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Abstract: Coatings are normally employed to meet some functional requirements. There is a kind
of self-generated coating during use, such as the transfer layer during sliding, which may greatly
affect the tribological behavior. Although the transfer layer has aroused much attention recently,
the formation of the transfer layer closely depends on the service conditions, which need to be
further studied. In this paper, the effects of sliding speed, normal load, and duration of wear test
on the transfer layer thickness during friction of Ni/PTFE (Polytetrafluoroethylene) composites
were experimentally investigated. The formation mechanism of transfer layer and the relationships
between tribological properties and transfer layer thickness were analyzed in detail. It was found
that the transfer layer thickness increased with increases of sliding speed and normal load; and after
a period of wear test, the transfer layer thickness remained stable. The transfer layer thickness
correlates linearly with the friction coefficient and wear volume of the PTFE composites. With the
increase of the transfer layer thickness, the friction coefficient decreased, while the wear volume
increased, which means that a uniform, thin, and stable transfer layer is beneficial for the reduction
of friction and wear of the polymeric composites.

Keywords: PTFE (Polytetrafluoroethylene) composite; transfer layer; tribological performance;
sliding speed; normal load; duration of wear test

1. Introduction

Various coatings have been widely used in many applications, such as in protection from
corrosion [1,2], in anti-friction and anti-wear [3,4], in wave or light absorbing [5,6], or in other
fields. According to different service requirements, there are many preparation methods for these
coatings, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), plating, cladding,
spraying and so on [7–9]. There are also a class of protective coatings that are generated automatically
during use, which can play the role of self-protection, self-repairing, or self-improvement. For example,
during sliding, two kinds of coatings can be formed on the frictional surface: One is a chemical reaction
coating and the other is a transfer layer. The chemical reaction coating is the oxide coating or other
compound coating formed on the frictional surface during sliding, which can repair and protect the
frictional surface and reduce friction and wear [10–13]. The transfer layer is due to the transfer of
materials onto the counterface of the frictional couple to form a layer of adhesive coating. The role
of the transfer layer is to change the contact state of the frictional surfaces, to protect the surface and
reduce friction [14–19]. For the metal-polymer sliding system, a polymer transfer layer will be formed
spontaneously on the surface of the metal part during sliding, which will transform the friction contact
of metal-polymer into polymer-polymer, thus reducing friction and wear. Although it has been proved
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that the properties of the transfer layer will greatly affect the tribological performance of the friction
system [20–23], there are still many aspects to be further studied, such as the relationship between the
transfer layer thickness and the sliding conditions, the correlation between the transfer layer thickness
and the tribological properties, etc., which have been rarely reported. Therefore, this work focused on
the effects of frictional conditions on transfer layer thickness of PTFE composites, and analyzed the
relationship between the transfer layer thickness and the tribological properties, hoping to achieve the
optimization of friction properties by controlling the formation scale of the self-generated transfer layer.

2. Materials and Methods

2.1. Materials

Polytetrafluoroethylene (PTFE, Shanghai 3F New Materials Technology Co. Ltd., Shanghai,
China), white powders with an average particle size of about 30 µm, was selected as a matrix for the
composites. The filler was nickel powder (Ni, average diameter of about 64 µm). The pin samples
(Ø10 mm × 30 mm) of PTFE composites (with 15 wt % Ni) were prepared by mixing, pressing and
sintering. The counterface samples used in this study were steel 45 discs (Ø50 mm × 4 mm). In order
to mix the components evenly, a high-speed mixer (YF2-2, Ruian YongLi Pharmaceutical Machinery
Co. Ltd., Ruian, China) was adopted. The powder mixture was compacted in a cylindrical mold at
55 MPa of pressure and then removed from the mold and heated in a nitrogen protective sintering
furnace (JHN-1, Hefei University of Technology, Hefei, China) using a ramp to 205 ◦C in 100 min (hold
30 min), a ramp to 360 ◦C in 100 min (hold 180 min), a ramp to 275 ◦C in 60 min (hold 60 min), and a
ramp to 180 ◦C in 100 min. Steel 45 is a low carbon steel with ~0.45 wt pct C, the hardness is about
HRC28, and the surface roughness Ra is about 0.1 µm.

2.2. Methods

2.2.1. Friction Experiments

The friction and wear tests were carried out on a multifunctional tribometer, designed by the
Hefei University of Technology. The friction coefficient was measured by a shaft torque meter.
The pin-on-disc tests were conducted under dry sliding and room temperature (as shown in Figure 1).
The wear loss of each sample was measured by the electronic balance (FA2104B, accuracy is 0.1 mg).
Each test lasted 35 min and was repeated at least three times.

Coatings 2018, 8, x FOR PEER REVIEW  2 of 11 

 

layer will be formed spontaneously on the surface of the metal part during sliding, which will 
transform the friction contact of metal-polymer into polymer-polymer, thus reducing friction and 
wear. Although it has been proved that the properties of the transfer layer will greatly affect the 
tribological performance of the friction system [20–23], there are still many aspects to be further 
studied, such as the relationship between the transfer layer thickness and the sliding conditions, the 
correlation between the transfer layer thickness and the tribological properties, etc., which have been 
rarely reported. Therefore, this work focused on the effects of frictional conditions on transfer layer 
thickness of PTFE composites, and analyzed the relationship between the transfer layer thickness and 
the tribological properties, hoping to achieve the optimization of friction properties by controlling 
the formation scale of the self-generated transfer layer. 

2. Materials and Methods 

2.1. Materials 

Polytetrafluoroethylene (PTFE, Shanghai 3F New Materials Technology Co. Ltd., Shanghai, 
China), white powders with an average particle size of about 30 μm, was selected as a matrix for the 
composites. The filler was nickel powder (Ni, average diameter of about 64 μm). The pin samples (Ø10 
mm × 30 mm) of PTFE composites (with 15 wt % Ni) were prepared by mixing, pressing and sintering. 
The counterface samples used in this study were steel 45 discs (Ø50 mm × 4 mm). In order to mix the 
components evenly, a high-speed mixer (YF2-2, Ruian YongLi Pharmaceutical Machinery Co. Ltd., 
Ruian, China) was adopted. The powder mixture was compacted in a cylindrical mold at 55 MPa of 
pressure and then removed from the mold and heated in a nitrogen protective sintering furnace 
(JHN-1, Hefei University of Technology, Hefei, China) using a ramp to 205 °C in 100 min (hold 30 
min), a ramp to 360 °C in 100 min (hold 180 min), a ramp to 275 °C in 60 min (hold 60 min), and a 
ramp to 180 °C in 100 min. Steel 45 is a low carbon steel with ~0.45 wt pct C, the hardness is about 
HRC28, and the surface roughness Ra is about 0.1 μm. 

2.2. Methods 

2.2.1. Friction Experiments 

The friction and wear tests were carried out on a multifunctional tribometer, designed by the 
Hefei University of Technology. The friction coefficient was measured by a shaft torque meter. The 
pin-on-disc tests were conducted under dry sliding and room temperature (as shown in Figure 1). 
The wear loss of each sample was measured by the electronic balance (FA2104B, accuracy is 0.1 mg). 
Each test lasted 35 min and was repeated at least three times. 

 

Figure 1. Schematic diagram of the pin-on-disc tribometer. 
Figure 1. Schematic diagram of the pin-on-disc tribometer.

2.2.2. Observation of the Worn Surfaces

The transfer layer was observed and analyzed by 3D laser scanning microscope (Keyence,
VK-X100K, Osaka, Japan, with an accuracy of 0.012 µm) and scanning electron microscope (JEOL,
JSM-6360, Tokyo, Japan), and EDS (INCA, version with Si(Li) detector).



Coatings 2018, 8, 399 3 of 11

2.2.3. Measurement of the Transfer Layer Thickness

The above mentioned Keyence 3D laser scanning microscope was employed to measure the
thickness of the transfer layer at four different positions evenly distributed along the circular wear
track on the counterface. The measurement was repeated at least three times on the same position
in order to reduce the random errors and ensure the accuracy and reproducibility of the test results.
The transfer layer was determined by the difference of h1 (average profile height of transfer layer on
sliding surface) and h0 (average profile height of initial surface), ∆h = h1 − h0 (as shown in Figure 2).
The arithmetic mean value of the measured results of four positions on the friction surface was taken
as the final result.
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2.2.4. Parameters of Wear Test

The test conditions for the effect of sliding speed on transfer layer under certain load were as
follows: Average linear sliding speeds were 0.1 m·s−1, 0.2 m·s−1, 0.4 m·s−1, 0.6 m·s−1, 0.8 m·s−1;
normal load was 362 N; and the sliding tests were carried out under dry sliding at room temperature
for 35 min. The test conditions for the effect of load on transfer layer under certain linear sliding
speed were as follows: The normal forces were 72, 217, 362, 506, and 651 N; the average linear sliding
speed was 0.2 m·s−1; and the sliding tests were carried out under dry sliding at room temperature for
35 min. The change of the transfer layer thickness with duration of wear time was investigated with
the conditions as follows: The force was 362 N and the linear sliding speed was 0.2 m·s−1. The test
time was 5, 10, 15, 20, 25, 30, and 35 min, respectively. The relative humidity was about 30% and we
cleaned the steel discs with acetone between the tests.

3. Results

3.1. Effects of Working Conditions on the Transfer Layer Thickness

3.1.1. Effect of Sliding Speed

Figure 3 shows the change of friction coefficient and wear at different speeds. It is shown that
the friction coefficient decreases with the increase of speed, but wear is the opposite. Figure 4 shows
the SEM images of the wear track on the steel disc under different sliding speeds. It can be clearly
seen that a thin layer transferred from the PTFE composites to the surface of steel disc. The transfer
layer provided shielding of the soft polymer surface from the hard metal asperities, changed the
polymer-steel friction into the polymer-polymer friction, which played an extremely important role
in reducing wear rate [16]. It can be found that with the increase of sliding speed, the transfer
layer formed on the steel disc surface expanded, and the adjacent layers gradually connected to
form a uniform transfer layer. This is similar to the process of transfer layer formation described by
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Ye et al. [17]. Figure 5 shows the micro-morphology of the steel surface with the discontinuous transfer
layer (Figure 5a). Figure 5b,c is EDS images of the layer area and the layer-free area, respectively.
Figure 5b shows the detected elements in area SA1 including F, C, Ni, indicating the area covering with
PTFE composites; Figure 5c shows the detected elements in area SA2 including mainly Fe, indicating
the area being steel. Actually, it was also found that the transfer layer was easily peeled off from the
steel disc, and then the exposed steel surface was re-covered by transfer layer. When this process
reached a balanced state, the formation of the transfer layer became stable. Normally, when the sliding
speed is higher, the transfer layer is easier to peel off, in other words, the thin transfer layer formed
under low speed will be better in reducing wear [16].
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(c) 0.8 m·s−1.

Figure 6 shows the height distributions of the transfer layers formed on the steel disc surface under
different sliding speeds. The color bars in Figure 6a indicate the layer thicknesses. The corresponding
measured thicknesses were plotted in Figure 6b, which showed the transfer layer thickness increased
almost linearly with sliding speed.
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3.1.2. Effect of Load

Figure 7 shows the change of friction coefficient and wear at different loads. It is shown that the
friction coefficient decreases with the increase of load, but wear is the opposite. The SEM images of the
transfer layers formed on the steel disc under different loads are shown in Figure 8. It can be clearly
seen that the PTFE composites were transferred to the steel surface, the transfer layer became more
uniform and continuous as the load increased, but the high load may cause damage to the transfer
layer (see Figure 8c). In our work, the transfer layer formed at 362 N was uniform and of the best
quality (see Figure 8b).
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Figure 9 shows the height distributions of the transfer layers formed on the counterface under
different loads. From the color changes in the mappings, it is shown that the transfer layer thickness
of Ni/PTFE composites increased with the load (see Figure 9a). Figure 9b shows the change of the
average transfer layer thickness with load, the curve clearly shows the change: The average transfer
layer thickness increased with the load increase at first, reached the maximum at 362 N, and then
gradually went down. When the transfer layer thickness exceeded a certain value, the high load will
damage the layer and cause the thickness to decrease.
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3.1.3. Effect of Wear Time

Figure 10 shows the worn scar surface of the counterface at different times. The following
information can be obtained from the optical images (see Figure 10a): At the beginning, the transfer
layer gradually begins to form on the steel surface. As the wear test continues, the transfer layer
expands laterally and thickens longitudinally; during this period, it will be accompanied by the
shedding and repairing of some transfer layers. After a certain period of time, the transfer layer
gradually tends to reach a dynamic balance, thus its thickness and coverage will keep in a stable state.
In Figure 10a, it can be seen that the degree of grey in the picture is different with bright and dark,
which means the transfer layer thickness is nonuniform, i.e., the bright area is thinner, and the dark
area is thicker.
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Figure 10. (a) Surface of the counterface at different times; (b) Transfer layer thickness over time.

The variation curve of the average thickness of the transfer layer over time is shown in Figure 10b.
The average thickness of the transfer layer formed on the steel surface increased rapidly in the initial
period of friction, then it reached a relatively stable value after about 15 minutes. This is similar to the
conclusion in reference [24]. In fact, the variation trend of the thickness of the transfer layer over time
is consistent with that the friction enters the steady state through the sliding period [25].
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3.2. Relationships between the Transfer Layer Thickness and Friction Coefficient and Wear Volume

Figure 11 shows the relationship between friction coefficient, wear volume and the transfer layer
thickness. The data were fitted linearly. We can see from Figure 11a that the friction coefficient
negatively correlates with the thickness of the transfer layer, which decreases as the transfer layer
thickness increases. The corresponding polynomial fitting is shown in Figure 11a.
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Figure 11. Relationships between tribological properties and transfer layer thickness: (a) Friction
coefficient, (b) wear volume.

The transfer layer reached a steady state, and almost completely covered the surface of the steel
disc, isolated the polymer from the steel more effectively, and prevented the polymer composite
from being ploughed. Therefore, the friction coefficient became smaller with the increased thickness.
Figure 11b shows the wear volume of Ni/PTFE composites increases with the increase in thickness of
the transfer layer. The corresponding linear fitting is shown in Figure 11b.

It is easy to understand that when the transfer layer thickness increases, the wear of polymer
composites will inevitably increase, because the transfer materials come from the polymer composites.
Furthermore, the thicker the transfer layer is, the more easily the layer falls off from the counterface
and becomes free debris, thus causing higher wear.

4. Conclusions

Based on our results, the following conclusions can be drawn:

• A layer of transfer layer of Ni/PTFE composite can be formed on the steel counterface during
sliding, which will change the polymer-metal contact to polymer-polymer contact and reduce the
friction and wear of polymer-metal system.

• The transfer layer thickness of the Ni/PTFE composite on the counterface increased linearly with
the increase of sliding speed. With the increase of load, the transfer layer thickness increased
at first and reached a maximum (2.189 µm), and then went down. As the wear test went on,
the transfer layer thickness increased rapidly in the initial period of sliding, then it reached a
relatively stable value around 1.55 µm after about 15 min.

• The transfer layer thickness correlates linearly with the friction coefficient and wear volume of
the PTFE composites. With the increase of the transfer layer thickness, the friction coefficient
decreased, while the wear volume increased.
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