.9292, 0.5884, and 0.8329. The values of all errors (MAE, ME, RMSE, MSE) are also less.

e  The presented SOFM-GA model has a satisfactory performance for a slab with a moderate
corrosion rate. This performance is better than that obtained by the conventional ANN and
imperialist competitive algorithm (ICA) approaches that were presented previously in [33,34].
For the modelling purposes the steel bar with diameter of 30 mm has been used.

The model presented in the article can be used only for the same (or very similar) material
properties. To obtain the corrosion current density prediction model on real structure with different
material properties (bar diameters, concrete class, etc.) new database has to be created. Future studies
should be done to evaluate the effect of different steel diameter, cover, and concrete composition on
the reliable prediction of the corrosion current density in reinforced concrete.

Author Contributions: Lukasz Sadowski conceived and designed the experiments; Mehdi Nikoo and Mohammad
Nikoo performed the numerical analysis; Lukasz Sadowski analysed the data; and Lukasz Sadowski, Mehdi Nikoo,
and Mohammad Nikoo wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Coatings 2017, 7, 160 12 of 14

References

1. Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention,
Diagnosis, Repair; John Wiley & Sons: Hoboken, NJ, USA, 2013.

2. Paul, S.C.; van Zijl, G.P. Chloride-induced corrosion modelling of cracked reinforced SHCC. Arch. Civ.
Mech. Eng. 2016, 16, 734-742. [CrossRef]

3. Poursaee, A. Corrosion of Steel in Concrete Structures; Woodhead Publishing: Sawston, UK, 2016.

4. Safiuddin, M. Concrete damage in field conditions and protective sealer and coating systems. Coatings 2017,
7,90. [CrossRef]

5. Ates, M. A review on conducting polymer coatings for corrosion protection. J. Adhes. Sci. Technol. 2016, 30,
1510-1536. [CrossRef]

6. Williams, M.; Ortega, ].M.; Sanchez, I.; Cabeza, M.; Climent, M.A. Non-destructive study of the
microstructural effects of sodium and magnesium sulphate attack on mortars containing silica fume using
impedance spectroscopy. Appl. Sci. 2017, 7, 648. [CrossRef]

7. Climent, M.A.; Carmona, J.; Garcés, P. Graphite—cement paste: A new coating of reinforced concrete structural
elements for the application of electrochemical anti-corrosion treatments. Coatings 2016, 6, 32. [CrossRef]

8. Giineyisi, E.M.; Mermerdas, K.; Giiltekin, A. Evaluation and modeling of ultimate bond strength of corroded
reinforcement in reinforced concrete elements. Mater. Struct. 2016, 49, 3195-3215. [CrossRef]

9. Khan, L; Frangois, R.; Castel, A. Prediction of reinforcement corrosion using corrosion induced cracks width
in corroded reinforced concrete beams. Cem. Concr. Res. 2014, 56, 84-96. [CrossRef]

10. Bavarian, B.; Reiner, L. Corrosion Protection of Steel Rebar in Concrete Using Migrating Corrosion Inhibitors;
Technical Report for the Cortec Corporation; California State University: Northridge, LA, USA, March 2002.

11. Hasan, M.L; Yazdani, N. An experimental study for quantitative estimation of rebar corrosion in concrete
using ground penetrating radar. J. Eng. 2016, 2016, 8536850. [CrossRef]

12.  Andisheh, K,; Scott, A.; Palermo, A. Seismic behavior of corroded RC bridges: Review and research gaps.
Int. J. Corros. 2016, 2016, 3075184. [CrossRef]

13. Park, J.W,; Ann, KY.; Cho, C.G. Resistance of alkali-activated slag concrete to chloride-induced corrosion.
Adv. Mater. Sci. Eng. 2015, 2015, 273101. [CrossRef]

14. Roberge, PR. Handbook of Corrosion Engineering; McGraw-Hill: New York, NY, USA, 2000.

15. Randles, J.E.B. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1947, 1, 11-19. [CrossRef]

16. Stern, M.; Geary, A.L. Electrochemical polarization I. A theoretical analysis of the shape of polarization
curves. J. Electrochem. Soc. 1957, 104, 56-63. [CrossRef]

17.  Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J.
Electrochem. Sci. 2007, 2, 1-28.

18. Alghamdi, S.A.; Ahmad, S. Service life prediction of RC structures based on correlation between
electrochemical and gravimetric reinforcement corrosion rates. Cem. Concr. Compos. 2014, 47, 64—68.
[CrossRef]

19. Millard, S.G.; Sadowski, L. Novel method for linear polarisation resistance corrosion measurement.
In Proceedings of the NDTCE'09 Non-Destructive Testing in Civil Engineering, Nantes, France,
30 June-3 July 2009.

20. Kaveh, A.; Nasrollahi, A. A new hybrid meta-heuristic for structural design: Ranked particles optimization.
Struct. Eng. Mech. 2014, 52, 405-426. [CrossRef]

21. Taffese, W.Z,; Sistonen, E. Neural network based hygrothermal prediction for deterioration risk analysis of
surface-protected concrete facade element. Constr. Build. Mater. 2016, 113, 34-48. [CrossRef]

22. Mansouri, I; Kisi, O.; Sadeghian, P.; Lee, C.-H.; Hu, J.W. Prediction of Ultimate Strain and Strength of
FRP-Confined Concrete Cylinders Using Soft Computing Methods. Appl. Sci. 2017, 7, 751. [CrossRef]

23.  Ghorbani, A.; Jafarian, Y.; Maghsoudi, M.S. Estimating shear wave velocity of soil deposits using polynomial
neural networks: Application to liquefaction. Comput. Geosci. 2012, 44, 86-94. [CrossRef]

24. Zavrtanik, N.; Prosen, J.; Tusar, M.; Turk, G. The use of artificial neural networks for modeling air void
content in aggregate mixture. Autom. Constr. 2016, 63, 155-161. [CrossRef]

25.  Nasrollahi, A. Optimum shape of large-span trusses according to AISC-LRFD using Ranked Particles

Optimization. J. Constr. Steel Res. 2017, 134, 92-101. [CrossRef]


http://dx.doi.org/10.1016/j.acme.2016.04.016
http://dx.doi.org/10.3390/coatings7070090
http://dx.doi.org/10.1080/01694243.2016.1150662
http://dx.doi.org/10.3390/app7070648
http://dx.doi.org/10.3390/coatings6030032
http://dx.doi.org/10.1617/s11527-015-0713-4
http://dx.doi.org/10.1016/j.cemconres.2013.11.006
http://dx.doi.org/10.1155/2016/8536850
http://dx.doi.org/10.1155/2016/3075184
http://dx.doi.org/10.1155/2015/273101
http://dx.doi.org/10.1039/df9470100011
http://dx.doi.org/10.1149/1.2428496
http://dx.doi.org/10.1016/j.cemconcomp.2013.06.003
http://dx.doi.org/10.12989/sem.2014.52.2.405
http://dx.doi.org/10.1016/j.conbuildmat.2016.03.029
http://dx.doi.org/10.3390/app7080751
http://dx.doi.org/10.1016/j.cageo.2012.03.002
http://dx.doi.org/10.1016/j.autcon.2015.12.009
http://dx.doi.org/10.1016/j.jcsr.2017.03.021

Coatings 2017, 7, 160 13 of 14

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Taffese, W.Z.; Sistonen, E. Machine learning for durability and service-life assessment of reinforced concrete
structures: Recent advances and future directions. Autom. Constr. 2017, 77, 1-14. [CrossRef]

Rafiei, M.H.; Khushefati, W.H.; Demirboga, R.; Adeli, H. Neural Network, Machine Learning, and
Evolutionary Approaches for Concrete Material Characterization. ACI Mater. J. 2016, 113, 781-789. [CrossRef]
Giineyisi, EM.; Gesoglu, M.; Glineyisi, E.; Mermerdas, K. Assessment of shear capacity of adhesive anchors
for structures using neural network based model. Mater. Struct. 2016, 49, 1065-1077. [CrossRef]

Glineyisi, E.M.; Mermerdas, K.; Giineyisi, E.; Gesoglu, M. Numerical modeling of time to corrosion induced
cover cracking in reinforced concrete using soft-computing based methods. Mater. Struct. 2015, 48, 1739-1756.
[CrossRef]

Rostami, J.; Chen, J.; Tse, PW. A Signal Processing Approach with a Smooth Empirical Mode Decomposition
to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered
Pipes. Sensors 2017, 17, 302. [CrossRef] [PubMed]

Shirazi, A.Z.; Mohammadi, Z. A hybrid intelligent model combining ANN and imperialist competitive
algorithm for prediction of corrosion rate in 3C steel under seawater environment. Neural Comput. Appl.
2016, 1-10. [CrossRef]

Topgu, 1; Boga, A.; Hocaoglu, F. Modelling corrosion currents of reinforced concrete using ANN.
Autom. Constr. 2009, 18, 145-152. [CrossRef]

Sadowski, L. Non-destructive investigation of corrosion current density in steel reinforced concrete by
artificial neural networks. Arch. Civ. Mech. Eng. 2013, 13, 104-111. [CrossRef]

Sadowski, L.; Nikoo, M. Corrosion current density prediction in reinforced concrete by imperialist
competitive algorithm. Neural Comput. Appl. 2014, 25, 1627-1638. [CrossRef] [PubMed]

Kohonen, T. Self-Organization and Associative Memory, 3rd ed.; Springer: Berlin, Germany, 1988; Volume 8.
Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52-65. [CrossRef] [PubMed]
Nikoo, M.; Zarfam, P.; Sayahpour, H. Determination of compressive strength of concrete using self
organization feature map (SOFM). Eng. Comput. 2015, 31, 113-121. [CrossRef]

Sadowski, L.; Nikoo, M.; Nikoo, M. Principal component analysis combined with a self organization feature
map to determine the pull-off adhesion between concrete layers. Constr. Build. Mater. 2015, 78, 386-396.
[CrossRef]

Nikoo, M.; Hadzima-Nyarko, M.; Khademi, F.; Mohasseb, S. Estimation of fundamental period of reinforced
concrete shear wall buildings using self organization feature map. Struct. Eng. Mech. 2017, 63, 237-249.
[CrossRef]

Nikoo, M.; Sadowski, L.; Khademi, F; Nikoo, M. Determination of Damage in Reinforced Concrete Frames
with Shear Walls Using Self-Organizing Feature Map. Appl. Comput. Intell. Soft Comput. 2017, 2017, 3508189.
[CrossRef]

Calabrese, L.; Campanella, G.; Proverbio, E. Identification of corrosion mechanisms by univariate and
multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete
beam. Corros. Sci. 2013, 73, 161-171. [CrossRef]

Tibaduiza, D.A.; Mujica, L.E.; Rodellar, J. Damage classification in structural health monitoring using
principal component analysis and self-organizing maps. Struct. Control Health Monit. 2013, 20, 1303-1316.
[CrossRef]

Mathavan, S.; Rahman, M.; Kamal, K. Use of a Self-Organizing Map for Crack Detection in Highly Textured
Pavement Images. |. Infrastruct. Syst. 2014, 21, 04014052. [CrossRef]

Avci, O.; Abdeljaber, O. Self-organizing maps for structural damage detection: a novel unsupervised
vibration-based algorithm. J. Perform. Constr. Facil. 2015, 30, 04015043. [CrossRef]

Navio, J.; Martinez-Martinez, ].M.; Uruefia, A.; Garcés, ].J.; Soria, E. Self-Organizing Maps to Analyze Value
Creation in Mergers and Acquisitions in the Telecommunications Sector. In Emerging Issues in Economics and
Development; Ibrahim, M.]., Ed.; InTech: Rijeka, Croatia, 2017.

Sadowski, L. New non-destructive method for linear polarisation resistance corrosion rate measurement.
Arch. Civ. Mech. Eng. 2010, 10, 109-116. [CrossRef]

Kolio, A.; Pakkala, T.A.; Hohti, H.; Laukkarinen, A.; Lahdensivuy, J.; Mattila, J.; Pentti, M. The corrosion rate
in reinforced concrete facades exposed to outdoor environment. Mater. Struct. 2017, 50, 23. [CrossRef]
Shapiro, S.; Wilk, M. An analysis of variance test for normality. Biometrika 1965, 52, 591-611. [CrossRef]


http://dx.doi.org/10.1016/j.autcon.2017.01.016
http://dx.doi.org/10.14359/51689360
http://dx.doi.org/10.1617/s11527-015-0558-x
http://dx.doi.org/10.1617/s11527-014-0269-8
http://dx.doi.org/10.3390/s17020302
http://www.ncbi.nlm.nih.gov/pubmed/28178220
http://dx.doi.org/10.1007/s00521-016-2251-6
http://dx.doi.org/10.1016/j.autcon.2008.07.004
http://dx.doi.org/10.1016/j.acme.2012.10.007
http://dx.doi.org/10.1007/s00521-014-1645-6
http://www.ncbi.nlm.nih.gov/pubmed/25395736
http://dx.doi.org/10.1016/j.neunet.2012.09.018
http://www.ncbi.nlm.nih.gov/pubmed/23067803
http://dx.doi.org/10.1007/s00366-013-0334-x
http://dx.doi.org/10.1016/j.conbuildmat.2015.01.034
http://dx.doi.org/10.12989/sem.2017.63.2.237
http://dx.doi.org/10.1155/2017/3508189
http://dx.doi.org/10.1016/j.corsci.2013.03.032
http://dx.doi.org/10.1002/stc.1540
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000237
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000801
http://dx.doi.org/10.1016/S1644-9665(12)60053-3
http://dx.doi.org/10.1617/s11527-016-0920-7
http://dx.doi.org/10.1093/biomet/52.3-4.591

Coatings 2017, 7, 160 14 of 14

49. Gavin, ].B.; Holger, RM.; Graeme, C.D. Input determination for neural network models in water resources
applications. Part 2. Case study: Forecasting salinity in a river. J. Hydrol. 2005, 301, 93-107.

50. MINITAB Software, Version 14; Sofaware for Analyzing Data and Displaying the Results in Easy-to-Read
Statistics, Graphs and Charts; Minitab Inc.: State College, PA, USA, 2013.

51.  NeuroSolutions Sofaware, Version 5.0.; Software for Data Mining; NeuroDimension Inc.: Gainesville, FL,
USA, 2015.

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Setup 
	Results and Discussion 
	Selection of the Optimum Prediction Model Using the SOFM 
	Sensitivity Analysis of the Selected SOFM–GA Model 
	Comparison of the Selected SOFM–GA Model with Linear Regression (LR) and the Radial Basis Function (RBF) Neural Network 

	Conclusions 

