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Abstract: Physical vapour deposition (PVD) is a well-known technology that is widely used for the
deposition of thin films regarding many demands, namely tribological behaviour improvement,
optical enhancement, visual/esthetic upgrading, and many other fields, with a wide range of
applications already being perfectly established. Machining tools are, probably, one of the most
common applications of this deposition technique, sometimes used together with chemical vapour
deposition (CVD) in order to increase their lifespan, decreasing friction, and improving thermal
properties. However, the CVD process is carried out at higher temperatures, inducing higher stresses
in the coatings and substrate, being used essentially only when the required coating needs to be
deposited using this process. In order to improve this technique, several studies have been carried
out optimizing the PVD technique by increasing plasma ionization, decreasing dark areas (zones
where there is no deposition into the reactor), improving targets use, enhancing atomic bombardment
efficiency, or even increasing the deposition rate and optimizing the selection of gases. These studies
reveal a huge potential in changing parameters to improve thin film quality, increasing as well
the adhesion to the substrate. However, the process of improving energy efficiency regarding the
industrial context has not been studied as deeply as required. This study aims to proceed to a review
regarding the improvements already studied in order to optimize the sputtering PVD process, trying
to relate these improvements with the industrial requirements as a function of product development
and market demand.

Keywords: PVD optimization process; PVD technique; sputtering; magnetron sputtering; deposition
improvement; reactors

1. Introduction

The physical vapour deposition (PVD) process has been known for over 100 years, and
plasma-assisted PVD was patented about 80 years ago [1]. The term “physical vapour deposition”
appeared only in the 60s. At that time, the evolution of vacuum coating processes was needed, which
was carried out through the development of well-known technologies, such as sputtering, vacuum,
plasma technology, magnetic fields, gas chemistry, thermal evaporation, bows, and power sources
control, as described in detail in Powell’s book [2].

In the last 30 years, plasma assisted PVD (PAPVD) was divided into several different power
source technologies such as direct current (DC) diode, triode, radio-frequency (RF), pulsed plasma, ion
beam assisted coatings, among others. In the beginning, the process had some difficulties in being
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understood at a fundamental level and necessary changes were introduced to provide benefits, such as
excellent adhesion from the coating to the substrate, structure control, and material deposition at low
temperatures [3].

On the other hand, many additional surface treatments have appeared to meet the industrial and
commercial needs, developing the performance of a huge number of products. In the last decades,
the development of PVD deposition technologies has been focused essentially on the coating of tools,
considering the strong evolution of the computer numerical control (CNC) machining processes, since
new machining approaches have arisen [4].

PVD technique is a thin film deposition process in which the coating grows on the substrate atom
by atom. PVD entails the atomization or vaporization of material from a solid source, usually called
target. Thin films usually have layers with thicknesses as thin as some atomic layers to films with
several microns. This process causes a change in the properties of the surface and the transition zone
between the substrate and the deposited material. On the other hand, the properties of the films can
also be affected by the properties of the substrate. The atomic deposition process can be made in a
vacuum, gaseous, plasma, or electrolytic environment. Moreover, the vacuum environment in the
deposition chamber will reduce the gaseous contamination in the deposition process to a very low
level [5].

The last decades showed an evolution of the PVD techniques, aiming to improve coating
characteristics and deposition rates without putting aside initial surface cleaning to remove possible
contaminations [6,7]. This technique has suffered relevant improvements, mainly in carbides and
nanocomposite transition metal nitrides substrates [8-12]. Research has been focused on improving
the characteristics of coatings, although the enhancement of the deposition rate effectiveness regarding
this process has been the main concern of the industry linked to this kind of techniques [13-15].

The most common surface coating methods in a gaseous state regarding the PVD process are
evaporation and sputtering. These techniques allow for particles to be extracted from the target at very
low pressure to be conducted and deposited onto the substrate [16].

The reactor that was used in the evaporation process requires high-vacuum pressure values.
Generally, these characteristics and parameters have lower atomic energy and less adsorption of gases
into the coatings deposition. As a result, a transfer of particles with larger grains leads to a recognized
lesser adhesion of the particles to the substrate, compared with the sputtering technique. During
deposition, some contaminant particles are released from the melted coating material and moved onto
the substrate, thereby reducing the purity of the obtained coatings. Thus, the evaporation process is
usually used for thicker films and coatings with lower surface morphological requirements, although
this technique presents higher deposition rates when compared with the sputtering process.

Therefore, the sputtering process appears as an alternative for applications that require greater
morphological quality of surfaces where roughness, grain size, stoichiometry, and other requirements
are more significant than the deposition rate. Due to the stresses generated during the cooling
process with the decrease in temperature or the melting temperature of the substrate (polymers), the
deposition process presents temperature limitations for certain applications [17-21]. This leads to the
Sputtering process becoming more relevant among PVD deposition techniques without forgetting
the appearance of new techniques based on the sputtering process to meet the continuous increase in
market requirements.

New coating properties, following market and researchers’ requirements, have been developed
with the emergence of new systems based on conventional processes. Even though the deposition
rates that were obtained by the evaporation process are the desired, the truth is that the sputtering
deposition techniques made an unquestionable progress in terms of quality and increase in deposition
rate, responding to industry and researchers demands interested in this area, even serving as interlayer
for further coatings obtained by chemical vapour deposition (CVD) [22].

CVD is another method of deposition under vacuum and is the process of chemically reacting a
volatile compound from a material to be deposited with other gases, in order to produce a non-volatile
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solid that is deposited onto a substrate. This method is sometimes used as pre-coating with the aim
of increasing the durability of the substrates, decreasing the friction, and improving the thermal
properties—this means that one can combine deposition methods, like layers of PVD and CVD, in the
same coating [23-26].

There are also a large number of studies in mathematical modelling and numerical simulation that
contribute to the improvement of this process, which may be an advantage over other processes. These
studies have a great impact on the improvement of the reactors characteristics that lead in the future to
the costs reduction, as well as in the improvement of the mechanical properties of the films [27-32].

This work has as main focus the magnetron sputtering technique since its development will be
focused on the improvement of these specific reactors in the future.

2. PVD Coatings

PVD is an excellent vacuum coating process for the improvement of wear and corrosion resistance.
It is highly required for functional applications, such as tools, decorative pieces, optical enhancement,
moulds, dies, and blades. These are just a few examples of a wide range of already well-established
applications [33-35]. The equipment used in this technique requires low maintenance and the process
is environmentally friendly. Benefits of PVD coatings are many. PVD can provide real and unique
advantages that add durability and value to products. Deposition techniques have an important role in
machining processes. Machining tools are probably one of the most exigent applications, which require
characteristics, such as hardness at elevated temperatures, high abrasion resistance, chemical stability,
toughness, and stiffness [36-45]. In addition, PVD is also able to produce coatings with excellent
adhesion, homogeneous layers, designed structures, graduated properties, controlled morphology,
high diversity of materials and properties, among others [46-50].

PVD processes allow the deposition in mono-layered, multi-layered and multi-graduated coating
systems, as well as special alloy composition and structures. Among other advantages of this process,
the variation of coating characteristics continuously throughout the film is undoubtedly one of the
most important [32,51,52]. Their flexibility and adaptability to market demands led to the development
and the improvement of techniques for the various processes and thus multiple variants have arisen,
some of them presented in Figure 1.

These techniques are constantly evolving and continue to be inspiration sources for many studies.
Many books and articles spread out the information on these variants, making it difficult to quantify
all existing techniques. Sputtering (or cathodic spraying) and Evaporation are the most commonly
used PVD methods for thin film deposition.
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Figure 1. Segmentation of the current physical vapour deposition (PVD) techniques for advanced
coatings.



Coatings 2018, 8, 402 4 of 22

2.1. Evaporation and Sputtering Principles

In PVD techniques, a thermal physical process of releasing or collision transforms the material
to be deposited—the target—into atomic particles, which are directed to the substrates in conditions
of gaseous plasma in a vacuum environment, generating a physical coating by condensation or the
accumulation of projected atoms. A higher flexibility in the types of materials to be deposited and
a better composition control of the deposited films are the results of this technique [21,53,54]. Two
electrodes connected to a high voltage power supply and a vacuum chamber constitute the PVD
reactors, as seen in Figure 2 [21,53,55].

Regarding the sputtering process, fine layers of several materials are applied while using the
magnetron sputtering process. The raw material for this vacuum coating process takes the form of a
target. A magnetron is placed near the target in sputtering processes. Then, in the vacuum chamber,
an inert gas is introduced, which is accelerated by a high voltage being applied between the target and
the substrate in the direction of the magnetron, producing the release of atomic size particles from the
target. These particles are projected as a result of the kinetic energy transmitted by gas ions whose
have reached the target going to the substrate and creating a solid thin film. The technology allows for
previous contaminations located on the substrate to be cleaned from the surface—this is by reversing
the voltage polarity between the substrate and the target, usually called cathodic cleaning [21].

When considering the technique of e-beam evaporation, this method involves purely physical
processes, where the target acts as an evaporation source containing the material to be deposited,
which works as a cathode. Note that the system evaporates any material as a function of the e-beam
power. The material is heated at high vapour pressure by bombarding electrons in high vacuum,
and the particles released. Then, a clashing occurs between the atomic size released particles and gas
molecules—inserted into the reactor, with the aim of accelerating the particles, by creating a plasma.
This plasma proceeds through the deposition chamber, being stronger in the middle position of the
reactor. Successively compressed layers are deposited, increasing the adhesion of the deposited film to
the substrate [17-21].

Substrate Holder Substrate Holder
| Substrate |
Gas Gas
Inlet Vaporized ) Elasma Tnlet Plasma
Ms!)terial Evapo_rated °
Material
O Ar+ ® B
[ )
l Source Vacuum
Magnetron g;sctl;lnm zzz System
(a) (b)

Figure 2. Schematic drawing of two conventional PVD processes: (a) sputtering and (b) evaporating
using ionized Argon (Ar+) gas.

Being a cleaner deposition process, sputtering permits a better film densification, and reduces
residual stresses on the substrate as deposition occurs at low or medium temperature [56-58]. Stress
and deposition rate are also controlled by power and pressure. The use of targets with larger area
facilitates a good uniformity, allowing the control of the thickness by an easy adjustment of the process
parameters and deposition time. However, the process may cause some film contamination by the
diffusion of evaporated impurities from the source, thus, there are still some limitations in the selection
of the materials that were used for the coatings due to their melting temperature.
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Furthermore, this process does not allow an accurate control of film thickness. However, it allows
for high deposition rates without limit of thickness [59]. For better understanding, a comparison
between evaporation and sputtering techniques is summarized in Table 1.

Table 1. Typical features of the PVD [17-21].

Parameters Sputtering Evaporation

Vacuum Low High
Low (except for pure metals and

. .1
dual magnetron) High (up to 750,000 A min™")

Deposition rate

Adhesion High Low
Absorption High Less absorbed gas into the film
Deposited species energy High (1-100 eV) Low (~0.1-0.5 eV)
Homogeneous film More Less
Grain size Smaller Bigger
Atomized particles More Dispersed Highly directional

2.2. Sputtering Process Steps

To obtain better thin film deposition, it is important to know all process steps regarding the
equipment related to the reactor, keeping in attention what takes place in the chamber during the
deposition cycle. A preparation process before deposition is necessary, namely cleaning the substrate to
achieve a better film adhesion between the coating and substrate. Nonetheless, cleaning the substrates
in an ultrasonic bath, outside the vacuum chamber, is also suggested before the substrates are placed
on the satellites [60]. An advantage of a vacuum sputtering chamber is the fact that it can be used
both for cleaning the substrates, and afterwards, a coating deposition [21,54]. On the other hand, the
duration of the cleaning process is considerable, being a disadvantage in terms of industry competition,
as it raises final product costs. In order to control the costs, a management of the machine’s breakdown
times and setups is necessary. As this fact is a drawback to the industry, an optimization of the process’
parameters is required to reduce production times. An important parameter to be optimized is the
deposition rate, regarding an improvement in the plasma density and energy available in the process.
Thus, it is necessary to take into account all of the steps of the process and parameters studied, in
order to comply with industry demands [61]. Contamination of the films can be avoided with correct
substrate handling and efficient maintenance of the whole vacuum system, as the contamination
sources come from bad surface conditions or system related sources. The process cycle time depends
mainly on the vacuum chamber size and its pumping system [17].

Following the placement of the substrates on the holders” vacuum chamber, the deposition process
takes place regarding the following four important steps, featured in Figure 3:

e  The first step—Ramp up—involves the preparation of the vacuum chamber, which consists in a
gradual increase of the temperature, induced by a tubular heating and a modular control system;
at the same time, the vacuum pumps are activated in order to decrease the pressure inside the
chamber. In this type of sputtering reactors, two pumps are used, the first one (primary vacuum)
produces a pressure up to 10~° bar, the second one (high vacuum) reaches 10~ bar pressure.

e  The second step—Etching—is characterized by cathodic cleaning. The substrate is bombarded
by ions from plasma etching to clean contaminations located on the substrate surface. This is an
important preparation step for a deposition because it helps to increase adhesion. Indeed, the
substrate properties have a direct influence on adhesion, such as substrate material, hardness and
surface quality [62,63].

e  In the third step—Coating—takes place. The material to be deposited is projected to the substrate
surface. Several materials can be used; among these are titanium, zirconium, and chromium
nitrides or oxides, among others.

e The last step—Ramp downstage—corresponds to the vacuum chamber returning to room
temperature and ambient pressure. In order to achieve this, a specific cooling system is
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used—chiller—with two sets of water knockout drums: one is used for the vacuum pumps
and the other for cooling targets. Equipment unloading and cooling should not damage coatings’
properties. The need for a cooling system is a drawback because it decreases production rate and
rises energetic costs.

Vacuum Substrate
SUBTRATES ON HOLDERS Pumping TMENT Contamu_uatlon
Heating Cleaning

Cooling

Ventu!g Deposition
Unloading

Machine

COATED SUBSTRATE REMOTION

Figure 3. The processing flow for a classic PVD sputtering process.

A global industrial concern is energy consumption to help reduce costs [64]. New policies
are expected to drive more innovation, encourage better industry performance, and lead to more
energy savings.

The CVD process reveals a higher consumption compared to the PVD when considering
all of the process steps. This has been demonstrated by several studies, such as sustainability
assessments regarding manufacturing processes, energy consumption, and material flows in hard
coating processes [65,66].

A comparative study issued by Gassner et al. [65], revealed a consumption of 112 kWh (process
cycle time ~ 5 h; coating thickness < 6 pum) regarding the TiN deposition, using Magnetron
Sputtering (MS) technique, which can be compared with the 974 kWh consumed in the TICN/Al,O3
deposition using CVD technique, (process cycle time: 18 h 30 min; coating thickness < 30 pum). PVD
process, particularly the sputtering process, does not require very high temperatures, such as the
high-temperature that was usually developed in the CVD process. Thus, in the CVD technique, the
highest energy consumption is centred in the heating step, which is justified since the temperature
parameters range between 750-1150 °C in the CVD case, and in the MS deposition, are usually done at
lower temperatures, in the range of 350-600 °C. A possible way of reducing energy consumption costs
is recovering the residual heat through heating exchange modules. Furthermore, in MS deposition
processes, three-quarters of the total energy is usually consumed in the coating step. In order to increase
energy coating efficiency, recycling target materials must be considered. Thus, it is possible to conclude
that heating, etching, and refrigeration have a much lower contribution to energy consumption.
Figure 4 compares the energy consumption for the PVD (using MS) and CVD during the deposition
steps [65].

Energy consumption PVD vs CVD

PVD 77.7% 0.7%

H Heating

m Etching
Coating
CVD 33.5% 21.7% Cooling

Figure 4. Energy consumption in the different steps of the PVD process: Heating, Etching, Coating,
and Cooling. Energy consumption in the steps of the CVD process: Heating, Coating, and Cooling.
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The way to sustainability and energy efficiency needs to be thought as an opportunity in reducing
costs. The investment in terms of quality improvement of the coatings includes an increasing in
adhesion between those and the corresponding substrates, extending their lifespan. This means that
the reactor must be deeply studied in terms of parameters and external devices used to improve the
deposition process. Beyond the solutions above referred, other possible solutions can be based on the
improvement of the cleaning step within the reactor, minimizing the reactor occupation and saving
costs in terms of energy and assistant gases. The reduction of dark areas into the reactor through the
modelling of the plasma region would increase the useful volume of the chamber, contributing to a
more homogeneous thickness of the coating in a large number of coated parts regarding each batch.
Moreover, if the quality of the coatings is improved regarding its function, the lifespan of the coating
will be enlarged, contributing by this way to energy savings, thus increasing its sustainability.

2.3. Deposition Process Influence Coatings Properties

In the last decades, one has observed an evolution in the approach of researchers regarding the
impact of the deposition processes on coating properties.

The quality and variety of thin films has been a focus over the years and has progressed ever
since. Currently, due to efficiency and optimization reasons of the industrial processes, new techniques
and reactors have emerged with various combinations and possible derivations. However, these new
techniques have a great impact on the influence of coating properties. The appearance and evolution
of new simulations software also contribute positively to the continuous improvement need.

Having a focus on process improvement, it is important to know the parameters that can be
adjusted during coating deposition and substrate cleaning. Some of these parameters can be the
number of pumps, the number of targets, type of targets, substrate geometry, reactor occupancy rate,
pressure, gas type, gas flow, temperature, current density, bias, among others.

However, parameters changes will have an impact on the film deposition rate and its adhesion.
Consequently, one can have changes in the grain size and film thickness that will determine the coating
characteristics, namely its hardness, Young’s modulus, morphology, microstructure, and chemical
composition [67].

The preparation of vacuum chambers for deposition is very important. The presence of oxygen in
the vacuum chamber must be removed in order to ensure further vacuum and cleanliness conditions.
Reactor cleanliness is also an important factor to keep the coatings free of impurities resulting from
other previous materials used in the reactor. It is advised that the pressure must be maintained in the
range of 101 and 104 Pa, being the last one the base pressure. Setup conditions will contribute to the
creation of homogeneous plasma and an efficient cathodic cleaning. Etching process makes it easier to
remove oxides and other contaminants from the substrate surface. The duration of the etching and bias
sub-processes is also very relevant. A good plasma etching and excellent substrate surface cleanliness
surely provide good adhesion [63]. In addition to adhesion, microstructural and mechanical properties,
as well as corrosion properties of thin films have been studied. Gas flow and type are responsible
for changes in the microstructural and mechanical properties. To improve the corrosion properties of
materials, they have been developed new PVD coating techniques with magnesium alloys [34].

Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AISiN
and AICrSiN coatings that were prepared by high power impulse magnetron sputtering has been
studied [68,69]. For AISiN coatings, the Ny /Ar flow ratios from 5% to 50% had a strong impact
on the results obtained. As a result, the hardness of the AISiN coating increased with increasing
nitrogen-argon flow ratio and reached a maximum value of 20.6 GPa [68]. In AISiN coatings with an
increase of N/ Ar flow ratio, with nitrogen content in the range from 28.2% to 56.3%, prepared by
varying the flow ratio from 1/4 to 1/1, resulted in higher hardness and better tribological behaviour
with the contribution of the increasing crystallinity [69].

In recent years, in the high-power impulse magnetron sputtering (HiPIMS) process, reactive gases,
such as oxygen or nitrogen, have been used. This technique is being applied to improve and adapt
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the properties of the growing films by their high fraction of ionized sputtered material during the
process [70].

Regarding corrosion properties, studies show that this characteristic is tightly influenced by the
deposition conditions and coating microstructure. However, it has less influence on the density of
the defects [34]. The operating conditions have an effect on the homogeneity of the coating. Since
these conditions interfere with the properties of the films, it is important to optimize the substrate and
holders’ rotation, the number of satellite holders, different initial positions of the substrate face, and
take advantage of the chamber area and satellites occupancy space [60,71].

To conclude, the properties of the films are directly related to the deposition process. For this
reason, it is unquestionable that progress continues to focus on solving problems that the industry is
looking for, with a focus on improving reactors in terms of performance and film properties.

3. Sputtering Depositions Improvements

Process optimization and PVD technique improvements have been the focus of many studies,
thus contributing to its success. Recently, the increase in plasma ionization has been the main goal
of improvement, increasing the deposition rate. Other attentions are paid to decrease dark areas in
the deposition chamber, recycle or improve targets, select gases, and increase atomic bombardment
efficiency. The use of responsible energy practices has sensitized users of this technique, even though
it is still an area to improve. Enlightening the energy efficiency of the whole process has an impact on
costs, but also on the environment [68,72,73].

3.1. Reactors’ Parameters and Characteristics

In general, the vacuum chambers that are applied to the coating of tools and components are
constantly evolving. However, the industry already presents a wide range of solutions in this field [32,38,39].
The emergence and development of dedicated software that is easy and quick to use through remote
control, have contributed to the technological evolution of PVD reactors [74-77]. Manual labour has
been replaced by technology because the main purpose is to make the equipment more autonomous
and automatic. This will reduce maintenance and management costs, and, on the other hand, increase
production by making the investment more profitable.

One of the great advantages of this type of reactors and technology is its ability to deposit a
wide range of films into parts with complex geometries of different materials, making the process
quite flexible. Loading and unloading workpieces is a simple task since access to the coating areas is
extremely easy. Currently, the characteristics of the reactors contribute to its handling. In summary;,
the main characteristics and parameters of the reactors can be seen in Figure 5.

Number
of pumps

Dimensions
Weigth

Reactors
Number Substrate

rotation

eyl Characteristics
6to 10 Parameters

Accessing Cycle times
Doors 5-6 hours

Lte2 Size and

number of
cathodes

Figure 5. Characteristics and parameters chambers.
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It is essential to highlight the importance of the useful diameter of the vacuum chambers, because
this parameter will limit the working pressures, and, consequently, the substrates size. The chamber
diameter can vary between 400 and 850 mm [74-77] but it can reach up to 2500 mm under customer
request [74]. Cycle time is relatively fast, for example for a deposition of 3 um, usually, takes between
5-6 h. Regarding the number of satellites, this can reach twenty, being more common the use of six or
ten satellites.

The rotation systems of the substrates are very important in an industrial context. Its efficiency can
reduce costs and improve film properties, with the rotation speed being determinant in the deposition
sequence of the layer. Studies have shown that this effect is reflected in the morphologic properties of
the coated substrates [60,71,78].

As described in Section 1, in the last years, new pulsed techniques with many potentialities
have emerged. The technique with the greatest impact on its development, taking into account all
sputtering techniques, is undoubtedly the one using Magnetron. However, it can also be used Diode,
Triode, Ion Beam, and Reactive Sputtering systems. The studies on the evolution of the sputtering
magnetron technique in DC and RF contribute to the emergence of techniques, such as dual magnetron
sputtering (DMS), reactive bipolar pulsed dual magnetron sputtering (BPDMS), modulated pulsed
power magnetron sputtering (MPPMS), HiPIMS, dual anode sputtering (DAS), among others.

One of the cheaper power supplies with easy process control is the DC power supply and hence
is the most used although the sputter yield is generally much lower [79]. This makes the DC power
source the most used in magnetron or pulsed systems. Its major disadvantage is the low rate of
ionization. Studies show that only about a fraction of 1% of the target species is sprayed ionized [17].
The DC source only applies when the targets are made of conductive materials. On the other hand, the
RF source is only applicable to the use of non-conductive or low conductivity targets. An alternative to
using DC and RF sources is the Mid Frequency source (MF). To maintain the plasma in the sputtering
process, an alternating high-frequency signal is applied, which allows the current to pass through the
target, thus avoiding the accumulation of charges.

The dual magnetron sputtering (DMS) process uses MF power supply and it has been widely
used for reactive deposition. It has become increasingly sophisticated, being usually used in systems
for industrial applications using magnetron rotation [80,81]. In particular, this method is characterized
by a different composition of the targets and way as the film grows. Surface oxidation is one of the
sensitive aspects of this technique. To counter oxidation, it is necessary to take into account parameters,
such as reactive gas partial pressure, voltage, and sputter rate [80]. Furthermore, in order to receive
DC power and apply pulsed-DC power sources in the magnetrons, components need to be configured
to switch power. This is possible while using a pulsed power supply [80].

DAS is a technology that allows switching from the commonly used alternating current—mid
frequency (AC-MF) mode to a DC power process to reduce the heat load on the substrate.

The BPDMS technique is followed by the DMS technique. The interesting fact about this technique
is that it also uses an MF source like DAS. Rizzo et al. [82] used in their study an MF band of 80-350 kHz.
Using this technique, it was possible to prevent arc formation and its results showed a high deposition
rate of around 0.044 um min~! using ZrN coating.

The deposition rate is always the focus of improvement when one thinks to upgrade a reactor
for industrial purposes. The need of the industry thus obliges it, and, in that sense, in the last years,
studies have been conducted also following industrial needs. Some recent investigations have been
focused on the increase of spray ionization, on process stability, on new segmented targets, on gas
flow optimization of different gases, on the bias influence, on obtaining better absorbers, among
others. However, in order to obtain low-cost absorbers as compared to industrial techniques, a
laboratory-tested sputtering unit was tested and the results pointed out that the deposition rates
were low [83]. On the other hand, in studies regarding the gas flow in sprayed zirconia coatings on
flat substrates, the deposition rate results reached 20 um h~!, which represents a good deposition
rate. Other studies regarding the influence of bias voltage and gas flow showed that the temperature
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increase in the substrate and the application of a bias voltage resulted in a decreased deposition rate.
For example, having a substrate temperature of 650 °C and applying a bias voltage at —10 V, it is
possible to obtain a deposition rate of 20 um h~!. However, the deposition rate is reduced to 5 um h~!
if —20 V bias voltage is applied [84,85].

Another approach in an industrial context using the reactor CemeCon® CC800/9 is the study
of Weirather et al. [86]. They used the Reactive Pulsed DC magnetron sputtering technique with
triangle-like segmented targets. That work contributed to show the potential of this technique in an
industrial context, reducing the costs in thin film deposition. Crj_,Al:N (0.21 < x < 0.74) was used
as a coating material, having obtained low friction values of 0.4 and wear coefficients up to 1.8 x
107 m3 N'm™~, in order to obtain good results regarding the tribological properties. The maximum
hardness obtained was 25.2 GPa, which proved to be a good result.

A study carried out regarding the plastics industry compared conventional DC, MF pulsed and
HiPIMS techniques considering the deposition rate and coating’s hardness. It is noteworthy that the
complex geometry of the injection moulding tools was an additional challenge in this study, taking into
account the three technologies that were used. For the three different technologies, five different targets
configurations were used, varying the chemical composition of the (Cr;_,AL)N coatings. The HiPIMS
technique provided the best results for aluminium deposition rate, which was reflected in an increase
from 1.32 to 1.67 um h~!. In this case, the deposition rates of DC and MF coatings decrease from about
2.45 to 1.30 um h 1. On the other hand, chromium deposition rate presented the worst results for the
HiPIMS technique as compared to DC and MF ones. The morphology, surface, and roughness that
were obtained by the HiPIMS technique showed almost constant coatings behaviour [87].

HiPIMS technology allows for combining technologies, such as cathodic arc plasma deposition
and ion plating, with this being its greatest advantage [88]. Although this type of reactor appeared in
the 1990s, with the evolution of sputtering magnetron technology, just in recent years it has known
more interest in its improvement and in exploring its potentialities. Since then, it has been used
in the improvement of the spray ionization through the pulsed power that influences the plasma
conditions and the coating’s properties. When compared to conventional magnetron sputtering, the
studies about this technique have shown significant improvements in coating structure, properties,
and adhesion [89,90]. On the other hand, the combination of HiPIMS and DC-Pulsed also shows
evidence in improving adhesion and morphology while using TiSiN coating [91]. Although versatile,
it is necessary to have some care in the process and in the evaluation of results, given the difficulty in
obtaining consistent and repeatable results [92].

One variation of the HiPIMS is the power pulses method MPPMS. This technique uses a pulsed
high peak target power density for a short period of time and creates high-density plasma with an
elevated degree of ionization of the sputtered species [93].

Deep oscillation magnetron sputtering (DOMS) is another variant of HiPIMS. A study that was
carried out using this system led to seeking a relation between the ionization of the sputtered species
and thin film properties [94]. This investigation had the purpose of identifying the mechanisms
which influence the shadowing effect in this technique. To effectively reduce the atomic shadows, it
was necessary to accelerate the chromium ions in the substrate sheath in the DOMS, which reduces
significantly the high angle component of its collision. A high degree of ionization allows the deposition
of dense and compact films without the need for the bombardment of high-energy particles during the
coating growing process.

Plasma enhanced magnetron sputtering (PEMS) is an advanced version of conventional DC
magnetron sputtering (DCMS). In conventional MS, the discharge plasma is generated in front of
the magnetrons, as can be seen in Figure 6a. On the other hand, PEMS assisted deposition has the
advantage of generating an independent plasma through impact ionization by accelerating electrons
that are emitted from hot filaments in the chamber, which expands through the entire vacuum chamber,
as shown in the illustration of Figure 6b. Lin et al. [95] carried out a comparative study between
the techniques DCMS and HiPIMS with and without PEMS assistance regarding the deposition of
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TiSiCN nanocomposite coatings, concluding that PEMS assistance improves the microstructure and
mechanical properties of coatings that are produced by DOMS or DCMS, as well as the reduction of
residual stress.

Magnetron
Generated
Plasma

Magnetron \
Generated
Plasma

Filament
Generated
Plasma

g

|

Figure 6. Schematic comparison between (a) conventional magnetron sputtering (MS), and the

v

(b) plasma enhanced magnetron sputtering (PEMS) assisted process. Reproduced from [95] with
permission. Copyright 2018 Elsevier.

The receptivity of the industry to the HiPIMS technique has been very positive bearing in mind
the range of reactor power supply. Emerging technologies allow gains around the 30% in the ionization
rate and higher charge states of the target ions. This high degree of ionization results in increased
advantages of some coating properties, such as improved adhesion and the possibility of consistently
covering surfaces with complex geometry [79,96]. Thus, the scientific community has focused on the
development of high power magnetic pulsed technologies, since these results are very interesting
concerning the industrial context.

3.2. Improvements and Applications of External Devices

Studies show a great interest in using the HiPIMS technique due to its versatility in the production
of the PVD coating. This technique has as a disadvantage the deposition rate, which is lower when
compared with the conventional sputtering DC. This factor needs to be improved. Some studies have
been developed around this concern, trying to overcome the above-mentioned problems by the use of
external devices, such as magnetic fields, although the improvements have not been significant yet.

In order to increase the deposition rate of thin films and improve the performance of HiPIMS,
Li et al. [97] tested two different vacuum chamber approaches, using five different substrates positions:
0°, 45°, 90°, 135°, and 180°, based in the magnetron cathode in both studies. The first study was
focused on the application of an external unbalanced magnetic field. This method indicates that, in
the 0° angle substrate position, a substantially higher ion current in the substrate was reported. An
increase in plasma density in the substrate region has occurred, showing that this method achieved
the expected results. Following the first goal to increase the deposition rate, the second work focuses
on more simplified and efficient ion discharge using external electric and magnetic fields with the
auxiliary anode. To optimize the magnetic field distribution, the authors used a coaxial electromagnetic
coil. This method allowed for a better distribution of the electric field and electric potential in the
reactor, increased discharging, plasma intensification, and uni-directionality. The amplitude of the
plasma density was five times greater in all positions when compared to the discharging without
outer-field HiPIMS [98]. Figure 7 shows the vacuum system during HiPIMS discharge, measuring the
ionic current of the substrate in different positions regarding both studies.
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Figure 7. Vacuum system setup using (a) external unbalanced magnetic field, (b) external electric and
magnetic fields, with the auxiliary anode. (a) Reproduced from [97] with permission. Copyright 2016
Elsevier. (b) Reproduced from [98] with permission. Copyright 2017 Elsevier.

Other examples using an auxiliary magnetic field as external device showed more ambitious
results, presenting increased deposition rates between 40% and 140% when considering the inclusion
of an external device with different types of targets that were chosen due to their relevance in
technological applications. The results were compared with the HiPIMS process without the external
device under similar experimental conditions (working gas pressure, average power). Figure 8 shows
the configuration of the setup used. However, it is possible to improve the system, as described by the
researchers that are involved in that work. It was shown a great potential for deposition improvement
in HiPIMS through the control of the magnetic field and pulse configuration [99].

Using magnetic fields, Ganesan et al. [100] showed that it is possible to increase the deposition
rate, guiding the ion flux in the direction of the substrate with the application of an external magnetic
field using a solenoidal coil, excited with a DC current pulse. This is the scheme that is used in this
study, as depicted in Figure 9; it is possible to see in the centre of the chamber the additional solenoidal
coil that provides an external magnetic field.

VALVE
Ar INLET - -
| |
HiPIMS SUPPLY - TMP PvP
+ - +
E

..|'_|

Figure 8. Schematic drawing of the experimental setup used in the work. Reproduced from [99] with
permission. Copyright 2018 Elsevier.



Coatings 2018, 8, 402 13 of 22

Currept Transformer
&7

7/
Framing
Camera
AN
Lens
n
\\Fiber
Osci
scilloscope e EEE
L ks @)
et ]
Pulser ‘
A
RUP7
HV Supply f
T < Cal

Figure 9. Experimental unit high power impulse magnetron sputtering (HiPIMS) deposition system
showing the additional solenoidal coil. Reproduced from [100] with permission. Copyright
2019 Elsevier.

The study shows evidence of intensification in the ionization zone that increases the plasma
extension and density, leading to an increase in the deposition rate through the combination of
magnetic and reactor magnetron fields. This evidence can be interpreted in Figure 10, where (a)
represents a conventional situation of deposition by the generation of transporting ions in neutral
(N) and ionized fluxes (I) plasmas, those are deposited on the substrate. The same happens on (b),
although applying the magnetic field. The ionization zone will be extended, activating additional ions
that will be directed to the substrate, increasing the deposition rate. The results show that an increased
maximum peak current and/or in the power density corresponds to a significant improvement in the
pulverized ions flow. It has further been found that an increase of about 25% in peak current is seen
when a 150 A magnetic field at the start of the HiPIMS pulse is used, inducing a 25% increase in the rate
of the target ion emission as compared to the case where no external magnetic field is applied [100].
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Figure 10. Schematic illustration of a film deposition, (a) without the external device and (b) with
the application of an external magnetic field. Reproduced from [100] with permission. Copyright
2019 Elsevier.



Coatings 2018, 8, 402 14 of 22

In order to improve Cu films, Wu et al. [101] studied the utilization of a modified HiPIMS system
using a positive kick voltage after an initial negative pulse, being possible to control the magnitude
and the pulse width of the reverse pulse. This result is interpreted by a bipolar pulsed effect that
was studied in detail in this type of deposition. Figure 11 shows the results that were obtained
in the deposition of Cu films using three different kick pulses, comparing three different systems:
DC magnetron sputtering (DCMS), conventional HiPIMS, and Bipolar Pulsed. It was found that
the increase in the voltage amplitude and pulse width of the kick pulse can promote an increase of
the deposition rate relatively to the conventional HiPIMS, but even so, the deposition rate that was
achieved by the DCMS process showed to be higher. To conclude, the HiPIMS bipolar pulse shows
great potential and this new approach can improve Cu film properties such as electronic conductivity
and adhesion. However, in order to achieve deposition rates higher than DCMS, the substrates
positioning needs to be planned in the centre of the reactor, where the deposition rate is more effective.

-l -DCMS
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Figure 11. Results relatively to Cu films deposition rate. Average deposition rates for all the samples at
different positions in the reactor. Reproduced from [101] with permission. Copyright 2018 Elsevier.

The combination of two or more vacuum chambers in improving the process and its efficiency
should be considered. This approach can be seen in the recent work of Bras et al. [102], which simulates
an industrial in-line vacuum production of solar cells using as a deposit compound the copper indium
gallium selenide (CIGS). The use of the sputtering technique in the industrial context applied in the
production of solar cells was demonstrated. In this study, automated arms were used to load and
unload the cells. The system presents a process sequence using two vacuum chambers and 25 cathodic
spray stations, which has its own heating and helium cooling arrangement. Following the simplified
process in Figure 12, it can be seen: (a) in chamber A sputtering stations 1 to 5, where the substrate
cleaning and absorber metal layers are carried out; (b) in the transition chamber A to B, the heating
station increases the substrate temperature to improve deposition; (c) in chamber B, sputtering stations
6-18 promote the deposition of CIGS layers and the substrate is then rapidly cooled down in the
intermediate chamber, and, finally, back to the chamber A; and, (d) sputtering stations 19-25 are
producing the buffer layer in an oxygen-containing atmosphere. To finalize the cells, the addition of
resistive transparent conductive oxide (TCP) bilayers is needed. The efficiency was demonstrated for
cells with a total area of 1 cm? and 225 cm? with values of 15.1% and 13.2%, respectively.
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| Buffer/TCOllayers |

Metal layers CIGS layers

Figure 12. The schematic process sequence of the load-lock DUO solar cell manufacturing system
of Midsummer®, (a) stations 1 to 5, (b) heating station, (c) stations 6 to 18 and (d) stations 19 to 25.
Reproduced from [102] with permission. Copyright 2017 Elsevier.

3.3. Considerations Using CFD Simulation

To study the phenomena that occur in the PVD method, numerical simulation models are usually
used. These simulation methods help to solve complex engineering problems in scientific and/or
industrial contexts. The most common numerical approaches are finite elements methods (FEM) and
computational fluid dynamics (CFD). FEM studies are commonly centred on mechanical properties
and CFD is usually focused on process concerns. Initially, studies have been focused mainly on material
properties but now the trend is to study the PVD reactor in an industrial context using the simulation,
avoiding the cost of stopping the equipment [103,104]. However, the use of numerical methods allows
obtaining only an approximate but not exact solution. It is also necessary to have a critical analysis of
the results that were obtained through the models because their approximation can introduce errors.
Comparing the results that were obtained by the models with experimental results is desirable [105].
FEM helps in studying the phenomenon related to the substrate and coating on their mechanical
properties, such as strength, brittleness, adhesion, and performance, among others [31,32,106-108].
CFD is typically focused on the study of fluid flow dynamics, anodic chamber performance prediction,
thermal evaluation in a reactor’s design, input temperature, the velocity of distribution of the species
into the reactor, pressure, and others [109-113]. The quality of the coatings that were obtained in
commercial PVD processes is of great importance and therefore its optimization. Thus, it is necessary
to take into account the discharge characteristics to know the motion of the neutral gas flow inside the
reactor chamber.

Monte Carlo method (DSMC) models are a class of computational algorithms that provide
approximate solutions and are widely used in research of thin films [105,114].

Bobzin et al. [28], used direct simulation Monte Carlo method (DSMC) models in CFD analysis
to characterized and it assess gas behaviour in the PVD coating process using the Knudsen number
(Kn) by means of different approaches: for Kn < 0.1 the gas flow is described by the Navier—Stokes
equations and for Kn > 0.1 a kinetic approach was used by the Boltzmann equation. In order to validate
the model, they used an argon neutral gas flow and molecular nitrogen gas in an industrial scale
reactor CemeCon 800/9® typically used for DC-MS and HiPIMS processes. Considering the developed
CFD model, they conclude that it presents limitations in the transition flow regime. To accurately
predict flow characteristics, only the kinetic model should be considered. The benefits of each model
and the comparison between them were studied and showed that the advances in simulation lead to a
detailed analysis on the PVD processes of the formation of coatings that are capable of complying with
industrial requirements.
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Kapopara et al. [29,30], predicted the gases concentration and distribution (argon and nitrogen),
density profiles, velocity profiles, and pressure profiles across the sputtering chamber. They conclude
that the locations of both gas inlet port and substrate have a crucial influence on the gas distribution
inside the chamber. With this study, it was possible to propose a modification of the reactor geometry
for a better gas flow over the substrate. This research showed that the CFD simulation has a great
potential and its influence is growing over the time on the PVD reactors studies. After the modulation
phase, it allows varying parameters, being a strong advantage in an industrial context due to the
capacity of predicting the final results regarding the different phenomena that occur in the reactor
during the deposition process. The main goal is a reduction in the production time, with a consequent
reduction in costs, maintaining the quality standards.

Trieschmann [115] also used the DSMC to study neutral gas simulation on the influence of rotating
spokes on gas rarefaction in HiPIMS. This different approach helps to understand the gas dynamics in
the harsh discharge condition. It was concluded that the influence of a rotating plasma ionization zone
is limited by a segmented time-modulated sputtering inlet distribution [115].

To conclude, the CFD modelling has been carried out to analyze gas flow and its mixing behaviour
within the chamber reactor. However, for a better approximation of a real situation, it is important
to use different models and compare them. The models defined and studied are important on the
advance of geometry and parameters changes in the reactors that can be simulated, also taking into
account external devices, in order to improve the process.

4. Concluding Remarks

PVD techniques are in constant evolution, accompanying the appearance of new technologies
that are being adapted to the processes. They also meet the increasing demands of the industry.
Furthermore, the focus of researchers in the last years has been on improving reactors and the
application of external devices to the detriment of improving the properties of films, which has
passed to the background, following the needs of industry.

Optimizing energy consumption of PVD processes is an opportunity for improvement. It is in the
deposition step that this improvement can be reflected, since it is in this step of the process that PVD
shows greater consumption. In the CVD process, it represents 33.5%, whereas in the PVD process, it
represents 77.7% of consumption.

New opportunities in the development of techniques have contributed to the appearance of the
MF power source that allowed the combination of DC and RF sources. The DC sources remain the
most used type while the RF source is the least used. However, the combination of the sources in the
DAS technique allowed for reducing the heat load on the substrate, thus improving the film properties,
giving to this technique a huge yield for improvement.

External devices have emerged as a result of the PVD techniques enhancement. The HiPIMS
method shows evidence of this application and improvement for high-performance thin films.
This technology has had a good acceptance by the industry, which contributed to accelerating the
researcher’s interest. In addition, the good results obtained with the application of external devices
has shown an increase in deposition rates due to plasma intensification. The coatings industry has
evolved to the HiPIMS reactors due to the facts above-mentioned, and it is believable that this trend
remains in the same way in the near future.

With technology evolution, simulations are currently a reality. Softwares, such as FEM and CFD,
support this evolution in reducing production costs and adapting external devices. In addition, they
respond to solve complex engineering problems in an industrial context. However, the use of CFD in
solving coating problems can still grow in the light of its potential. New developments are expected as
technology and software advances in deposition systems.



Coatings 2018, 8, 402 17 of 22

Author Contributions: Conceptualization, A.B. and ES.; Methodology, A.B. and ES.; Writing-Original Draft
Preparation, A.B.; Writing-Review & Editing, F.S. and G.P.; Supervision, J.P., ].M. and ES.

Funding: This research received no external funding.

Acknowledgments: Authors Andresa Baptista and Gustavo Pinto thank the support of CIDEM/ISEP.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

AC-MF Alternating Current—Mid Frequency

BPDMS Reactive Bipolar Pulsed Dual MS

CFD Computational Fluid Dynamics

CIGS Copper Indium Gallium Selenide

CNC Computer numerical control

CVD Chemical Vapour Deposition

DAS Dual Anode Sputtering

DC Direct Current

DCMS Direct Current Magnetron Sputtering

DMS Dual Magnetron Sputtering

DSMC Direct Simulation Monte Carlo

E-Beam Electron Beam Gun

FEM Finite Elements Methods

HiPIMS High Power Impulse Magnetron Sputtering

HPPMS High-Power Pulsed Magnetron Sputtering

MEP Magnetically Enhanced Plasma

MF Mid Frequency

MPPMS Modulated Pulsed Power MS

MS Magnetron Sputtering

PAPVD PVD Plasma Assisted

PEMS Plasma enhanced magnetron sputtering

PVD Physical Vapour Deposition

RF Radio Frequency

TCP Transparent Conductive Oxide

UBMS Unbalanced Magnetron Sputtering
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