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Abstract: The implementation of the Chemical Solution Deposition (CSD) methodology with
the Drop on Demand (DoD) inkjet printing (IJP) technology has been successfully employed
to develop a Solution Deposition Planarization (SDP) method. We have used nanocrystalline
yttrium oxide (Y,0O3) to decrease the roughness of technical metallic substrates by filling the
surface imperfections and thus avoiding costly polishing steps. This alternative process represents
an outstanding methodology to reduce the final cost of the second-generation coated conductors
manufacturing. Two Y,O3 metalorganic precursor ink formulations were successfully developed
and tested to obtain surfaces as smooth as possible with adequate mechanical properties to hold
the internal stress developed during the growth of the subsequent layers. By using these inks as
precursors for IJP and after a proper tuning of the rheological and wetting parameters, we firstly
obtained centimeter length uniform 100 nm-thick SDP-Y;0O3 films on unpolished stainless-steel
substrate from Bruker HTS. The scalability of the roll to roll (R2R)-IJP process to 100 m is then
demonstrated on metallic substrates as well. A complete characterization of the prepared SDP-Y,03
inkjet-printed layers was carried out using optical microscopy, FIB-SEM (Focus Ion Beam coupled
to Scanning Electron Microscopy), XRD (X-ray Diffraction), AFM (Atomic Force Microscopy),
reflectometry and nanoindentation techniques. Then, the morphology, thickness, crystallinity and
mechanical properties were evaluated, together with the surface roughness in order to assess the
resulting layer planarity. The impact of planarity was additionally studied via growth of biaxially
textured buffer layers as well as further functional layers. 1.1 um-thick YSZ layers with in-plane
textures better than the stainless steel (SS) polished reference were successfully deposited on top of
100 nm SDP-Y,0;3 films yielding 50% of I. in contrast to the standard SS reference.

Keywords: inkjet printing; chemical solution deposition; functional ceramic oxide coatings; solution
deposition planarization; technical metallic substrates
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1. Introduction

In the last years, functional ceramic oxides have brought a huge amount of new insights and
applications. To wholly boost such advanced and rapidly evolving fields, low cost and scalable
technologies have to be contemplated [1]. Chemical Solution Deposition (CSD) [2-5] has been
demonstrated to be a powerful low-cost alternative for producing functional oxide epitaxial devices
and nanostructured systems.

Particularly, the implementation of CSD with the inkjet printing (IJP) methodology [6-10] enables
to obtain epitaxial films in long lengths with controlled thickness by adjusting the drop volume, the ink
concentration and the drop density (i.e., number of drops per unit area).

Since the discovery of high temperature superconductors (HTS) [11-13], a lot of work has been
developed to prepare long length conductors for power applications with high superconducting
performances at reduced manufacturing costs. The use of adequate efficient and scalable methodologies
to grow the YBapyCu3O7_, (YBCO)-HTS as epitaxial films on flexible metallic substrates following
a multistack architecture, i.e., coated conductors (CC’s) [14,15], spread completely out new paths for
fast progress towards reaching the goals previously mentioned. After several years of intense research,
the big challenge in R&D-CC has been to define affordable techniques for CC production, including
preparation and conditioning of technical metallic substrates, either with textured (IBAD) [16] or
thermomechanically textured (RABIT) [17,18] substrates, effectively protected by cap layers and the
subsequent growth of the epitaxial YBCO films with high thickness at low cost/performance ratio.

Yttrium stabilized zirconia (YSZ) by Alternating Beam Assisted Deposition (ABAD) [19],
La;_4SryMnOs by Chemical Solution Deposition (CSD) [20], CeO, by Pulsed Laser Deposition
(PLD) [21,22] or CSD [23,24], LaMnOs by sputtering [25], LayZr,O7 by CSD [26], TiN by IBAD [27],
MgO by Inclined Substrate Deposition (ISD) [28] or IBAD [29] are examples of effective buffer layers
to transfer the specific texture to the YBCO superconducting layer. All these approaches require that
the metal substrate has a very smooth surface in the range of few nm in order for the crystals above to
be aligned within a few degrees misorientation.

Mechanical polishing or electropolishing methods [30-33] are common methodologies for eliminating
defects from the surface of the raw substrates and planarize them. Both methodologies exhibit some
practical limitations as the duration of the process and the production of toxic waste disposal. Some
years ago, the Solution Deposition Planarization (SDP) technique [34] has emerged as an alternative
method to smooth surfaces using inks to fill the substrate defects and irregularities. This SDP method
will clearly assist in cost reduction of the overall industrial process.

In recent years, we have started to explore the feasibility to fulfil the planarization of technical
substrates by chemical methods mixing the chemical solution deposition methodology (CSD) together
with the inkjet printing technology (IJP). In this basis, yttrium oxide (Y,O3) precursor solutions
were inkjet deposited and thermally treated to form nanocrystalline homogeneous Y,0O3 films on
commercial metallic substrates. Parameters like the root mean square rms roughness of these SDP-Y,03
films, the homogeneity and the adhesion, are essential to define the final quality of the complex
CC architecture.

Several industrial and research groups have reported successful results regarding the SDP
methodology and more specifically, concerning SDP-Y,0O3 layers. Yang et al. [25] obtained critical
current densities (J.) about 2.4 MA/cm? (sf, 77 K) on Hastelloy/SDP-Y,03/ IBAD-MgO/ epi-MgO
/ LaMnOg;Sloutterirlg /YBCOMOCVD C(C architecture. Martynova et al. [35] described an effective method
for smoothing Hastelloy C-276 tapes from rms roughness 9 nm (in 5 x 5 pm? areas) to 0.8 nm
(5 x 5 um?) using optimized solvent based Y,O3 precursor solutions. They also reported 20 m length
of 2G-HTS wire with I about 300 A on Hastelloy C276 substrate on planarized dip coated Al,O3 wire
tape [36].

Sheehan et al. [34] demonstrated 0.5 nm (5 x 5 um?2) rms roughness dip coated Y,O3-SDP films
starting from unpolished metal tapes prior to ion-beam textured MgO growth.
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However, other institutions have used alumina (Al,O3) as another smoothing candidate [36] to
substitute the widely used Y,O3. Paranthaman et al. [30] stated ] values at 77 K and self-field of about
3 MA/cm? on short length spin-coated Al,O3MOP-MgOBAP templates, encouraging their transference
to long lengths.

2. Materials and Methods
2.1. Metal-Organic Precursor Inks

2.1.1. Materials

The starting materials: yttrium acetate (Y(CH3;COO)3, Aldrich, 99.9%, Saint Louis, MO, USA),
diethanolamine (DEA, NH(CH,CH;OH),, Aldrich, >98%), propionic acid (CH3CH,COOH, Panreac,
99%, Castellar del Valles, Spain), 1-butanol (CH3CH,CH,CH,OH, Aldrich, 99.8%).

2.1.2. Metal-Organic Precursor Ink Preparation

Different Y,0O3 precursor solutions from 0.2 M to 0.4 M (in yttrium) were prepared by dissolving
yttrium acetate in propionic acid (26% v/v) at 35 °C. The mix is stirred until the complete salt
dissolution. Then, diethanolamine (DEA) is slowly added, at 35 °C as well, and stirred during
15 min. The solution at this point becomes transparent. The mix is cooled down to room temperature
and the volume was brought to the final concentration with n-butanol. The last step is the filtration
through a syringe filter, (PTFE membrane, with pore size of 0.2 um). These precursor solutions remain
stable for some weeks.

2.1.3. Metal-Organic Precursor Ink Characterization

Due to the extremely great importance of inks” physicochemical properties in the inkjet printing
method to determine crucial processes such as drop formation and drop spreading and wetting, the ink
parameters were routinely evaluated after their preparation prior to deposition [6,37]. The studied
properties in the case of SDP precursor inks were viscosity, surface tension, contact angle, density
and metal concentration. This preliminary study permits the carrying out of a quality control of the
inks, as well as the determination of whether the as-prepared inks are found to be jettable with our
inkjet printheads.

Viscosity Measurement

The viscosity was measured using a HAAKE RheosStress R5600 (Thermo Electron, GmbH,
Waltham, MA, USA) equipped with a low inertia torque motor at 25 °C and 2880 s~ ! of shear rate 4.

Surface Tension and Contact Angle Measurements

The measurements of surface tension and contact angle were performed by the pendant drop and
sessile methods, respectively, which are based on the determination of the shape of a pendant/sessile
drop by the balance between surface/interfacial tensions and an external force, such as gravity.
One technique is the ADSA (Axisymmetric Drop Shape Analysis) [38—40], which determines the
liquid/fluid interfacial tensions from the shape of an axisymmetric menisci due to the gravitational
force. This technique for the sessile and pendant drop measurements accomplishes the contact angle
and surface tension determination by finding the best fitting of the theoretical drop profile to the real
one [41].

Along this work, contact angle and surface tension of the inks were obtained from the analysis of
2 uL digitized sessile images and between 6 uL and 10 uL pendant drops photographs, obtained by
means of a DSA100 equipment (KRUSS, GmbH, Hamburg, Germany) using the previous mentioned
ADSA technique.
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Density Measurement

The density of the inks was obtained by weighting in an analytical balance 1 mL of solution for
three times.

Metal Concentration

The concentration of yttrium is verified by standard chemical redox titrations.
2.2. Metal-Organic Precursor Ink Deposition and Film Characterization

2.2.1. Metal-Organic Precursor Ink Deposition

Throughout this research, SDP-Y,03 samples were deposited using the piezoelectric inkjet
printing methodology [6,7] on top of unpolished stainless steel (SS) from Bruker (Alzenau,
Germany) [42] previously wiped out with ethanol (99.8%, Sigma Aldrich, Saint Louis, MO, USA).
In particular, inkjet printing was carried out using two kinds of printing set-ups: a batch printer
and a roll to roll (R2R) inkjet printing continuous system. The first one is interesting because it
represents an intermediate step between the lab scale and the R2R continuous approach and allows
testing different printing and drying conditions in an easier and more practical way. Once these
parameters have been screened in the batch printer, they are transferred to the continuous R2R line for
the long-length functional oxide manufacturing. Both inkjet printing systems use the same Konica
Minolta (KM) multinozzle piezoelectric printhead, composed of 512 nozzles, where drops are ejected
after the deformation of small ink chambers made of a piezoelectric material. These 512 nozzles,
divided into two rows of 256 nozzles, may be independently enabled or disabled. In our specific case,
the KM512 printhead belongs to the M series, which corresponds to a nominal drop volume of 14 pL.
For this multinozzle piezohead, drop volume was tailored by adjusting the compensation pressure,
tuning the pulse width and amplitude of the piezoactuator waveform and also by optimizing the ink
physicochemical properties such as the ink viscosity and the surface tension [8,43]. In the experiments
presented along with this work, the drop volume ranged from 8.5 pL to 14 pL. The printhead is
stationary during the printing deposition and the tape speed oscillates from 20 m/h to 44.5 m/h.
The gap, i.e., the distance between the nozzle and the surface of the substrate, should be set, from
one hand, large enough to obtain the spherical-like shaped drop after recoiling of the liquid thread
before impacting on the surface and, from the other hand, as short as possible in order to prevent drop
trajectory perturbations. During the printing experiments, it was set at about 1.5 mm.

For the up-scaling of these short-length SDP-Y,0O3 samples, a pre-pilot R2R continuous inkjet
printing plant was employed. The pre-pilot plant mainly consists of six modules (see Figure 1).

The substrate is placed in the feeding reel (Figure 1; module 1), then, it is introduced in the inkjet
printing module (Figure 1; module 2) at an established speed. The tape speed, together with the
drop density, i.e., number of drops per second, the drop volume and the ink concentration determine
the final film thickness. Nowadays, tape speeds of about 100 m/h could be achieved in the present
configuration of the pre-pilot plant. This module also contains a stroboscopic visualization system
based on a LED (Light Emitting Diode) which flashes at the same frequency that drops are generated
and a digital camera, which works in bright field mode.

The inkjet printing module includes a curing system in which through a UV lamp with an irradiation
power between 0 mW and 5500 mW, the liquid will be pinned over the substrate.

Afterwards, the sample enters to the drying step (Figure 1; module 3) at temperatures ranging
between 45 °C and 110 °C, where the partial solvent evaporation takes place. Following this drying
stage, the sample goes through a furnace in which the pyrolysis process takes place, i.e., decomposition
of the organic matter at temperatures between 300 °C and 500 °C and/or directly the sample is raised
to higher temperatures (around 700-800 °C) to finally form the ceramic oxide in the desired phase
(Figure 1; module 4). The final product is collected in a second exit reel (Figure 1; module 5).
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Take-up reel Thermal Drying module Printing Feeding reel
(module 5) treatment (module 3) module and UV  (module 1)
(module 4) curing

(module 2)

Figure 1. General photograph of the R2R continuous pre-pilot plant to deposit functional ceramic
oxides by inkjet printing.

2.2.2. Film Drying

After the inkjet deposition, the sample is dried using a resistance via thermal conduction to
evaporate the low-boiling point solvents at temperatures ranging from 45 °C to 110 °C (module 3 of
Figure 1).

2.2.3. Film Pyrolysis

As mentioned, the goal of the pyrolysis step is to remove the excess of solvent and decompose the
organic matter, generating amorphous or nanocrystalline metallic precursors. Therefore, due to the
decomposition of the organic compounds, a large fraction of precursor volume is eliminated during
this step leading to strong film shrinkages. Internal stresses in plane to the substrate arisen in this
shrinkage process may lead to films with cracks, buckling or other kind of defects [44].

Our pyrolysis process consisted of slowly heating the sample at heating rates from 3.7 °C/min to
17 °C/min to 500 °C in air during 2 h and 10 min in the tubular furnace shown in module 4 of Figure 1.

2.2.4. Film Characterization: Morphology, Microstructure and Texture

In this section, we briefly describe the equipment used to routinely characterize the SDP-Y,03
films of this work. These include: morphological analysis by means of optical microscopy (OM),
Focused Ion Beam (FIB) coupled with Scanning Electron Microscopy (SEM), (micro)structural
characterization using X-ray Diffraction (XRD), surface topography characterization by means of
Atomic Force Microscopy (AFM), thickness measurements by reflectometry and nanoindentation tests
to evaluate the mechanical properties.

The surface homogeneity of the as-pyrolyzed coatings was normally investigated with an optical
microscope. High resolution photographs were recorded through an Olympus (Shinjuku, Japan) BX51
microscope (5x and 10X objective) coupled to an Olympus DP20 camera.

Reflectometric measurements were acquired with a LS-DT2 light source from the FILMETRICS
company (San Diego, CA, USA). In order to analyze the resulting spectra, we used the commercial
software FILMeasure (version 7.0) from the FILMETRICS company.

SEM images were made using a ZEISS Merlin (Oberkochen, Germany), with an acceleration
voltage of 2 kV.
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Cross sectional images were obtained using a dual-beam scanning electron microscopy/focused-ion
beam (SEM-FIB) system (Zeiss, Model 1560 XB, Oberkochen, Germany).

The 6-26 spectra was done using a Siemens (Munich, Germany) D5000 diffractometer using
a Cu-Ka radiation A (Kee Cu = 1.5418 A). Data acquisition was typically performed with a 0.02° step.

Two-dimensional X-ray (XRD?) studies presented in this work were done using the GADDS D8
Advance system from Bruker (Billerica, MA, USA), where GADDS stands for General Area Detector
System [45].

The atomic force micrographs presented in this work were a with an Agilent 5100 AFM system
from Agilent Technologies (Santa Clara, CA, USA). Images were taken in tapping mode and using
silicon tips. Surface was typically scanned by the tip at 1 line/s. Scans of 20 x 20 um?, 5 x 5 um?
and 1 x 1 um? were performed at distinct zones of the sample. AFM images were processed with
Mountains Map (version 7) software from Digital Surf (Besancon, France).

Nanoindentation experiments were performed using a Nanoindenter XP from MTS (Eden Prairie,
MN, USA) equipped with a Berkovich tip. The maximum applied load was set to 1 mN. The nanoindentation
function consisted of a loading segment, followed by a load holding segment and an unloading
segment. The loading and unloading segments as well as the load holding segment were set to 10 s.
The thermal drift was maintained below £0.1 nm/s. From the load-displacement curves, the hardness and
reduced Young’'s modulus values were derived using the method of Oliver and Pharr [46]. The results
were averaged over more than 40 indents for each sample to obtain statistically reliable data.

3. Results and Discussion

3.1. Inkjet Printing Deposition of Short-Length SDP-Y,03 Films

The physicochemical and rheological properties of a 0.2 M ink (in yttrium; [DEA]/[Y] ratio of 4.5)
were adjusted in terms of viscosity and wetting (Table 1). The printing parameters used in this work to
deposit SDP-Y,0O3 layers on top of unpolished stainless steel (SS) substrate from Bruker [42] are listed
in Table 2 and graphically displayed in Figure 2. SDP-Y,0j5 films of about 100 nm were prepared at tape
speeds between 20 m/h and 44.5 m/h and pyrolyzed at 500 °C in air with the batch printer system.

Table 1. Relevant physicochemical and rheological properties of a 0.2 M (in yttrium) SDP-Y,03
precursor ink with a [DEA]/[Y] ratio of 4.5. Viscosity measurement was carried out at a shear rate
of 2880 s~! and 25 °C. The contact angle was measured at room temperature on top of unpolished
stainless steel from Bruker.

Ink Physicochemical and Rheological Properties Value
Density (g/cm?) 0.915 + 0.018
Surface tension (mN/m) 24.7 £ 0.3
Viscosity (mPa-s) 77+£05
Contact angle (°) 25+2

Table 2. Jetting parameters used to obtain the SDP-Y;Oj films shown in Figure 3. The printhead used
was a piezo 512 Konika Minolta (Chiyoda, Japan) head type M and the SDP-Y, O3 precursor ink was
a 0.2 M (in yttrium) with a [DEA]/[Y] ratio of 4.5.

Jetting Parameters Value
High pulse width (us) 6.4
High-low pulse delay (ys) 0
Drop period (us) 32
Low pulse width (us) 12.8
Phase length (ys) 32.6
Voltage up (V) 114
Voltage down (V) 5.7

Printhead Temperature (°C) 25
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i i+ wnozzle plate. .

Figure 2. Typical jetting drop distribution of a 0.2 M (in yttrium) SDP-Y,0O3 precursor ink and
[DEA]/[Y] ratio of 4.5 after the tuning of the waveform excitation parameters displayed in Table 2.

3.2. Characterization of Short-Length SDP-Y,O3 Films

Figure 3 exhibits a representative morphological characterization by optical microscopy of the
central part (Figure 3a) and the edge (Figure 3b) of an ink-jetted SDP-Y,0O5 film after pyrolysis in
air at 500 °C. As may be observed in this Figure 3, the sample was continuous, fully covered in
both longitudinal and transversal directions, without cracks or big pin holes. In the central region,
the surface of the sample mainly displays only one color, indicating good homogeneity. However,
by analyzing Figure 3b, although the whole surface is covered as well, a color grading is observed,
which means that the thickness distribution along the transversal direction is not totally homogeneous.
The yellow and the blue colors correspond to 100 nm and 90 nm respectively, confirmed by both
reflectometry and profilometry techniques. This slight different thickness profile observed might be
corrected by optimizing the printing matrix, i.e., distance between drops in both x- and y-directions
and the ink formulation introducing some additives to modify the adhesion, the wettability and the
evaporation rate of the solvents by pinning the liquid more efficiently.
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Figure 3. Typical optical micrographs of a 5 cm ink-jetted SDP-Y,Oj3 film. The sample was printed at
a tape speed of 35 m/h and pyrolyzed at a heating ramp of 3.7 °C/min up to 500 °C (a) Central part
and (b) Edge of the SDP-Y,03 film.

To determine the macroscopic homogeneity of the sample and how this distribution of colors is
correlated with thickness variations in the optical micrographs, Y,0O3 layer thickness was monitored
by reflectometry [47,48]. For each longitudinal point, at approximately each centimeter, three different
spectra similar that the one presented in Figure 4 were taken along the 4 mm tape width. The averaged
results are shown in the 2D color map of Figure 5. As may be observed, for both longitudinal and
transversal directions, layer thickness ranges between 90 nm and 100 nm.
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Reflectance (%)

200 400 600 800 1000
Wavelength (nm)

Figure 4. Spectrum of a pyrolyzed ink-jetted SDP-Y,O3 film on unpolished SS tape obtained by
reflectometry. The solid blue line is the measured experimental spectrum, while the dashed red line is
the theoretical fitting provided by the software.

X (cm)

Figure 5. Colored-coded thickness map of a typical 5 cm length SDP-Y,0O3 sample. The averaged
thickness fluctuates between 90 nm and 100 nm. Measurements were taken each cm in the longitudinal
direction and three measurements were acquired in the transversal direction. The diameter of the
reflectometer’s spot is 1 mm. Edges were avoided in the reflectometric measurements.

Figure 6a shows a more detailed characterization by SEM of the SDP-Y; O3 surface in which one
can appreciate the sample’s low degree of porosity and the absence of cracks or buckling. Figure 6b
exhibits the FIB cross sectional image of a SDP-Y,03 film where the defects of the raw unpolished
substrate are clearly covered by the SDP film above. Ag is added in order to avoid the charging of the
sample as the film below is insulating.

SS substrate

Figure 6. Microstructural characterization of the previous pyrolyzed ink-jetted SDP-Y,O3 film. (a) SEM
micrograph where no pores neither cracks are present; (b) FIB cross sectional image which allows
confirming the coverage of the defects of the raw metallic substrate underneath.
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After briefly reviewing the morphology of SDP-Y, O3 layers, the structural characterization of this
SDP sample was performed by GADDS [45]. The non-existence of diffraction peaks corresponding
to the Y,03 phase in the XRD? pattern indicates that after the pyrolysis step at 500 °C, Y,O3 phase is
nanocrystalline. As it may be shown in Figure 7, two peaks are present at 26 = 43.6° and 26 = 50.7°
corresponding to the unpolished SS substrate.

Intensity (a.u.)

20 25 30 35 40 45 50 55

20 (deg)

Figure 7. Structural XRD characterization of a 100 nm thick SDP-Y, O3 coating by GADDS (2D detector)
showing only the peaks of the SS substrate.

As these SDP-Y;03 films must fill the defects present in the raw substrate while at the same time,
act as template for the following buffer and superconducting layers, they are required to be as smooth
as possible. Hence, the rms roughness of those SDP-Y,03 samples was evaluated by Atomic Force
Microscopy (AFM). Figure 8a shows an AFM topographic image of a single inkjet-deposited 100 nm
thick SDP-Y, 03 film with rms roughness of 5.4 nm. For comparison, Figure 8b shows a topographical
AFM image of the reference unpolished SS raw substrate from Bruker obtaining a rms roughness three
times folder compared to the SDP-Y,Oj5 film, thus confirming the desired planarization effect by these
solution derived SDP-Y,03 films.

(a) nm (b) 7 pm

0.05

0.00

Figure 8. AFM topographical analysis of the surface of (a) a 100 nm SDP-Y,O3 film (b) the reference
unpolished stainless steel raw substrate provided directly from Bruker HTS.

3.3. Printing on Smoother Substrates

To extrapolate this chemical method of planarization to substrates with different grades of
polishing, a set of experiments combining different printing matrices and drying protocols were
performed with the standard SDP ink formulation of Table 1. It was experimentally observed that
when the rms roughness of the raw substrate is <10 nm, important macroscopic liquid movements
were detected during the drying step or even just after the printing process leading to inhomogeneous
coatings. Some approaches were attempted in order to pin the liquid and avoid such macroscopic
liquid movements. Firstly, we tried to chemically activate the surface of the substrate by impregnation
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using a primer or by performing a plasma ozone treatment, increasing, in both cases, the work
of adhesion [49,50]. None of these experimental options were enough to immobilize the liquid.
Therefore, the next step was to slightly change the ink formulation. A photosensitive UV varnish
from Kao-Chimigraf company (Rubi, Spain) [51] was introduced to the ink formulation with the
aim of curing the as-deposited sample under UV irradiation (~395 nm) and therefore minimize
such movements.

The physicochemical and rheological properties of the ink formulation with the photosensitive
UV varnish are displayed in Table 3. This new ink formulation together with the tuned jetting and
printing conditions displayed in Table 2 allows to obtain uniform and homogeneous samples on
smoother substrates.

Table 3. Relevant physicochemical properties of a 0.2 M (in yttrium) SDP-Y,O3 precursor ink
([DEA]/[Y] ratio of 4.5) with a 10% (v/v) of UV photosensitive varnish. Viscosity measurement
was carried out at a shear rate of 2880 s~! and 25 °C. The contact angle was measured at room
temperature on top of unpolished SS from Bruker.

Ink Physicochemical and Rheological Properties Value
Density (g/cm?) 0.927 4 0.015
Surface tension (mN/m) 254+ 0.2
Viscosity (mPa-s) 77 +0.5
Contact angle (°) 27 +£2

One of the trickiest aspects in the SDP deposition field is related with the stress generated during
the Ion Beam Assisted Deposition (IBAD) process. These tensions may cause the delamination of the
layers grown on top. In principle, stiffer films should give better resistance to the delamination.

To anticipate if a delamination process could occur when depositing the buffer layers, preliminary
nanoindentation tests were performed in order to evaluate the mechanical properties of the resultant
SDP-Y203 films.

Within this framework, nanoindentation tests were performed on the SDP-Y,0Oj3 films prepared
under two experimental conditions. The study was focused on evaluating if the precursor ink
formulation, i.e., with or without UV photosensitive varnish, could have an effect on the final
mechanical properties of the SDP-Y,0; coatings simply by determining the hardness and Young's
modulus and studying the microstructure of the SDP-Y,0Oj3 layers.

The red line with solid dots in Figure 9 shows a representative nanoindentation curve for a 100 nm
SDP film printed using the standard formulation without varnish displayed in Table 1 and processed
in air from 60 °C to 500 °C with a heating rate of 16 °C/min during 2 h and 10 min, while the blue
triangles correspond to the 100 nm SDP film deposited from a UV varnish containing precursor ink
processed the same time, temperature and heating rate than the SDP film of the dot solid red line.
The empty square black line correlates to the unpolished SS raw substrate. A lower penetration
depth at the maxim applied load (1 mN) is recorded for the film prepared without UV varnish thus
indicating the harder nature of the layer. In Table 4, the values of hardness (H), reduced Young’s
modulus (E;) and the ratio H/E, are listed for the different samples. In order to obtain reliable data
when measuring the mechanical properties of thin films by nanoindentation, it is commonly accepted
that the maximum penetration depth should be lower than 1/10th of the overall thickness of the film.
Notice that the maximum penetration depth exceeds the 10% of the film thickness in our case. Thus,
H and E; are influenced to some extent by the mechanical properties of the substrate. Nonetheless,
from the nanoindentation results, it can be stated that the non-varnish-containing film exhibits larger
hardness and larger reduced Young’s modulus than the film with varnish.

Of special importance is the ratio H/E; which is an indicative parameter of the wear resistance
of the material [52,53]. The largest wear resistance value is observed for the film produced without
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varnish; hence, in terms of mechanical properties (i.e., wear resistance), this sample seems to better
fulfil the mechanical requirements to accommodate other depositions on top without delamination.

—A— SDP-YzOI; film with UV valmish '
1.0 - o- SDP-Y,0, film without UV varnish 7
—0O— 88 unpolished raw substrate
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Figure 9. Nanoindentation curves for the SDP-Y,0j3 films with and without UV varnish (triangle solid blue
line and dot solid red line, respectively) and the SS unpolished raw substrate (empty black square line).

Table 4. Mechanical properties of the unpolished SS raw substrate and 100 nm thick SDP-Y;O3 films
deposited from inks with and without UV varnish.

Mechanical Parameters  SDP-Y,03; Film without = SDP-Y,03 Film with SS Unpolished

at1mN UV Varnish UV Varnish Substrate
Hardness H (GPa) 85+ 05 52+1.38 62+ 1.1
Reduced Young modulus 202+ 15 177 + 45 234 + 26
E; (GPa)
H/E, 0.042 0.025 0.026

The higher hardness and Young’s modulus of the SDP film which do not contains varnish in the
ink formulation could be attributed to the dense microstructure without pores observed in the SEM
micrography displayed in Figure 6a. On the contrary, the topographical SEM image of the SDP layer
printed from an ink with UV varnish (Figure 10) shows a highly porous surface with low compacity.
This high porosity could be directly related with the sample’s heating rate during the decomposition
process at high temperatures and the content of this photosensitive UV component creating big pores
in the structure. As regards, deeper studies are required to improve the final microstructure changing
the processing dwell time and temperature, together with the tuning of the UV varnish content to know
the mechanism, evolution and interrelation between these processing parameters, the mechanical
properties (mainly H/E;) and the microstructure of the resultant SDP films to consequently avoid
further delamination problems.

Behoy g oS Lot sl s A

Figure 10. SEM micrography of a film deposited from a 0.2 M (in Y) SDP precursor ink with a 10% (v/v)
of the UV varnish and [DEA]/[Y] ratio of 4.5.
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3.4. Validation of Short-Length SDP-Y,03 Films

In order to value other substrate planarization methodologies as the low cost chemical solution
deposition presented in this work, some short length samples, in the meter scale, were sent to Bruker
HTS to deposit by ABAD between 800 nm and 1.1 pm of YSZ. Bruker was able to deposit 1.1 pm
of YSZ on top of a 100 nm SDP-Y;03 film without observing any kind of delamination on 100 nm
SDP films from non-varnish based inks. The YSZ (111) in-plane texture was measured showing that
100 nm of this SDP-Y;0O3 planarization layer allows better in-plane texture than on the SS polished
reference (Figure 11a). Above these non-delaminated YSZ/SDP-Y,03 samples, CeO, and then YBCO
were subsequently deposited by PLD obtaining, at the end, 50% of the critical intensity (I.) as using
the SS reference (Figure 11b). Much effort is required to increase this I. value tuning the deposition
and thermal processes to enhance I. up to, at least, the polished SS reference.

a b g0,
201
6) -~ 601
D 5. <
] 15 =
=) 10 w! 40 75A
< 15.2° 14.5° 20.8° N
y’ ~
~a 51 9 204 36A
3 4A
0 0 ——

sS pdiished Y203M°°I'SS unpolished G G dnpolished sS polished Y203M°°ISIS unpolished G q unpolished

Figure 11. Comparison of texture and superconducting properties between the SSPolished  the ggunpolished
and the SS/SDP-Y,055P /YSZABAD /Ce,PLD /YBCOPLP stack. (a) ¢ scan representing the texture
measurements of the SGPolished  the ggunpolished 54 the S/ SDP—Y203CSD /YSZABAD gandwich
architecture; (b) Critical current intensity (I) measurements of the different type of substrates in
comparison to the SDP-Y,0Oj3 planarization film.

3.5. Scale-up of the SDP-Y,03 Films

After a correct tuning of the ink formulation, together with an adequate reel correction based
on the reel diameter and a suitable liquid height compensation, SDP-Y;03 films were scaled in
a medium scale. 100 m of uniform and homogeneous SDP layer without cracks on unpolished
stainless steel substrate from Bruker were obtained at a tape speed of 44.5 m/h and pyrolyzed in
air at 500 °C. Figure 12 shows a complete characterization along the length by optical microscopy
displaying longitudinal homogeneity from the beginning to the end. In those blue and yellow regions,
the thickness oscillates between 90 nm and 110 nm.

Figure 12. Optical characterization of the 100 m length SDP-Y,03 sample. From the top left to the
bottom right correspond to the sequential optical characterization of the 100 m length SDP-Y,0O3. Each
micrograph was approximately taken each 7 cm.
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The design of the reflectometric measurements and the study of the thickness evolution over the
length are presented in Figure 13a,b. Figure 13b displays the 2D color-coded thickness map for the
100 m length SDP-Y;O3 sample.

The longitudinal analysis at 1, 2 and 3 mm from the bottom-up edges gives an average thickness
of about 100 nm from end to end as might be appreciated in Figure 13c.

(a)

(o)
-

N
o

-
o
o

y1=1mm
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y2=2 mm ide

©
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x1 x2 x3...
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E 2.0 100nm
;15 95nm
10 90nm
0.5
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Figure 13. Reflectometric analysis of the 100 m long-length SDP-Y,Os3 film. (a) Design of the
reflectometric studies; (b) Colored-coded thickness map of this 100 m length SDP-Y,03 sample;
(c) Longitudinal thickness analysis at 1, 2 and 3 mm from the edge of the tape. Edges were avoided in
the reflectometric measurements. Measurements were taken each cm in the longitudinal direction and
three measurements were acquired in the 4 mm wide tape. The diameter of the spot is 1 mm.

4. Summary and Conclusions

In the present research, we have first reviewed the feasibility to obtain cm length SDP-Y,03
films by proper adjustments of the ink properties, printing and drying protocols using a piezoelectric
drop-on-demand inkjet printer mounted in both batch and R2R continuous inkjet printing systems.

We have also reported on the scalability of the complete R2R process by preparing 100 m length
SDP-Y;03 on unpolished SS substrate which definitely represents a new breakthrough advancement
in the field of high quality biaxially textured conductors. The morphological characterization gives
continuous and uniform films with average thickness around 100 nm confirmed both by reflectometry
and profilometry.

The addition of the planarization layer is beneficial for the texture development during the ABAD
texturing process and it yields 50% of I. with respect to the standard SS substrate. The optimization
of the thermal pyrolysis process is crucial in order to increase this I. value up to, at least, the SS
polished reference.

A second advancement reported in this work arises from the printing on smoother substrates
(rms roughness on 5 x 5 um? area < 10 nm) which forced to develop an alternative UV photosensitive
varnish-containing ink. This new UV varnish-based ink is essential to pin the liquid on the surface
after the jetting and drying stages. Nevertheless, although these SDP layers are longitudinally uniform,
considerable effort has to be devoted to further improve the final microstructure when using this
UV varnish by tuning the processing conditions as the dwell time, temperature and the content of
the UV varnish, which could help to know the bonds between the mechanical properties, processing
variables and the final microstructure of such SDP-Y,0j3 films, possibly eluding the delamination of
the ceramic tapes grown above. This new ink formulation offers more versatility and flexibility to print
on substrates with different grades of polishing as it could not be achieved with the first mentioned
ink formulation of Table 1.
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In conclusion, Solution Deposition Planarization (SDP) methodology represents an outstanding
methodology to decrease the final cost of the fabrication of 2G wire coated conductors (CC’s) based on
the strong attractiveness from the cost point of view remaining as a powerful area of interest in the
area of CC’s.
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