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Abstract: In this study, the buckling of functionally graded (FG) nanoporous metal foam nanoplates
is investigated by combining the refined plate theory with the non-local elasticity theory. The refined
plate theory takes into account transverse shear strains which vary quadratically through the thickness
without considering the shear correction factor. Based on Eringen’s non-local differential constitutive
relations, the equations of motion are derived from Hamilton’s principle. The analytical solutions
for the buckling of FG nanoporous metal foam nanoplates are obtained via Navier’s method.
Moreover, the effects of porosity distributions, porosity coefficient, small scale parameter, axial
compression ratio, mode number, aspect ratio and length-to-thickness ratio on the buckling loads
are discussed. In order to verify the validity of present analysis, the analytical results have been
compared with other previous studies.
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1. Introduction

Functionally graded materials (FGMs) are advanced composite materials whose compositions
and volume fraction of materials vary gradually in one or more direction. Nanoporous metal foams,
as a kind of high surface area-to-volume ratio group of materials, have become promising candidates
for structural materials in various advanced technologies, such as high-efficiency heat-exchanger
substrates, sensors and actuators [1,2]. Combining nanoporous metal foams with the FGM concept,
the FG nanoporous metal foams are proposed. Due to their excellent fracture toughness and high
electrical conductivities, FG nanoporous metal foam nanoplates are ideal for use as thin film elements.
In the case of periodic wear and friction due to contact, nanoporous metal foam nanoplates can be
applied to surface coatings to significantly increase the useful lifetimes of the required protective
structures [3–6].

Nanostructures have attracted great attention in the scientific community due to their superior
thermal, mechanical and electrical properties since Lijima [7] discovered carbon nanotubes. Different
from their macroscopic counterparts, the size dependences of nanostructures are recognized to be more
distinct due to the high ratio of surface area-to-volume. Therefore, a few size-dependent continuum
mechanic models have been reported, such as the couple stress theory [8], the strain gradient theory [9]
and the non-local elasticity theory [10,11]. Among these theories, the non-local elasticity theory was
proposed by Eringen [10]. It can predict the behavior of nanostructures very easily and accurately
with the consideration of the scale effect. This theory takes account of the scale effect by considering
the stress at a reference point x to be a function of the strain field at every point x* of an elastic body.
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Many references employing the non-local elasticity theory for buckling and vibration analysis of
nanobeams and nanoplates have been reported [12–17].

By assuming that the shear strains and stresses are constant across thickness, the first-order
shear deformation theory (FSDT) takes into account the shear deformation effect and the shear
correction factor. In 2006, a new theory accounting for shear deformations and involving two unknown
functions was proposed by Shimpi and Patel [18,19]. This theory does not require a shear correction
factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary
parabolically across the thickness, satisfying shear stress free surface conditions. Moreover, the results
obtained for plates with various thickness ratios using this theory are not only substantially more
accurate than those obtained using the classical plate theory, but are almost comparable to those
obtained using higher order theories having a greater number of unknown functions.

In the case of the growing maturation of nanomaterials, how to make novel nanomaterials
play a role in practical applications is one of the challenges currently being faced. In micro- or
nano-electromechanical system applications, many nanoplate structures can be found, such as
nanosheet resonators and paddle-like resonators [20,21]. Therefore, the mechanical characteristics
of nanoplates are of great interest to researchers. For example, Lu et al. [22] researched the bending
and free vibration behaviors of a rectangular nanoplate based on the non-local Mindlin and Kirchhoff
plate theories. The buckling problems of simply supported nanoplates were analyzed by Wang and
Wang [23] considering both non-local elasticity and surface effects. Karimi et al. [24] investigated
vibration, shear and biaxial buckling of rectangular nanoplates, by using the non-local two variable
refined plate theory. Daneshmehr et al. [25] studied the free vibration problems of functionally
graded nanoplates via non-local elasticity and high order theories. Based on the non-local elasticity
theory, the buckling and vibration of multi-nanoplate systems were analyzed by Karlicic et al. [26].
Fatima et al. [27] presented free vibration analysis of nanoplates made of functionally graded materials
by using a zeroth-order shear deformation theory. Liu et al. [28–30] developed an effective numerical
model derived from Isogeometric analysis (IGA) for assessment of static bending, free vibration,
and buckling behaviors of homogeneous and functionally graded microplates. Narendar [31] used the
two-variable refined plate theory and non-local elasticity theory to analyze the buckling problems of
isotropic nanoplates. Based on a non-local, four-variable refined plate theory, Belkorissat et al. [15]
analyzed free vibration behavior of functionally graded nanoplates. Mechab et al. [32] examined the
free vibration properties of porous functionally graded nanoplates resting on elastic foundations by
using the two-variable refined plate theory. Based on the two-variable refined plate theory, Nami
and Janghorban [33] investigated the free vibration problems of rectangular nanoplates via the strain
gradient elasticity theory. Karimi and Shahidi [34] explored the effect of temperature change on the
buckling, bending and vibration behaviors of orthotropic graphene sheets by considering small-scale
and surface energy effects.

There have been few studies on the mechanical characteristics of FG nanoporous metal foam
micro/nanobeams till now. Barati and Zenkour [35] examined the post-buckling behavior of
nanoporous metal foam nanobeams based on a non-local, non-linear refined shear deformation
beam model. By using the sinusoidal beam theory and modified strain gradient theory, Wang et al. [36]
investigated bending and vibration of nanoporous metal foam microbeams.

In the current study, the buckling behavior of FG nanoporous metal foam nanoplates is
investigated for the first time. Three types of porosity distribution, namely, uniform distribution (UD),
non-uniform distribution 1 (NUD1) (symmetric), and non-uniform distribution 2 (NUD2) (asymmetric)
are considered. The refined plate theory is employed and the non-local constitutive relations accounting
for the small-scale effect are taken into account. To obtain analytical solutions of the present problem,
Navier’s method is employed. Finally, the effects of several factors on the buckling of FG nanoporous
metal foam nanoplates are presented in detail.
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2. Theory and Formulation

2.1. FG Nanoporous Metal Foam Nanoplate

In the present study, an FG nanoporous metal foam coating is considered and modeled by a
nanoplate with the length la, the width lb and the thickness h, as illustrated in Figure 1. We consider
three different types of porosity distribution, namely, (1) uniform distribution (UD); (2) non-uniform
distribution 1 (NUD1) (symmetric); and (3) non-uniform distribution 2 (NUD2) (asymmetric), as shown
in Figure 1. It is clear that NUD1 and NUD2 exhibit graded characteristics like functionally graded
materials [37–41].
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Figure 1. Functionally graded (FG) nanoporous metal foam nanoplate and three types of porosity
distribution, namely (1) uniform distribution (UD), (2) non-uniform distribution 1 (NUD1) (symmetric),
and (3) non-uniform distribution 2 (NUD2) with (a) coating on substrate, (b) nanoplate model,
(c) cross section.

In the case of UD, the elasticity modulus E and shear modulus G are constant along the thickness
of the nanoplate. In the case of NUD1, the values of the elasticity modulus and shear modulus on
the top and bottom surfaces are the maxima, while the values are the minima at the mid-plane of the
nanoplate due to the largest porosity size. In the case of NUD 2, the elasticity modulus and shear
modulus vary gradually from the top surface to the bottom surface; the maximum values occur at the
bottom surface while the minimum values occur at the top surface. For these three types of porosity
distribution, the elasticity modulus E and shear modulus G are defined as [42]:

UD:
E(z) = E0(1− λη) (1)

G(z) = G0(1− λη) (2)
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NUD1:
E(z) = E0

[
1− λ cos

(πz
h

)]
(3)

G(z) = G0

[
1− λ cos

(πz
h

)]
(4)

NUD2:
E(z) = E0

[
1− λ cos

(πz
2h

+
π

4

)]
(5)

G(z) = G0

[
1− λ cos

(πz
2h

+
π

4

)]
(6)

where E0 and G0 are the maximum values of elasticity modulus and shear modulus, respectively; λ is
the porosity coefficient determined as [42]:

λ = 1− E1

E0
= 1− G1

G0
(7)

where E1 and G1 are the minimum values of elasticity modulus and shear modulus, respectively.
The coefficient η in UD is dependent on λ, and can be expressed as [42]:

η =
1
λ
− 1
λ

(
2
π

√
1− λ− 2

π
+ 1
)2

(8)

2.2. The Non-Local Elasticity Theory

According to Eringen’s non-local elasticity theory [11], the stress state at a reference point x in an
elastic body depends not only on strains at x but also on the strains at all other points x* of the body.
The stress tensor of a non-local elastic body can be written as [11]:

σ =
∫

V
α(|x∗ − x|, τ)t(x∗)dx∗ (9)

where α(|x* − x|, τ) is the non-local modulus and τ is the material constant (τ = e0a/l), e0 is a material
constant, a is the internal characteristic length (such as the C–C bond length and granular size) and l is the
external characteristic length (e.g., graphene sheet length and crack length); t(x*) is the local stress tensor
at any point x* in the body. The stress t at a point x in an elastic body is related to the strain ε as follows:

t(x) = C(x) : ε(x) (10)

where “:” and C are a “double-dot product” and the fourth-order elasticity tensor, respectively. To
avoid solving the integral constitutive equation, the constitutive relations of the non-local elasticity
model can be expressed as: (

1− g2∇2
)
σ = t (11)

where ∇2 is the Laplacian operator, and g = e0a is the non-local small scale parameter.

2.3. Governing Equations of Motion

The basic assumptions of the refined plate theory are as follows:

• The displacements u (in the x direction), v (in the y direction) and w (in the z direction) are
small compared to the thickness h of the nanoplate. Hence, the strains involved are infinitesimal.
By considering the strain-displacement relations, the shear strains γxy, γzx, γyz and normal strains
εxx, εyy, εzz can be written as:

εxx = ∂u
∂x , εyy = ∂v

∂y , εzz =
∂w
∂z ,

γxy = ∂v
∂x + ∂u

∂y , γzx = ∂u
∂z + ∂w

∂x , γyz =
∂v
∂z +

∂w
∂y

(12)
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• The transverse displacement w includes two components: the bending component wB and the
shear component wS. Both of them are functions of x, y, and t (time) [31,43,44]:

w(x, y, t) = wB(x, y, t) + wS(x, y, t) (13)

• Compared with in-plane stresses σxx and σyy, the transverse normal stress σzz can be negligible.
• The displacement components u and v include extension, bending and shear components:

u = u0 + uB + uS

v = v0 + vB + vS (14)

The bending components uB and vB and shear components uS and vS are defined as [31,43]:

uB = −z ∂wB

∂x
vB = −z ∂wB

∂y
(15)

uS = z
[

1
4 −

5
3
( z

h
)2
]

∂wS

∂x

vS = z
[

1
4 −

5
3
( z

h
)2
]

∂wS

∂y

(16)

Using Equations (12)–(16), the displacement field can be written as:

u(x, y, z, t) = u0(x, y, t)− z ∂wB

∂x + z
[

1
4 −

5
3
( z

h
)2
]

∂wS

∂x

v(x, y, z, t) = v0(x, y, t)− z ∂wB

∂y + z
[

1
4 −

5
3
( z

h
)2
]

∂wS

∂y

w(x, y, z, t) = wB(x, y, t) + wS(x, y, t)

(17)

Considering the transverse shear strains vary parabolically through the thickness of the nanoplate
the shear correction factors are not therefore required. The kinematic relations can be obtained as follows:

εxx

εyy

γxy

 =


ε0

xx
ε0

yy
γ0

xy

+ z


εB

xx
εB

yy
γB

xy

+ f


εS

xx
εS

yy
γS

xy

{
γyz
γzx

}
= ϕ

{
γS

yz
γS

zx

} (18)

where 
ε0

xx
ε0

yy
γ0

xy

 =


∂u0/∂x
∂v0/∂y
∂u0/∂y + ∂v0/∂x

,
εB

xx
εB

yy
γB

xy

 =


−∂2wB/∂x2

−∂2wB/∂y2

−2∂2wB/∂x∂y

,


εS

xx
εS

yy
γS

xy

 =


−∂2wS/∂x2

−∂2wS/∂y2

−2∂2wS/∂x∂y

,

{
γS

yz
γS

zx

}
=

{
∂wS/∂y
∂wS/∂x

}
,

{
f = − 1

4 z + 5
3 z
( z

h
)2

ϕ = 5
4 − 5

( z
h
)2

(19)
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The strain-displacement relations can be obtained using Equations (18) and (19) as:

εxx = ∂u0

∂x − z ∂2wB

∂x2 +
[

1
4 z− 5

3 z
( z

h
)2
]

∂2wS

∂x2

εyy = ∂v0

∂y − z ∂2wB

∂y2 +
[

1
4 z− 5

3 z
( z

h
)2
]

∂2wS

∂y2

εzz = 0

γxy = ∂u0

∂y + ∂v0

∂x − 2z ∂2wB

∂x∂y + 2
[

1
4 z− 5

3 z
( z

h
)2
]

∂2wS

∂x∂y

γyz =
[

5
4 − 5

( z
h
)2
]

∂wS

∂y

γzx =
[

5
4 − 5

( z
h
)2
]

∂wS

∂x

(20)

For the FG nanoporous metal foam nanoplate, the non-local constitutive relationship can be
expressed as:

σxx

σyy

τxy

τyz

τzx


− g2

(
∂2

∂x2 +
∂2

∂y2

)


σxx

σyy

τxy

τyz

τzx


=


K11 K12 0 0 0
K12 K22 0 0 0
0 0 K66 0 0
0 0 0 K55 0
0 0 0 0 K44





εxx

εyy

γxy
γyz
γzx


(21)

where the elastic constants Kij are:

K11 = K22 = E(z)
1−ν2

K12 = νE(z)
1−ν2

K44 = K55 = K66 = G(z) = E(z)
2(1+ν)

(22)

where E(z), G(z), ν are the elasticity modulus, shear modulus and Poisson’s ratio, respectively.
The strain energy U of the FG nanoporous metal foam nanoplate can be expressed as:

U =
1
2

∫
V

(
σxxεxx + σyyεyy + τxyγxy + τyzγyz + τxzγxz

)
dV (23)

Substituting Equation (20) into Equation (23) and integrating through the thickness of the
nanoplate, the strain energy of the FG nanoporous metal foam nanoplate can be written as:

U = 1
2

∫
A

(
Nxx

∂u0

∂x + Nyy
∂v0

∂y + Nxy

[
∂u0

∂y + ∂v0

∂x

]
−MB

xx
∂2wB

∂x2 −MB
yy

∂2wB

∂y2

−2MB
xy

∂2wB

∂x∂y

)
dxdy + 1

2

∫
A

(
Qyz

∂wS

∂y + Qzx
∂wS

∂x −MS
xx

∂2wS

∂x2 −MS
yy

∂2wS

∂y2

−2MS
xy

∂2wS

∂x∂y

)
dxdy

(24)

where N, M and Q are the resultant forces, moments and shear forces, respectively. They are defined by:
Nxx =

∫ h
2
− h

2
σxxdz

Nyy =
∫ h

2
− h

2
σyydz

Nxy =
∫ h

2
− h

2
τxydz

(25)


MB

xx =
∫ h

2
− h

2
σxxzdz

MB
yy =

∫ h
2
− h

2
σyyzdz

MB
xy =

∫ h
2
− h

2
τxyzdz

(26)
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
MS

xx =
∫ h

2
− h

2
σxx

[
− 1

4 z + 5
3 z
( z

h
)2
]
dz

MS
yy =

∫ h
2
− h

2
σyy

[
− 1

4 z + 5
3 z
( z

h
)2
]
dz

MS
xy =

∫ h
2
− h

2
τxy

[
− 1

4 z + 5
3 z
( z

h
)2
]
dz

(27)


Qzx =

∫ h
2
− h

2
ϕτzxdz

Qyz =
∫ h

2
− h

2
ϕτyzdz

(28)

By substituting Equations (19)–(21) into Equations (25)–(28), the stress resultants can be written as:
Nxx

Nyy

Nxy

− g2
(

∂2

∂x2 +
∂2

∂y2

)
Nxx

Nyy

Nxy

 =

 A11 A12 0
A12 A22 0
0 0 A66



ε0

xx
ε0

yy
γ0

xy

+

 B11 B12 0
B12 B22 0
0 0 B66



εB

xx
εB

yy
γB

xy

+

 BS
11 BS

12 0
BS

12 BS
22 0

0 0 BS
66



εS

xx
εS

yy
γS

xy


(29)


MB

xx
MB

yy
MB

xy

− g2
(

∂2

∂x2 +
∂2

∂y2

)
MB

xx
MB

yy
MB

xy

 =

 B11 B12 0
B12 B22 0
0 0 B66



ε0

xx
ε0

yy
γ0

xy

+

 D11 D12 0
D12 D22 0

0 0 D66



εB

xx
εB

yy
γB

xy

+

 DS
11 DS

12 0
DS

12 DS
22 0

0 0 DS
66



εS

xx
εS

yy
γS

xy


(30)


MS

xx
MS

yy
MS

xy

− g2
(

∂2

∂x2 +
∂2

∂y2

)
MS

xx
MS

yy
MS

xy

 =

 BS
11 BS

12 0
BS

12 BS
22 0

0 0 BS
66



ε0

xx
ε0

yy
γ0

xy

+

 DS
11 DS

12 0
DS

12 DS
22 0

0 0 DS
66



εB

xx
εB

yy
γB

xy

+

 HS
11 HS

12 0
HS

12 HS
22 0

0 0 HS
66



εS

xx
εS

yy
γS

xy


(31)

{
Qyz

Qzx

}
− g2

(
∂2

∂x2 +
∂2

∂y2

){
Qyz

Qzx

}
=

[
KS

55 0
0 KS

44

]{
γS

yz
γS

zx

}
(32)

where
A11 B11 BS

11 D11 DS
11 HS

11
A12 B12 BS

12 D12 DS
12 HS

12
A22 B22 BS

22 D22 DS
22 HS

22
A66 B66 BS

66 D66 DS
66 HS

66

 =
∫ h

2
− h

2


K11

K12

K22

K66


(

1, z, f (z), z2, z f (z), f (z)2
)

dz

{
KS

44
KS

55

}
=
∫ h

2
− h

2

{
K44

K55

}
ϕ(z)2dz

(33)

It should be noted that the stress resultants in Equations (29)–(32) can be reduced to classical
relations when the small-scale parameter g is set to zero.

The work done by the applied forces can be written as:

V = 1
2

∫
A

[
N0

xx

(
∂(wB+wS)

∂x

)2
+ N0

yy

(
∂(wB+wS)

∂y

)2

+2N0
xy

∂(wB+wS)
∂x

∂(wB+wS)
∂y

]
dxdy

(34)
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where N0
xx, N0

yy and N0
xy are the in-plane distributed forces.

Then, Hamilton’s principle is used to derive the equations of motion, which can be expressed in
the form of ∫ t

0
(δU + δV)dt = 0 (35)

where δ indicates a variation with respect to x and y.
Substituting Equations (24) and (34) into Equation (35), the governing equations of the FG

nanoporous metal foam nanoplate can be obtained as:

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
= 0 (36)

δv0 :
∂Nxy

∂x
+

∂Nyy

∂y
= 0 (37)

δwB : ∂2 MB
xx

∂x2 + 2
∂2 MB

xy
∂x∂y +

∂2 MB
yy

∂y2 + N0
xx

∂2(wB+wS)
∂x2

+2N0
xy

∂2(wB+wS)
∂x∂y + N0

yy
∂2(wB+wS)

∂y2 = 0
(38)

δwS : ∂2 MS
xx

∂x2 + 2
∂2 MS

xy
∂x∂y +

∂2 MS
yy

∂y2 + ∂Qxz
∂x +

∂Qyz
∂y

+N0
xx

∂2(wB+wS)
∂x2 + 2N0

xy
∂2(wB+wS)

∂x∂y + N0
yy

∂2(wB+wS)
∂y2 = 0

(39)

For the present buckling study, the in-plane distributed forces can be written as:

N0
xx = N0, N0

xy = 0, N0
yy = ζN0 (40)

where ζ is the compression ratio.
Using Equations (29)–(32), (38) and (39), the governing equations for buckling of the FG

nanoporous metal foam nanoplate can be obtained in terms of wB and wS:

B11
∂3u
∂x3 + (B12 + 2B66)

∂3u
∂x∂y2 + (B12 + 2B66)

∂3v
∂x2∂y + B22

∂3v
∂y3 − D11

∂4wB

∂x4

−2(D12 + 2D66)
∂4wB

∂x2∂y2 − D22
∂4wB

∂y4 − DS
11

∂4wS

∂x4 − 2
(

DS
12 + 2DS

66
)

∂4wS

∂x2∂y2

−DS
22

∂4wS

∂y4 + N0
(

∂2wB

∂x2 + ζ ∂2wB

∂y2 + ∂2wS

∂x2 + ζ ∂2wS

∂y2

)
− N0g2

(
∂4wB

∂x4 +

(1 + ζ) ∂4wB

∂x2∂y2 + ζ
∂4wB

∂y4 + ∂4wS

∂x4 + (1 + ζ) ∂4wS

∂x2∂y2 + ζ
∂4wS

∂y4

)
= 0

(41)

BS
11

∂3u
∂x3 +

(
BS

12 + 2BS
66
)

∂3u
∂x∂y2 +

(
BS

12 + 2BS
66
)

∂3v
∂x2∂y + BS

22
∂3v
∂y3 − DS

11
∂4wB

∂x4

−2
(

DS
12 + 2DS

66
)

∂4wB

∂x2∂y2 − DS
22

∂4wB

∂y4 − HS
11

∂4wS

∂x4 − 2
(

HS
12 + 2HS

66
)

∂4wS

∂x2∂y2

−HS
22

∂4wS

∂y4 + KS
44

∂2wS

∂x2 + KS
55

∂2wS

∂y2 + N0
(

∂2wB

∂x2 + ζ ∂2wB

∂y2 + ∂2wS

∂x2

+ζ ∂2wS

∂y2

)
− N0g2

(
∂4wB

∂x4 + (1 + ζ) ∂4wB

∂x2∂y2 + ζ
∂4wB

∂y4 + ∂4wS

∂x4

+(1 + ζ) ∂4wS

∂x2∂y2 + ζ
∂4wS

∂y4

)
= 0

(42)

In the present study, the full simply supported boundary condition is considered and it is given
as follows:

w(x, 0) = w(x, lb) = w(0, y) = w(la, y) = 0
Mxx(0, y) = Mxx(la, y) = Myy(x, 0) = Myy(x, lb) = 0

(43)

The following solutions for wB and wS are chosen to satisfy the boundary condition in Equation (43):

wB =
∞

∑
m=1

∞

∑
n=1

UB
3(mn) sin(αx) sin(βy) (44)
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wS =
∞

∑
m=1

∞

∑
n=1

US
3(mn) sin(αx) sin(βy) (45)

where m and n are the mode numbers, α = mπ/la and β = nπ/lb.
Substituting Equations (44) and (45) into Equations (41) and (42), the following matrix form can

be obtained: [
Z11 Z12

Z21 Z22

]{
UB

3(mn)
US

3(mn)

}
=

{
0
0

}
(46)

where
Z11 = −

(
D11α

4 + 2(D12 + 2D66)α
2β2 + D22β

4
)

−N0
(
α2 + ζβ2

)
− N0g2

(
α4 + (1 + ζ)α2β2 + ζβ4

) (47)

Z12 = Z21 = −
(

DS
11α

4 + 2
(

DS
12 + 2DS

66
)
α2β2 + DS

22β
4
)

−N0
(
α2 + ζβ2

)
− N0g2

(
α4 + (1 + ζ)α2β2 + ζβ4

) (48)

Z22 = −
(

HS
11α

4 + 2
(

HS
12 + 2HS

66
)
α2β2 + HS

22β
4
)
−
(

KS
44α

2 + KS
55β

2
)

−N0
(
α2 + ζβ2

)
− N0g2

(
α4 + (1 + ζ)α2β2 + ζβ4

) (49)

By setting the determinant of the coefficient matrix of Equation (46) equal to zero, the buckling
load N0 is obtained. The critical buckling load is the minimum value of N0 (m, n), where m = 1, n = 1.
For convenience, the non-dimensional buckling load is defined as:

N0 = −N0 × la
2

D110
(50)

where

D110 =
E0h3

12(1− ν2)
(51)

3. Results and Discussion

In order to demonstrate the accuracy of the present method, firstly, a comparison study was
conducted for a homogeneous nanoplate. The present results were compared with the available data
reported in the literature [31], as shown in Figures 2 and 3. A very good agreement was reached
between these figures, showing the validity of the present analysis.Coatings 2018, 8, x FOR PEER REVIEW  12 of 20 
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homogeneous nanoplate (a = b = 5 nm).

In the following, the FG nanoporous metal foam nanoplate shown in Figure 1 was considered.
It had the following material properties: E0 = 200 Gpa, G0 = 76.92 Gpa and ν = 1/3.

The variation of non-dimensional buckling load with a mode number n of FG nanoporous
metal foam nanoplate is shown in Figure 4 for different small-scale parameters. It could be
observed that the non-dimensional buckling load increased with an increasing mode number n.
In addition, the non-dimensional buckling load decreased with the increase of the small-scale parameter.
The classical theory (g = 0) resulted in the highest buckling load. It was also seen that when the mode
number n was small, there was no significant difference among non-dimensional buckling loads for
different small-scale parameters. However, as mode number n increased, the nonlocal effect became
more and more notable.
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Figure 5 shows the effect of porosity distribution on the non-dimensional critical buckling load,
where h = 5 nm, m = n = 1, ζ = 1 and λ = 0.5. In the current analysis, two cases of square and
rectangular nanoplates were considered. It could be seen that non-dimensional critical buckling load
was the smallest in the case of UD, regardless of whether it was a square or a rectangular nanoplate.
Therefore, the UD nanoplate was the most unstable. It could be found that the NUD1 nanoplate had
the largest non-dimensional critical buckling load, showing this type of nanoplate was the most stable.

Figure 6 presented the influence of porosity coefficient λ on the non-dimensional critical buckling
load of the FG nanoporous nanoplate. It was found that there was a remarkable decreasing trend for
the non-dimensional critical buckling load when the porosity coefficient increased. The reason for this
behavior was that the stiffness of nanoplates decreased with the porosity coefficient.
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In Figure 7, the non-dimensional critical buckling load versus the length-to-thickness ratio of the
square FG nanoporous nanoplate is shown. It was seen that the non-dimensional critical buckling
load increased with the rise of length-to-thickness ratio for all types of porosity distribution. It was
also found that the influence of small-scale parameter on the non-dimensional critical buckling load
weakened with the rise of the length-to-thickness ratio.Coatings 2018, 8, x FOR PEER REVIEW  15 of 20 
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FG nanoporous nanoplate (m = n = 1, h = 5 nm, la = lb, ζ = 1, λ = 0.5): (a) UD, (b) NUD1, (c) NUD2.

In Figure 8, the non-dimensional critical buckling load versus the axial compression ratio ζ
is shown. Here, ζ > 0 corresponds to the biaxial compressive loads and ζ = 0 means a uniaxial load.
Figure 8 shows that the non-dimensional critical buckling load became smaller and smaller as the axial
compression ratio increased.
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Figure 9 shows the variation of the non-dimensional buckling load with a mode number m of
the FG nanoporous nanoplate. It could be seen that the larger mode number m led to the higher
non-dimensional buckling load. Additionally, the difference between the non-dimensional buckling
loads with n = 1 and n = 2 got smaller and smaller as the mode number m increased.
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Tables 1 and 2 show the non-dimensional buckling loads of square and rectangular FG nanoporous
nanoplates under different conditions, respectively. It could be seen that the FG nanoporous nanoplate
had a lower non-dimensional buckling load than its solid counterpart. Additionally, the larger mode
number resulted in the larger non-dimensional buckling load.

Table 1. The non-dimensional buckling loads with different mode numbers, small scale parameters
and porosity distributions of square FG nanoporous nanoplate (la = lb = 50 nm, h = 5 nm, ζ = 1, λ = 0.5).

Mode
Solid Metal UD NUD1 NUD2

g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5

m = 1, n = 1 18.636 18.600 12.334 12.310 14.965 14.936 13.176 13.150
m = 2, n = 2 63.870 63.370 42.272 41.941 48.965 48.582 44.777 44.426
m = 3, n = 3 116.14 114.12 76.869 75.527 84.672 83.194 80.648 79.241
m = 4, n = 4 163.06 158.07 107.92 104.61 113.99 110.50 112.29 108.85
m = 5, n = 5 201.03 191.57 133.05 126.79 136.20 129.79 137.56 131.09

Table 2. The non-dimensional buckling loads with different mode numbers, small scale parameters and
porosity distributions of rectangular FG nanoporous nanoplate (la = 50 nm, lb = 75 nm, h = 5 nm, ζ = 1,
λ = 0.5).

Mode
Solid Metal UD NUD1 NUD2

g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5

m = 1, n = 1 13.672 13.652 9.0485 9.0357 11.036 11.020 9.6751 9.6613
m = 2, n = 2 48.709 48.432 32.238 32.055 37.915 37.700 34.244 34.050
m = 3, n = 3 92.762 91.587 61.394 60.616 69.135 68.259 64.687 63.867
m = 4, n = 4 135.87 132.84 89.926 87.921 97.284 95.114 94.015 91.919
m = 5, n = 5 173.37 167.40 114.74 110.79 120.14 116.00 119.18 115.08

In Table 3, the effect of surface area on the non-dimensional critical buckling load of the FG
nanoporous nanoplate is discussed. When the thickness of the nanoplate was fixed, it could be found
that the non-dimensional critical buckling load increased with the rise of surface area. It should
be noticed that the real buckling load decreased with the surface area because the stiffness of the
nanoplate decreased. The contrary tendency was due to the dimensionless formulation introduced in
Equation (50).

Table 3. The non-dimensional critical buckling loads with different surface areas, small scale parameters
and porosity distributions of square nanoplate (m = n = 1, h = 5 nm, ζ = 1, λ = 0.5).

Surface Area
Solid Metal UD NUD1 NUD2

g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5

la = lb =30 nm 16.956 16.863 11.222 11.161 13.220 13.148 11.924 11.859
la = lb =40 nm 18.069 18.014 11.959 11.922 14.364 14.320 12.752 12.713
la = lb =50 nm 18.636 18.600 12.334 12.310 14.965 14.936 13.176 13.150
la = lb =60 nm 18.960 18.934 12.549 12.531 15.313 15.292 13.419 13.400
la = lb =70 nm 19.161 19.141 12.681 12.669 15.531 15.515 13.569 13.556

The effect of nanoplate thickness on the non-dimensional critical buckling load of square and
rectangular nanoplates is shown in Tables 4 and 5, respectively. With the increase of the nanoplate
thickness, the variation of the non-dimensional critical buckling load showed a decreasing trend for
both square and rectangular nanoplates. In Table 6, the influence of aspect ratio on the non-dimensional
critical buckling load is studied in the condition that the FG nanoporous nanoplate is subjected to
the biaxial symmetrical loads (ζ = 1). It could be seen that the non-dimensional critical buckling load
decreased as the aspect ratio increased.
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Table 4. The non-dimensional critical buckling loads with different thicknesses, small scale parameters
and porosity distributions of square nanoplate (la = lb = 50 nm, m = n = 1, ζ = 1, λ = 0.5).

h
Solid Metal UD NUD1 NUD2

g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5

h = 5 nm 18.636 18.600 12.334 12.310 14.965 14.936 13.176 13.150
h = 6 nm 18.190 18.154 12.039 12.015 14.491 14.463 12.842 12.817
h = 7 nm 17.689 17.654 11.707 11.684 13.969 13.941 12.469 12.444
h = 8 nm 17.145 17.111 11.347 11.325 13.411 13.385 12.064 12.040
h = 9 nm 16.568 16.535 10.965 10.944 12.832 12.806 11.637 11.614

Table 5. The non-dimensional critical buckling loads with different thicknesses, small scale parameters
and porosity distributions of rectangular nanoplate (la = 50 nm, lb = 75 nm, m = n = 1, ζ = 1, λ = 0.5).

h
Solid Metal UD NUD1 NUD2

g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5

h = 5 nm 13.672 13.652 9.0485 9.0357 11.036 11.020 9.6751 9.6613
h = 6 nm 13.430 13.411 8.8883 8.8757 10.776 10.761 9.4936 9.4801
h = 7 nm 13.155 13.136 8.7062 8.6939 10.484 10.469 9.2879 9.2747
h = 8 nm 12.851 12.833 8.5053 8.4932 10.167 10.152 9.0614 9.0485
h = 9 nm 12.524 12.506 8.2887 8.2769 9.8297 9.8157 8.8179 8.8053

Table 6. The non-dimensional critical buckling loads with different aspect ratios, small scale parameters
and porosity distributions of nanoplate (m = n = 1, la = 50 nm, h = 5 nm, ζ = 1, λ = 0.5).

lb/la
Solid Metal UD NUD1 NUD2

g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5 g = 0 g = 0.5

0.5 42.994 42.783 28.456 28.316 33.662 33.497 30.259 30.110
1 18.6364 18.600 12.334 12.310 14.965 14.936 13.176 13.150

1.5 13.672 13.652 9.0485 9.0357 11.036 11.020 9.6751 9.6613
2 11.897 11.882 7.8739 7.8642 9.6215 9.6097 8.4219 8.4116

2.5 11.069 11.056 7.3258 7.3174 8.9597 8.9494 7.8369 7.8280

4. Conclusions

In this study, the buckling behavior of FG nanoporous metal foam nanoplates was investigated
based on the non-local elasticity theory and the refined plate theory. Hamilton’s principle was used
to derive the governing equations of the system. Analytical solutions to the buckling problem were
obtained via Navier’s method. The following conclusions were obtained:

• An FG nanoporous metal foam nanoplate had a smaller critical buckling load than its
solid counterpart. Among the three types of porosity distribution, the NUD1 nanoplate had
the largest buckling load and the ND nanoplate had the smallest buckling load.

• The critical buckling load of FG nanoporous metal foam nanoplates decreased with the rise of the
porosity coefficient and the small-scale parameter.

• The critical buckling load decreased as the aspect ratio increased. Additionally, the FG nanoporous
metal foam nanoplate was more stable when the surface area got smaller.

• The buckling load increased as the mode numbers rose; in addition, the scale effect was quite
significant on the buckling load at large mode number n.
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