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Abstract: The automotive painting technique is highly advantageous for coloring solar modules,
because it enables the modules to be visually attractive over a large area, numerous colors
can be applied, and they are highly durable. Herein, we present a high-performance solar
module colored using an automotive painting technique. We coated a dilute automotive pigment,
the high-transmittance mica pigment, with a clear coat material on a crystalline Si solar module
to generate blue color. Our measurements show that a pigment weight concentration of around
10% with the mica pigment is suitable for painting the solar modules, because it enables visual
attractiveness while retaining over 80% of the output power, compared to the original solar module.
We believe that the technique proposed herein can considerably increase the installable area of solar
modules on a car body.
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1. Introduction

In 2012, the U.S. Environmental Protection Agency and National Highway Traffic Safety
Administration laid down strict standards for CO2 emissions and improved fuel economy for light-duty
vehicles covering the model years (MYs) 2017 to 2025 [1]. The new emission rules require an average
fuel economy of 23.2 km/L (equivalent to CO2 emissions of 100 g/km) for light-duty vehicles by
MY 2025. Similar rules have been established by the EU, Japan, and other countries and regions.
Accordingly, automakers have been developing various types of environmentally friendly vehicles
(EFVs), such as electric vehicles (EVs), hybrid vehicles (HVs), plug-in hybrid vehicles (PHVs), and fuel
cell vehicles (FCVs) to help reduce CO2 emissions. Although nearly one quarter of the MY 2017 vehicles
already meet or exceed MY 2020 targets, with the addition of expected air conditioning improvements
and off-cycle credits, only 5% of MY 2017 production, comprising solely EVs, HVs, PHVs, and FCVs,
can meet the MY 2025 CO2 emission targets [2]. Therefore, it is important to develop other technologies
that use renewable energy as the driving power, to achieve further reductions in CO2 emissions.

Power generation by solar cells/modules is a promising renewable energy candidate for future
cars, because most EFVs are equipped with large-capacity batteries that can be charged with electricity
generated by solar cells/modules. It has been reported that installing 800 W rated power solar modules
on automobiles can greatly reduce CO2 emissions from passenger cars in Japan by 63% [3]. However,
these modules need to be installed not only on the roof, but also on the side doors, engine hood,
and the hatch of passenger cars, because standard passenger cars such as the Toyota Prius have very
limited surface area on the roof [3]. Furthermore, standard solar modules are monochromatic and
usually either blue or black in color, because the modules need to be good light absorbers to enable
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high-efficiency conversion; this affects the overall appearance of the automobile [4,5]. Therefore, there
is urgent need to develop decorative modules that can be painted with the desired colors. Various ways
to prepare colorful solar cells/modules have been studied for over a decade, which involve the use of
dyes [6], colloidal quantum dots [7], photonic filters [8,9], integrated liquid/photonic crystals [10,11],
dielectric mirrors, and optical microcavities [12,13], and modified top/bottom electrodes [14,15];
however, none have been applied for the mass production of solar cells/modules owing to the lack of
color variation, durability, and other drawbacks such as difficulty in scale-up to the size of practical
solar modules.

This work presents a novel way to obtain colored solar modules, via the automotive paint
technique. Automotive paints are suitable for coloring solar modules, because they can make the
automobile visually attractive, can be applied over a large area, are durable, and can be coated on
three-dimensional surfaces as well [16]. In addition, roughly 40,000 automobile colors are known
today, and approximately 1000 new colors are added to this list each year [17]. The challenge in
paint application on solar modules is to make them visually attractive while maintaining the level
of output power. However, application of a color would imply the reflection of a certain range of
wavelengths; hence, it is inevitable that the output power of the solar modules would be reduced.
To simultaneously maintain a high output power and visual attractiveness, we propose the use of
dilute interference pigments, such as mica pigments, that have large transmittance because they
acquire color through the interference effect with a transparent layer on a transparent flake. To the
best of our knowledge, this is the first study that uses interference automotive pigments to color solar
modules. The subsequent sections detail the preparation and analysis of a high-performance colored
solar module using automotive mica pigments.

2. Materials and Methods

The solar module used in this study was originally developed for automotive applications, and is
based on a monocrystalline Si (c-Si) solar cell [18]. Replacement of a steel-top car roof with conventional
solar modules leads to an increase in the total weight of the car and change in the center of mass,
because the weight per area of the module is greater than that of the steel roof; this is not suitable
for car designs. Therefore, weight reduction is essential to equip passenger cars with solar modules.
Figure 1a shows the schematic of the solar module. For the top cover, a polycarbonate sheet was
used, owing to its lower weight compared to the conventionally used glass plate. The solar cells,
which were 0.2 mm-thick back-contact type c-Si cells (125 × 125 mm2), were encapsulated in a standard
encapsulant of ethylene-vinyl-acetate (EVA). For the bottom substrate, aluminum plate was selected,
which is light and rigid, and is used for some lightweight car bodies. The photo of the fabricated
solar module with four solar cells is shown in Figure 1b. To limit the impact on vehicle mass, the area
density of the solar modules was approximately 5.5 kg/m2, which is almost the same as that of the
conventional steel roof used in passenger cars.

Color was generated on the solar module by coating it with a dilute pigment (i.e., a mixture
of a pigment and an automotive clearcoat material). We first coated a 20 µm-thick layer of dilute
pigment, followed by a 50 µm-thick clearcoat layer (polyurethane; thickness measured after curing).
The clearcoat material provides durability, environmental etch, and scratch resistance to the coatings.
The pigments used for the paints were the standard mica pigment (BASF 9680H, BASF, Ludwigshafen
am Rhein, Germany) as the semi-transparent pigment, and omnidirectional structural color (OSC)
pigments [19] as the non-transparent pigment for comparison. Both pigments impart blue color when
applied to cars. Since the mica pigment, which was obtained by coating metal oxides on a flat surface
of mica flakes, generates color through light interference, it has high transparency. On the other
hand, the OSC pigment is highly reflective because it is produced by coating multiple semiconductor
layers on an aluminum flake; hence, the pigment has no transparency. The dilute pigment layer not
only generates colors, but also acts as a primer. All layers were coated by the blade-coating method.
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We varied the pigment weight concentration (PWC) from 0% to 10% to investigate the relationship
between PWC and the appearance or output power of the solar module.

Figure 1. (a) Schematic of the c-Si solar module used in this study, which was originally developed for
automotive application; and (b) Photo of the fabricated solar module with four solar cells.

The properties of the color on the solar module were measured above the cell (cell region) as
well as above the backsheet (backsheet region), as shown in Figure 1a, with a spectrophotometer
(Konica Minolta CM512M3A, Tokyo, Japan). We focused on the color difference between the cell region
and backsheet region, because the entire module should have a uniform color to enable automotive
application. The spectrophotometer provides L*a*b* values in the CIE1976 L*a*b* color space for each
region, and the color difference ∆E is defined as ((∆L*)2 + (∆a*)2 + (∆b*)2)1/2, where ∆L*, ∆a*, ∆b* are
the differences of L*, a*, and b* values between the cell and backsheet regions [20]. The transmittance
(T) and reflection (R) of the dilute pigment layers were measured with a V-570 spectrometer (JASCO
Corporation, Tokyo, Japan), while the microstructure of the layers was observed with an optical
microscope (Nikon Optiphot 150, Nikon, Tokyo, Japan). The solar module characteristics were
evaluated from the illuminated current–voltage (LIV) measurements under approximate air mass 1.5 G
illumination (100 mW/cm2) at room temperature using the YSS-150E measurement system (Eikoseiki,
Tokyo, Japan; steady state tester with class AAA).

3. Results and Discussions

Figure 2a–c shows images of the coated dilute mica pigment on the quartz plate (20 × 20 mm2),
which was placed on a black backsheet in order to reduce light incidence from the back side. Figure 2d–f
show microscope images of the dilute pigment with varying PWCs. Clearly, although the pigments
do not spread all over the area without gaps between them, the dilute pigment provides a uniform
color throughout the fabricated area (20 × 20 mm2) even when the PWC is 3%. This is because the
orientation of the pigment is random.

We then investigated the transmittance and reflection of the diluted pigment layers for both the
mica and OSC pigments as a function of PWC. A dilute pigment-coated quartz plate (1 mm thick)
was used for the measurements. Notably, the experimental data also consider the reflection at the
back side of the quartz plate as shown in Figure 3g, which is nearly nil when the paint is applied to
the solar module. Figure 3 shows the measurement results for (a) the mica pigment and (b) the OSC
pigment. The R value is relatively large in the wavelength region of 400–500 nm for both pigments.
Because almost all the photons transmitted through the dilute pigment layers in the visible region
are absorbed by the solar cell or black backsheet, which is located under the layers, a blue color is
generated, as shown in Figure 2. Owing to their similar reflection spectra in the wavelength region of
400–500 nm, both dilute pigments exhibit a similar blue color when coated on the solar module.

The R in the wavelength region of 400–500 nm become large as the PWC increases for both
pigments. For the mica pigment, the peak T at around 600 nm is maintained at around 85%, and drops
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in small steps in the wavelength region of 800–1100 nm with increasing PWC. On the other hand, the T
of the dilute OSC pigment reduces in larger steps over the entire region with increasing PWC. This is
because the OSC pigment is designed to absorb photons in the visible and near-IR regions, except at
400–500 nm, in order to impart a bright appearance. The maximum T for the mica pigment is ~88%,
while that for the OSC pigment is ~58% (Figure 3; note that the two graphs in Figure 3 have different
scales for the vertical axes). The results indicate that the dilute mica pigment is suitable for coloring
the solar module, because it provides a large T throughout the active region of the Si solar cell, except
in a very narrow visible region for generating color.
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Figure 2. (a–c) Images of the dilute mica pigment coated on a glass plate with varying PWCs;
(d–f) Optical microscope images of the dilute mica pigment; (g) Schematic cross-sectional view of the
fabricated sample. The black arrow represents incident light, while the blue arrow represents the light
reflected by the pigment.
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Figure 3. Measured transmittance and reflection of the color layer on the quartz plate as a function of
PWC using (a) mica pigment and (b) OSC pigment.

We then measured the color difference (∆E) between the cell region and backsheet region of the
colored solar modules using both dilute pigments, as a function of PWC. Figure 4 shows that ∆E reduces
as PWC increases for both pigments. Although the mica pigment has much larger transmittance in
the visible region compared to the OSC pigment, both dilute pigments exhibit a similar trend for ∆E
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reduction as a function of PWC. When the PWC exceeds 5% for the mica pigment, the paints provide a
∆E of less than 1, which is not perceptible to the naked eye, thus exhibiting the potential of the paint
for application to solar modules due to the uniform generation of color throughout the module [21].Coatings 2018, 8, x FOR PEER REVIEW  5 of 7 
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Figure 4. Measured ∆E between the cell region and backsheet region as a function of PWC.

Having identified that the dilute mica pigment imparts a good appearance to the c-Si solar
module with high transmittance, we then investigated the output power from the colored solar
module. Figure 5 shows the measured relative output power as a function of PWC. The relative output
power was defined as the power with the color paint/the power without the color paint. Although
the OSC exhibited a brighter appearance, there was a significant reduction in output power with
increasing PWC. On the other hand, the mica pigment showed a smaller output power reduction,
and retained 80% of the original output power at a PWC of 10%.

Thus, we concluded that the mica pigment with 10% PWC is suitable for painting solar modules,
both appearance-wise and in terms of power conservation.
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Figure 5. Measured relative output power of the colored solar module with the dilute mica and OSC
pigments, as a function of PWC.

Finally, we fabricated a solar module of size 300 mm × 300 mm, containing four c-Si solar cells,
and coated with 10% PWC dilute mica pigment. Figure 6a shows the measured LIV of the solar module
with and without the dilute mica pigment. There is no reduction in the open-circuit voltage (Voc) and
fill-factor (F.F.), while the short-circuit current density (Isc) is decreased by 15% owing to the generation
of the blue color, as expected from Figure 3a. Thus, the output power decreased by 15% by adding the
blue color.
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Figure 6b is an image of the fabricated solar module with the 10% PWC dilute mica pigment.
The dilute mica pigment provides a bright appearance and solid color, similar to the appearance of the
standard exterior of mass-produced cars. The photo also shows that the dilute mica pigment provides
uniform and consistent colors throughout the fabricated area (300 × 300 mm2), which is essential for
achieving a high-quality finish. In addition to providing excellent appearance, the dilute mica pigment
retains more than 80% of the output power, compared to the original module without color.

Thus, we conclude that semi-transparent automotive pigments, such as the mica pigment, are
promising for coloring solar modules, because they provide the solar module with an excellent
appearance as well as maintain a high output power, compared to original solar modules without color.
The visual attractiveness of the solar module obtained by the use of automotive mica pigments could
considerably increase the installable area of solar modules on cars. In future work, we will investigate
the color variations [22] and color matching with a regular car body by changing the thickness and
refractive index of the coating metal oxides in the pigments.
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4. Conclusions

We presented a high-performance solar module colored using the automotive painting technique.
The colored layers consisted of a semi-transparent mica pigment and an automotive clearcoat material,
which was coated on a crystalline-Si solar module. Our measurements showed that the dilute mica
pigment with ~10% pigment weight concentration is suitable for painting solar modules, because it
not only makes the solar module look good, but also retains 80% of the output power compared to
the original solar module. We believe that the proposed coloring technique for solar modules can
considerably increase the installable area of solar modules on cars.
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