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Abstract: Electroless low-phosphorus Ni–P coating was deposited on a wrought ZE10 magnesium
alloy including an advanced pre-treatment of the material surface before deposition. Uniform Ni–P
coating with an average thickness of 10 µm was formed by 95.6 wt % Ni and 4.4 wt % P. The content of
Ni and P was homogeneous in the entire cross-section of the coating. Applying the Ni–P coating to the
magnesium substrate, the surface microhardness increased from 60 ± 4 HV 0.025 to 690 ± 30 HV 0.025.
Using the scratch test, it was determined that deposited Ni–P coating exhibits a high degree of adhesion
to the magnesium substrate. Electrochemical corrosion properties of Ni–P coating were analyzed using
the polarization tests in 0.1 M NaCl, while the deposited Ni–P coating showed an improvement of
the corrosion resistance when compared to the ZE10 magnesium alloy. Using the scanning electron
microscopy analysis, it was determined that the fine morphology of the deposited Ni–P coating did not
contain visible microcavities. The absence of macrodefects due to the adequate pre-treatment before
coating was reflected on the mechanism of the coated ZE10 degradation in a 0.1 M NaCl solution.

Keywords: electroless deposition; Ni–P coating; magnesium alloy; ZE10; adhesion; microhardness;
EDS analysis; polarization test

1. Introduction

Magnesium alloys are ranked among the lightest constructional metallic materials [1,2]. They find
their application in the automotive and aerospace industry due to their low density and high value
of specific strength, toughness, and good machinability [3]. Low corrosion resistance, high chemical
reactivity, low hardness, and low wear and abrasion resistance are considerable disadvantages of
magnesium-based materials [4].

Mg–Zn–RE-based magnesium alloys such as ZE10 and ZE41 achieve higher values of strength
and better mechanical and corrosion properties in comparison with pure magnesium [2,5]. These alloys
contain, besides Mg, Zn, and rare earth (RE) elements, Pr, Nd, La, Ce, and a small amount of Zr [1].
Zinc improves the strength and corrosion resistance of magnesium alloys. Rare earth elements
improve the casting and mechanical properties (strength and creep resistance) of the alloys at higher
temperatures. Zr is mainly used for grain refinement [1,6]. Although these alloys achieve better
mechanical and corrosion properties in comparison with pure magnesium, their surface properties
such as hardness, corrosion, and wear resistance are still inadequate for certain industrial applications.

There are several ways to improve magnesium alloys surface properties and resistivity, including
galvanic or electroless deposited coatings, thermally sprayed coatings, and applications of conversion
coatings [7,8].
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One way to protect the material from corrosion, and improve the material surface’s mechanical
properties, is to apply electroless Ni–P coatings in a nickel bath [9]. Electroless deposited Ni–P coatings
increase corrosion resistance as well as the surface’s mechanical properties such as hardness and
wear resistance. Applied low-phosphorus Ni–P coatings, compared with high-phosphorus Ni–P
coatings, have a high value of hardness, a high density, and a high crystallinity [10]. However, the
deposited high-phosphorus Ni–P coatings have higher corrosion resistance when compared to the
low-phosphorus Ni–P coatings. Based on the phosphorus content in Ni–P coatings, low-, medium-, and
high-phosphorus Ni–P coatings can be distinguished. Low-phosphorus Ni–P coatings contain 2–5 wt %
phosphorus, medium-phosphorus Ni–P coatings contain 6–9 wt % phosphorus, and high-phosphorus
Ni–P coatings contain >10 wt % phosphorus [9,11].

In [12], the corrosion behavior of three types of electroless deposited Ni–P coatings was
studied. Ni–P coatings deposited on the mild steel contained 3.34% P (low phosphorus), 6.70% P
(medium-phosphorus), and 13.30% P (high phosphorus). Based on the obtained results of
potentiodynamic polarization tests and Nyquist plots of deposited Ni–P coatings in a 3.5% NaCl
solution, it was determined that corrosion potentials and charge transfer resistances (in this case,
equal to the polarization resistance) of deposited Ni–P coatings increased as phosphorus content
increased. Corrosion potential Ecorr of the low-phosphorus Ni–P coating obtained using the Tafel
extrapolation method was −536 mV, and charge transfer resistance Rct was 6.90 kΩ·cm2. Corrosion
potentials for medium- and high-phosphorus Ni–P coatings were −434 mV and −411 mV, respectively.
Charge transfer resistances of medium- and high-phosphorus coatings were 24.86 kΩ·cm2 and
37.45 kΩ·cm2, respectively.

The adhesion of the coating to the substrate has a great influence on corrosion behavior and the
mechanical properties of Ni–P coatings deposited on the substrate [10]. The adhesion of the Ni–P
coating to the deposited substrate is significantly affected by appropriately selected pre-treatment of the
substrate surface, such as grinding, blasting, degreasing, pickling, and interlayer deposition. [7,9,13].
A very frequent type of pre-treatment is zincate-zinc immersion [14–16], but the main disadvantage is
the high pH value [14–17]. Zinc immersion is used to remove residual oxides and hydroxides from the
surface of the substrate [14].

This paper deals with the preparation and characterization of an electroless deposited Ni–P
coating deposited on a wrought ZE10 magnesium alloy. This study is focused on the measurement
and evaluation of mechanical, physical, and corrosion properties of the coated substrate, while a
specific pre-treatment was used before substrate coating. The mechanism of the corrosion attack
and the corrosion resistance of the coated and plain material in 0.1 M NaCl were studied using
potentiodynamic tests and immersion tests, and the results were analyzed in terms of light microscopy
and scanning electron microscopy.

2. Materials and Methods

Wrought ZE10 magnesium alloy samples with dimensions of 20 × 20 × 1.6 mm3 were used
as a substrate material for deposition of the electroless Ni–P coating. The microstructure of the
ZE10 magnesium alloy, shown in Figure 1, was characterized using the light microscopy (LM) and
the individual microstructural features were identified using a Zeiss EVO LS-10 scanning electron
microscope (SEM, Carl Zeiss Ltd., Cambridge, UK) with an energy-dispersive X-ray spectroscopy
(EDS) Oxford Instruments Xmax 80 mm2 detector (Oxford Instruments plc, Abingdon, UK) and
AZtec software analysis (version 2.4). Elemental composition of the coated material shown in Table 1
obtained using the GDOES (glow-discharge optical emission spectroscopy) corresponds to the ASTM
standard [18].

To reveal the ZE10 magnesium alloy microstructure, prepared and polished metallographic
samples were poured into an acetic picral etchant (consisting of 4.2 g of picric acid, 10 mL of acetic
acid, 10 mL of distilled water, and 70 mL of ethanol) for 3 s and then into 2% Nital for 1 s [19].
The microstructure of the substrate, characterized on the surface parallel to the material processing,
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was formed by solid solution grains of α-Mg, Mg7Zn3(RE) (La, Ce)-based particles and undissolved Zr
particles (Figure 1b) [1,5]. Via EDS analysis, the presence of Ce, La, Pr, and Nd elements was found in
the Mg7Zn3(RE) (La, Ce)-based particles.

Table 1. The elemental composition of the wrought ZE10 magnesium alloy (wt %) (GDOES).

Zn Zr Mn Fe Mg Others

1.41 0.14 0.08 0.005 balance max. 0.30
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Figure 1. Surface microstructure of the ZE10 wrought magnesium alloy: (a) microstructure (LM);
(b) intermetallic phase particles in microstructure (SEM).

To achieve a sufficient activity and roughness of the magnesium substrate surface before electroless
Ni–P coating deposition, a suitably chosen specific pre-treatment is required. First, the samples were
ground using SiC paper no. 1200 and then cleaned in an alkaline degreasing bath with the content of
soil-releasing agents. To activate the magnesium substrate surface by partial etching, pickling in an
acid pickling bath based in acetic acid was performed. Partial etching of the substrate surface led to an
increase in the surface roughness and activity. This process was shown to have a positive influence on
adhesion and mechanical properties of deposited Ni–P coating due to the mechanical interlocking of
deposited Ni–P coating to magnesium substrate [20].

The electroless nickel bath contained a nickel source, NiSO4·6H2O, a reducing agent,
NaH2PO2·H2O, a complexing agent, and the substance-activating NaH2PO2 molecule. Samples
were localized in the middle of the nickel bath to ensure uniform coating creation and the elimination
of the thermal gradient from the bath surface [9]. The deposition of the electroless Ni–P coating
proceeded for 60 min. For the microhardness measurement, a thicker coating was required, so a time
of 180 min was taken for the coating preparation.

The distribution and the average content of nickel and phosphorus in deposited Ni–P coatings
were determined using the Zeiss EVO LS-10 with an EDS Oxford Instruments Xmax 80 mm2 detector
SEM and the AZtec software (version 2.4). SEM observations were used to characterize Ni–P
coating surface morphology and for the evaluation of the mechanism of corrosion degradation of the
magnesium substrate with the subsequent violation of Ni–P coating after exposition in 0.1 M NaCl.

The microhardness measurement of the deposited Ni–P coating was carried out using the LECO
AMH43 microhardness tester (Saint Joseph, MO, USA). The average value of the microhardness was
obtained from 10 valid indentations performed within the coating cross section under the applied load
of 25 g for 10 s, according to the ASTM E384 standard [21]. The indents were performed parallel to the
coating surface.

Physical properties of the electroless deposited Ni–P coating were evaluated using the REVETEST
scratch tester CSM Instruments with the Rockwell diamond indenter with a top angle of 120 and 200 µm
radius hemispherical tip [22]. The progressive load type method was applied to the measurement.



Coatings 2018, 8, 96 4 of 14

The substrate surface was polished to the roughness of Ra ≈ 2 µm using a DP-Paste M (diamond paste
from Struers, Ballerup, Denmark) during the pre-treatment process before the alkaline degreasing in
the addition. The friction force, the friction coefficient, the penetration depth, and the acoustic emission
were recorded during the scratch test. Normal force was recorded. The applied normal force was set
up in the range from 1 to 20 N. The speed of indenter was 1.58 mm·min−1, and the total length of the
trace was 3 mm.

The electrochemical corrosion characteristics of the ZE10 magnesium alloy and material with
deposited Ni–P coating were analyzed in a 0.1 M solution of NaCl using the Bio-Logic VSP-300
potentiostat/galvanostat (BioLogic, Seyssinet-Pariset, France). Electrochemical polarization tests were
performed on three specimens. A standard three-electrode cell was used for the measurements: a Pt
gauze was used as a counter-electrode, a saturated calomel electrode (SCE) as a reference electrode,
and a prepared sample as a working electrode. The analyzed sample area exposed to the solution
during the polarization test was 1 cm2. The stabilization time of the samples exposed to the corrosive
environment was 5 min. The polarization range of the measurements was from −50 to +200 mV
vs. open circuit potential (OCP). The corrosion potential Ecorr and the corrosion current density icorr,
were determined applying the Tafel analysis, and the corrosion rate vcorr was calculated from the icorr,
according to the literature [23].

For the evaluation of the mechanism of the corrosion degradation of the ZE10 magnesium
substrate with subsequent violation of the deposited Ni–P coating, the sample was immersed in the
0.1 M NaCl for 1 h. After this time, the rinsed and dried surface of the samples was analyzed via SEM.

3. Results and Discussion

3.1. Ni–P Coating Morphology and Chemical Analysis

Uniform Ni–P coating was successfully deposited on the previously pre-treated surface of the
ZE10 magnesium alloy substrate. As shown in Figure 2a, grain boundaries and intermetallic phase
particles appeared on the surface of the material after the pre-treated, pickled substrate. The pickled
surface also shows a “honeycomb-like microstructure.” Revealed intermetallic phase particles/α-Mg
solid solution interface and the grain boundaries served as places where the initiation of the electroless
deposition of the coating initiated due to the galvanic coupling [24]. The higher roughness of pickled
and activated surface increased the adhesion of deposited Ni–P coating to the magnesium substrate.

Usually, zinc immersion is used for the magnesium alloy pre-treatment before Ni–P coating
deposition. El Mahallawy et al. [14] studied the electroless Ni–P coating of different magnesium alloys,
using zinc immersion as the pre-treatment of magnesium alloys. The zinc immersion was used to
remove the residual oxides and hydroxides from the surface of the magnesium alloys, and a thin layer
of zinc formed on the Mg surface preventing back oxidation.

Based on the obtained results, a partial re-oxidation of the ZE10 magnesium alloy surface occurred
without the use of zinc immersion (Figure 2a). During the following immersion of the activated sample
into the electroless nickel bath, the substrate became catalytically active when the surface oxides were
dissolved in the nickel bath, and the replacement reaction occurred between the substrate and nickel
ions. Even though some contamination of the substrate surface was observed before Ni–P coating
deposition, it seems that it did not negatively affect the coating process [9].

The surface morphology of the deposited Ni–P coating with a nodular structure, formed by
typical cauliflower-like shapes is shown in Figure 2b. Wang et al. [25] showed that deposited Ni–P
coatings are formed by a columnar microstructure. However, the deposited Ni–P amorphous coatings
improve the corrosion resistance of magnesium, the inherent columnar microstructure of the coating
does not provide the best protection against the corrosion. The high concentration of inter-column
defects, such as microvoids and micropores, [26,27], form channels where the corrosion ions and
environment can pass through the coating and react with the substrate. The presence of microcavities
was not evident between nodular cusps of the deposited coating (Figure 2b), which is in agreement
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with observations in [28]. Based on an evaluation of SEM figures (Figures 2b and 3a), no defects
and cracks were observed in the deposited Ni–P coating at the ZE10 magnesium substrate/Ni–P
coating interface.

The average thickness of the coating prepared for 60 min determined from the cross sections was
approximately 10 µm. In the case of a longer deposition time (180 min), prepared with the aim to
increase the coating thickness to obtain relevant microhardness values, thickness was 30 µm.
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Deposited Ni–P coating with an average thickness of about 10 µm was chosen for EDS analysis
(Figure 3). Using EDS mapping analysis, it was determined that the distribution of Ni and P in
deposited Ni–P coating was homogeneous in the entire cross section, as shown in Figure 3b,c,
respectively. The EDS analysis determined that the Ni content in the deposited Ni–P coating was
95.6 wt % and the P content was 4.4 wt %. Based on the literature [9,29], it was determined that the
deposited Ni–P coating is low-phosphorus, as in the cases of the AZ31 magnesium alloy presented
in [30] and the AZ61 magnesium alloy in [28].
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3.2. Ni–P Coating Microhardness Analysis

Based on the measured data, it was determined that the average value of the microhardness of
the Ni–P coating was 690 ± 30 HV 0.025, measured in the cross section. The microhardness of the
plain ZE10 magnesium substrate was 60 ± 4 HV 0.025.

The surface microhardness of the coated samples increased approximately 11-fold compared with
the ZE10 magnesium alloy.

It is assumed that the measured hardness of low-phosphorus Ni–P coatings is higher compared
to the high-phosphorus coatings [9]. The addition of filler (SiC, Al2O3) into the high-phosphorus Ni–P
matrix led to a substantial increase in hardness [9]. The microhardness (690 ± 30 HV 0.025) of the
deposited low-phosphorus Ni–P coating on the ZE10 magnesium alloy reached a value higher than
that of the Ni–P/SiC composite coating prepared on the AZ91 magnesium alloy presented in [31]
and [32]. The microhardness of the Ni–P/SiC composite coating (7.33 wt % P) was 620 HV [31], and
that of the electroless Ni–P/SiC nanocomposite coating (10 wt % P) was 600 HV 0.025 [32].

The microhardness of the deposited low-phosphorus Ni–P coating was higher compared with
the values obtained for the high-phosphorus Ni–P coatings. The hardness of high-phosphorus
Ni–P coatings ranges from 410 to 600 HV [29,33]. As the content of phosphorus in Ni–P coatings
increases, the microhardness of the coating decreased due to the microstructural changes (a decrease
in crystallinity) [9].

3.3. Analysis of the Physical Properties of the Ni–P Coating

The results of the scratch test performed on the Ni–P-coated ZE10 magnesium alloy sample are
shown in Figure 4. The measured values of the critical normal forces Lc1 and Lc2 and the corresponding
friction forces Ft1 and Ft2, respectively, are given in Table 2. As indicated by Table 2, the value of the
critical normal force Lc1 was 7.9 N, and the formation of oblique and parallel cracks was observed on
the coating surface (Figure 5a). The value of the critical normal force Lc2 was 13.6 N, and the formation
of transverse tensile arch cracks across the entire width of the track was observed on the coating surface
(Figure 5b).
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As stated in [22], tensile and compressive stresses are generated during the scratch test and cause
more complex mechanisms and damage. A crack can nucleate on a defect or at the coating/substrate
interface. The crack is formed due to the localization of the stresses on the coating/substrate interface
or in the coating (transverse crack). In the case of a layer, the tensile radial tension induced with
the Rockwell tip can generate circular or transverse arch cracks that extend across the layer into the
substrate. As the tip moves, several circular or transverse arch cracks can intersect. These cracks can
also occur at the back of the contact as a response to tensile stresses during tip sliding. Cracks also
occur on the back of the contact due to the friction-induced tensile stresses [34].

Table 2. Values of critical normal forces and friction forces of Ni–P coating deposited on the ZE10
magnesium alloy and, for comparison, values found in other studies.

Source Substrate Coating Lc1 [N] Lc2 [N] Ft1 at Lc1 [N] Ft2 at Lc2 [N]

presented
Ni–P coating ZE10 Ni–P 7.9 13.6 0.6 3.4

[30] AZ31 Ni–P 7.3 12.3 1.1 2.6
[28] AZ61 Ni–P 6.9 11.9 0.8 2.2

[35] Polished AZ91
Ni–P

Ni–P (temp.: 523 K)
Ni–P (temp.: 673 K)

–
–
–

10.2 (Lc)
10.6 (Lc)
9.7 (Lc)

–
–
–

–
–
–

[35] Blasted AZ91
Ni–P

Ni–P (temp.: 523 K)
Ni–P (temp.: 673 K)

–
–
–

14.0 (Lc)
16.5 (Lc)
14.8 (Lc)

–
–
–

–
–
–

[36] AISI 1018
plain Ni–P/TiO2

Ni–P/TiO2 with SDS
Ni–P/TiO2 with DTAB

–
–
–

~13 (Lc)
~19 (Lc)
~29 (Lc)

–
–
–

–
–
–
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As a result of the applied pressure load of the Rockwell diamond tip during the scratch test,
ductile failure of the deposited Ni–P coating occurs due to the introduced internal stresses.

The character of the damage to the locating layer during the scratch test is dependent on many
factors [22]. In addition to the influence of the characteristics of the experimental device on the
tested layer damage mechanism, there are geometric properties of the substrate-layer system (such as
layer thickness, roughness, etc.), experimental parameters (tip and scratch rate), and properties of
the substrate-layer system (thermal coefficients, microstructure and internal stresses, elasticity, and
hardness modules). Figures 4 and 5 show the scratch track morphology and the layer cracking
character, which is similar to the case of Ni–P coatings on AZ31 and AZ61 magnesium alloys presented
in [28,30].
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The formation of transverse tensile arch cracks [22,34] across the entire width of the track was
observed (Figure 4). The adhesion strength of the experimental electroless deposited Ni–P coating
on a wrought ZE10 magnesium alloy (Lc1 and Lc2) was higher compared to the data presented
in articles [28,30], where the Ni–P coating was deposited on AZ31 and AZ61 magnesium alloys,
respectively. The difference could be explained by the coated substrate pre-treatment process.
The pre-treatment of AZ31 and AZ61 magnesium alloys before the deposition of the Ni–P coating
included polishing to a roughness Ra ≈ 0.25 µm [28,30]. However, the surface of the experimental
ZE10 magnesium alloy was polished to a roughness Ra ≈ 2 µm, which is significantly rougher than
AZ31 and AZ61. The higher roughness of the substrate surface can improve the adhesion strength
between the deposited Ni–P coating and the ZE10 magnesium alloy due to the mechanical interlocking
of the two components [34].

This effect was also observed in [35], where the adhesion strength between the deposited Ni–P
coating and blasted or polished surface of the AZ91 magnesium alloy was studied. The scratch track
morphology for the pre-blasted and pre-polished samples with the deposited Ni–P coating showed a
similar trend, but it was observed that the scratch track width was narrower on the rougher surface
when compared to the polished surface. The scratch track width was slightly narrower for coated
samples after annealing for 1 h at 523 K. This effect can be contributed to the increase in the hardness of
the Ni–P coating after annealing, which was demonstrated with the increase in hardness from ~600 to
~900 HV due to the coated sample annealing. As indicated by Table 2, the critical load Lc for the plain
Ni–P coating was 14.0 N and 10.2 N for the blasted and polished surfaces, respectively. The increase
in adhesion strength to 16.5 N was observed for the rough blasted AZ91 substrate after annealing
for 1 h at 523 K. This increase was apparently linked to the hardness increase and the effect of the
rough surface. The brittle cracking of the deposited coating was observed at substrates with the rough
surface, and the wedge spallation was observed at substrates with the polished surface. The decrease
in adhesion strength was observed for samples annealed at 673 K due to the embrittlement of the Ni–P
coatings (Table 2).

However, as indicated by Table 2, resulting values of the critical loads of rough (blasted) samples
of AZ91 [35] are slightly higher when compared to the experimental Ni–P coating deposited on the
ZE10 magnesium alloy. This can again be connected to the higher roughness of the coated substrate.
The roughness of the blasted AZ91 magnesium alloy surface was Ra ≈ 4.5 µm [35], and that of the
experimental ZE10 magnesium alloy was Ra ≈ 2 µm. It is also possible to observe that the value of the
critical load Lc of experimental coating deposited on the ZE10 alloy is higher in comparison with the
polished surface of the AZ91 alloy in [35], where the roughness was Ra ≈ 0.05 µm. As is obvious, the
roughness of the substrate surface has a significant effect on the coating adhesion strength due to the
mechanical interlocking between Ni–P coating and the coated magnesium substrate.

As indicated in the literature [36], applied surfactants in the nickel bath had a significant effect
on the adhesion strength of deposited Ni–P/TiO2 composite coating on the AISI 1018 steel substrate
(Table 2). No cohesive or adhesive failure of the coating was observed up to ~13 N in the case of
the Ni–P/TiO2 coating prepared on AISI 1018 without using the surfactant. The formation of the
mild tensile cracks at ~19 N was evident for the Ni–P/TiO2 composite coating using sodium dodecyl
sulfate (SDS) surfactant at 1.5× CMC (critical micelle concentration). In the case of the Ni–P/TiO2

composite coatings on AISI 1018 involving dodecyl trimethyl ammonium bromide (DTAB) at 1× CMC,
the cohesive failure was observed at the applied load of ~29 N. Moreover, no linear or radial cracks
were observed in the case of the coated steel substrate, nor of any of the analyzed coatings, which also
indicates the importance of the surface of the substrate with respect to the adhesion of the coating.

The increase in the adhesion strength of Ni–P coatings to the magnesium substrate, along with
a slight increase in the roughness of the substrate surface, was shown to be achieved by adding the
proper surfactant into the nickel bath [35,37]. This proves that a more effective adhesion of the coatings
is caused by the excessive attractive forces between the Ni–P coatings and substrate [38].
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Based on the obtained result, a sufficient surface roughness of ZE10 reached via surface polishing
on the roughness Ra ≈ 2 µm, in combination with the activation of the surface via acid pickling, seems
to be reached during pre-treatment. Adequate pretreatment resulted in an adequate adhesion of the
coating to the substrate and a considerably high resistivity against damage.

3.4. The Electrochemical Corrosion Test in 0.1 M NaCl

Figure 6 shows the potentiodynamic polarization curves of the ZE10 magnesium alloy and
the ZE10 alloy with the deposited Ni–P coating in 0.1 M NaCl obtained at laboratory temperature.
The polarization curve of the Ni–P-coated sample is significantly shifted to more electropositive values,
which means better corrosion properties of the Ni–P-coated sample compared with the untreated ZE10
magnesium alloy.

Therefore, a deposited Ni–P coating appears to be suitable for the protection of magnesium
alloys. Based on the Tafel extrapolation analysis [39], the values of the corrosion potential, Ecorr,
and the corrosion current density, icorr, for samples with the deposited Ni–P coating and the ZE10
magnesium alloy were determined. The average values of the Ecorr, for the ZE10 magnesium alloy and
the Ni–P-coated alloy, were −1701 and −505 mV, respectively, and the values of the icorr, for the ZE10
magnesium alloy and the Ni–P-coated material, were 23.7 and 0.4 µA·cm−2, respectively (Table 3). It is
generally known [25] that the columnar structure of deposited Ni–P coatings contains a network of
defects (grain boundaries, pores, and microcavities). These defects are precursors for a micropitting
and may cause the corrosion attack of the material under the deposited Ni–P coating. However, no
local corrosion attack (pitting) was observed in the anodic area of the polarization curves.

Based on the determined values of icorr, the corrosion rate, vcorr, was calculated for a short-term
experiment. As indicated by Table 3, the corrosion rates of the ZE10 alloy and the Ni–P-coated samples
in 0.1 M NaCl were 530.00 µmpy and 8.95 µmpy, respectively.

Experimental deposited Ni–P coating was ranked among the low-phosphorus Ni–P coatings,
which are characterized by their lower corrosion resistance when compared to the medium- and
high-phosphorus coatings, [9]. As indicated in the work of S. Narayanan [12], deposited Ni–P
coatings with low phosphorus content (3.34 wt % P) showed an Ecorr of −0.536 V and an icorr of
4.22 µA·cm−2, whereas medium- (6.70 wt % P) and high-phosphorus (13.30 wt % P) Ni–P coatings
showed Ecorr values of −0.434 and −0.411 V, respectively, and icorr values of 1.17 and 0.60 µA·cm−2,
respectively. When comparing the experimentally obtained results and the results presented in [12], it is
evident that the value (Table 3) of the corrosion potential, Ecorr, is between Ecorr values of 25-µm-thick
low-phosphorus (3.34 wt % P) and medium-phosphorus (6.70 wt % P) Ni–P coatings presented in [12].

Table 3. Corrosion parameters of the ZE10 magnesium alloy and the ZE10 alloy with a deposited
Ni–P coating.

Sample Ecorr [mV] icorr [µA·cm−2] vcorr [µmpy]

ZE10 alloy −1701 23.7 530.00
ZE10 + Ni–P coating −505 0.4 8.95
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ZE10 alloy with a deposited Ni–P coating in 0.1 M NaCl obtained at laboratory temperature.

Although the plating rate of high-phosphorus Ni–P coatings in [12] was higher, high-phosphorus
Ni–P coatings were deposited under more energy-intensive conditions (90 ± 1 ◦C) [12]. It is evident
that the obtained value of the corrosion current density, icorr, of high-phosphorus Ni–P coating was
worse compared to the presented low-phosphorus Ni–P coatings on the ZE10 magnesium alloy
(Table 3), and the electroless deposited coating on the ZE10 alloy exhibits greater corrosion resistance.
This can be attributed to the fact that the experimentally prepared electroless deposited Ni–P coating
was probably less defective or that the Ni–P coating contained only a small amount of microcavities
when compared to the coatings analyzed in [12].

3.5. The Immersion Test in 0.1 M NaCl

As indicated by Figure 7a,b, after the exposition of the sample with deposited Ni–P coating in
0.1 M NaCl for 1 h, the degradation of the Ni–P coating occurred due to the corrosion of the magnesium
substrate under the coating.

Corrosive agents may accumulate between the nodules (grains) creating the Ni–P coating and
migrate to the substrate surface. According to the results in [25,40], the inherent columnar porous
microstructure of the coating (Figure 7d) does not adequately protect the magnesium substrate against
corrosive environments [41]. Furthermore, electroless Ni–P coatings contain a certain amount of
microcavities in their volume. These microcavities form nucleation sites for micropitting when the
material is exposed to a corrosive environment. Microcavities are created as a result of the hydrogen
evolution during the deposition process when small bubbles of hydrogen H2, as a byproduct of the
nickel reduction, are adsorbed on the surface of the growing Ni–P coating [40]. Stirring of the nickel
baths or the rotation of the deposited objects is a partial solution of this problem. However, the addition
of surfactants into the nickel bath was shown to be a more effective solution, while the reduction of
these microcavities resulted in an increase in the corrosion resistance of the coated substrate [42,43].

As described above, due to the high concentration of inter-column defects, such as microvoids
and micropores [27], the interaction between the corrosive environment containing chloride ions and
magnesium substrate under the deposited Ni–P coating resulted in the creation of oxides or chlorides
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of magnesium. This reaction has an effect on the increase in corrosion product volume when compared
to the bulk material and the evolution of hydrogen is an accompanying process. The increase in the
volume of the material under the Ni–P coating leads to the formation of cracks and the subsequent
destruction of the coating and thus to the acceleration of the corrosion of the magnesium substrate
(Figure 7c).

Even though the coating internal defects were not observed in SEM analysis, even the
intercolumnar areas can provide a path for the transfer of corrosive medium elements into the coating
and react with the substrate. Figure 7d reveals the damaged structure of the Ni–P coating showing the
columnar structure. The revealed columnar structure supports the theory that the grain boundaries
and microdefects present on the grain boundaries acted as the paths for the corrosive medium transfer
to the substrate.

Observed local corrosion attack did not correlate with the results obtained with potentiodynamic
tests; however, the electrochemical test was limited to the range of polarization used, and a larger
range for the measurement likely can reveal the pitting attack.
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4. Conclusions

Based on the results of the characterization of the electroless deposited Ni–P coating prepared on
a ZE10 magnesium alloy via polishing and acid pickling, the following conclusions can be made:

• Due to the proper pre-treatment, electroless low-phosphorus Ni–P coatings were successfully
deposited on a ZE10 magnesium alloy in a nickel bath.

• The content of Ni in the deposited coatings was 95.6 wt %, and the content of P was 4.4 wt %,
for coatings with average thickness ~10 µm (1 h of deposition).

• Deposited Ni–P coatings showed a high degree of homogeneity in the entire cross section.
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• The microhardness of the deposited low-phosphorus Ni–P coating was 690 ± 30 HV 0.025,
representing an 11-fold increase when compared to the plain ZE10 magnesium alloy.

• The adhesion of the deposited Ni–P coating was determined from the appropriate critical normal
forces Lc1 = 7.9 N, where i.e., oblique and parallel cracks are the primary failure—was observed,
and Lc2 = 13.6 N, where the formation of transverse arch cracks was observed.

• Electrochemical polarization tests have shown an improvement in corrosion resistance via the
deposition of Ni–P coating (Ecorr = −505 mV, icorr = 0.4 µA·cm−2, and vcorr = 8.95 µmpy)
when compared to the ZE10 magnesium alloy (Ecorr = −1701 mV, icorr = 23.7 µA·cm−2, and
vcorr = 530 µmpy).

• Microcavities present in the coating and the columnar structure of the low-phosphorus Ni–P
coating have a major influence on the process of the corrosion, acting as the channels between the
corrosive environment and the substrate.
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