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Abstract: Silicon nitride (SiNx) coatings are currently under investigation as bearing surfaces for
joint implants, due to their low wear rate and the good biocompatibility of both coatings and their
potential wear debris. The aim of this study was to move further towards functional SiNx coatings
by evaluating coatings deposited onto CoCrMo surfaces with a CrN interlayer, using different bias
voltages and substrate rotations. Reactive direct current magnetron sputtering was used to coat
CoCrMo discs with a CrN interlayer, followed by a SiNx top layer, which was deposited by reactive
high-power impulse magnetron sputtering. The interlayer was deposited using negative bias voltages
ranging between 100 and 900 V, and 1-fold or 3-fold substrate rotation. Scanning electron microscopy
showed a dependence of coating morphology on substrate rotation. The N/Si ratio ranged from 1.10
to 1.25, as evaluated by X-ray photoelectron spectroscopy. Vertical scanning interferometry revealed
that the coated, unpolished samples had a low average surface roughness between 16 and 33 nm.
Rockwell indentations showed improved coating adhesion when a low bias voltage of 100 V was used
to deposit the CrN interlayer. Wear tests performed in a reciprocating manner against Si3N4 balls
showed specific wear rates lower than, or similar to that of CoCrMo. The study suggests that low
negative bias voltages may contribute to a better performance of SiNx coatings in terms of adhesion.
The low wear rates found in the current study support further development of silicon nitride-based
coatings towards clinical application.

Keywords: silicon nitride; coating; reactive high-power impulse magnetron sputtering; wear;
joint replacements

1. Introduction

The need for improved materials for biomedical applications is continuously growing as a
result of the increasingly active, ageing population [1–3]. Total joint replacements, such as total
hip or knee replacements (THR and TKR, respectively) are commonly used in arthritic, pain-ridden
patients [4], with success rates of over 90% after 10 years [1,2,5]. THRs typically consist of a ball-and-cup
configuration, featuring a CoCrMo or ceramic [1] ball sliding against a polyethylene cup. Ultra-high
molecular weight polyethylene (UHMWPE) has been a widely used cup material, and the recent
introduction of cross-linked polyethylene (XLPE) appears to permit even lower polymer wear [6–8].
This is of great importance, since wear debris can result in inflammation, osteolysis, and loosening
of the prosthesis [1,9]. Furthermore, metallic ion release and debris [10] can cause metallosis and
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the formation of pseudo-tumors [11]. One possibility for reducing the metallic ion release and wear
is to apply a ceramic coating on the bearing surface [12–14]. For example, TiN and ZrN coatings
are currently available on the market for knee replacements, particularly aimed at hypersensitive
patients [15,16]. Another possible use of ceramic coatings in joint implants is at the taper junction,
which is notoriously prone to corrosion [17,18].

In this work, we investigate silicon nitride (SiNx) coatings for joint implants. This type of coating
has previously shown promising properties in terms of high biocompatibility, hardness, and low wear
rates [17–20]. A further possible advantage of this coating compared to other ceramic coatings is its
slow solubility in aqueous solutions [21,22], in combination with the high biocompatibility of its wear
particles and ions [23]. We seek to develop SiNx coatings that dissolve controllably and generate wear
particles of a higher dissolution rate than the coating itself (due to the higher surface area), and whose
dissolution also gives biocompatible ions. This, in turn, may give rise to a less negative biological
response compared to other materials’ wear particles. Prior work on these coatings has been focused on
depositing coatings without rotation on flat, 2D substrates. As sputtering is a line-of-sight-deposition
technique, the coating of 3D details such as implants requires rotation during processing. The choice
of parameters for rotating the substrate table during deposition (i.e., static, 1-fold, or 3-fold substrate
rotation) influences the direction (angle), the flux of sputtered material, and the energy distribution
of the sputtered material arriving to the substrate [24,25]. It is necessary to control these parameters,
as the properties of the sputtered material will ultimately determine the nucleation and adhesion to the
substrate, as well as the initial and continued growth of the film. To secure a good adhesion between
the metallic 3D substrate and the ceramic SiNx coating, we applied growth by reactive high-power
impulse magnetron sputtering (rHiPIMS), as this technique is favorable in forming a high energy
flux of the sputtered material [26,27]. In addition, and for this demanding application, we applied
an interlayer to promote chemical bonding in the interface region between the substrate and the
coating [28].

The aim of this study was to move towards functional SiNx coatings on 3D implants by evaluating
newly developed coatings deposited onto CoCrMo with a CrN interlayer, using different bias voltages,
and 1- or 3-fold rotation of the substrate. The surface roughness, coating adhesion, and chemical
composition throughout the coating layers and substrate were evaluated. The coefficient of friction
and wear rate against bulk Si3N4 were evaluated in reciprocal ball-on-disc tests.

2. Materials and Methods

2.1. Coating Preparation

Direct current magnetron sputtering processes were used to coat mirror-polished CoCrMo discs
([29], Ra < 12 nm) with a CrN interlayer, followed by a SiNx top layer, deposited using rHiPIMS
(CC800/9 ML(CemeCon AG Würselen, Germany)) in a mixed N2 and Ar atmosphere. Substrates were
mounted in a 1-fold (1f) or 3-fold (3f) rotational set-up. The specific process settings are shown in
Table 1. The interlayer was deposited using a pressure of 200 MPa at negative bias voltages of 100 V
(Low), 300 V (Medium), and 900 V (High). The SiNx coatings were deposited at a pressure of 600 MPa,
with an average discharge power of 3300 W using a pulse frequency of 800 Hz, and a pulse width of
200 µs in a N2/Ar mixture with a flow ratio of 0.27.

2.2. Compositional Analysis

The chemical composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS)
(Axis UltraDLD, Kratos Analytical, Manchester, UK) using monochromatic Al (Kα) X-ray radiation
(hν = 1486.6 eV). The pressure in the analysis chamber during acquisition was less than 1 × 10−7 Pa.
Samples were sputter cleaned for 120 s with a 2 keV Ar+ ion beam. The Ar+ beam was rastered over
an area of 3 × 3 mm2 at an incidence angle of 20◦. Sputter cleaning was carried out to remove the
surface oxygen layer and carbon due to air exposure. Automatic charge compensation was applied
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throughout the acquisition, owing to the electrical insulating nature of the SiNx coatings. The core
level spectra recorded after Ar+ sputter cleaning was used to determine the chemical composition of
the SiNx coatings, using a Shirley-type background together with elemental cross sections provided by
Kratos Analytical.

2.3. Cross-Section Characterization

The coating microstructure, thickness, and composition were evaluated throughout the coating
layers. A cross-section of the discs was initially sputtered by sputter coater (Au/Pd) for 30 s to reduce
the charging effect, before being prepared using a focused ion beam (FIB; FEI Strata DB235, FEI,
Hillsboro, OR, USA), with a platinum layer of 1 µm deposited on top to minimize the damage caused
by the ion beam. The milling steps were from 7000 to 500 pA at 30 kV. Additional chemical analysis
of the interlayers was undertaken using a scanning electron microscope (Zeiss Merlin with AZtec
EDS/EBSD, Oberkochen, Germany) at 20 kV equipped with EDS Silicon Drift Detector AZtec (INCA
energy) software (AZTEC 3.3 SP1, Oxford Instruments, High Wycombe, UK).

2.4. Surface Roughness

To evaluate the surface roughness, Vertical Scanning Interferometry (VSI), was used (WYKO
NT1110, Vecco, Tucson, AZ, USA). The analyzed area was 736 × 480 µm2 with an objective lens of 10×
and Field of View (FOV) of 0.5×. Three measurements were performed on each sample. From these,
the arithmetic average of the absolute values (Ra) was obtained.

2.5. Adhesion

The coating adhesion was evaluated by Rockwell indentation testing, using an applied load of
100 N with the Rockwell tip (CA1819) in three different locations according to ISO 26443-2008 [30].

2.6. Wear Resistance

Wear tests of the coatings were performed against 10 and 20 mm diameter bulk Si3N4 balls,
manufactured according to [31]. Si3N4 was chosen as the counter surface to provide a worst-case
scenario, hard-on-hard contact, and to simulate the coating run against itself. This facilitates a
comparison with earlier work, where such a contact was used [17,19,32]. CoCrMo alloy discs,
manufactured according to [33], with 21.9 mm diameter and 5 mm thickness were used as controls.
The tests were performed in an in-house reciprocating ball-on-disc wear test machine, as shown in
Figure 1. The applied loads were 1, 2.44, and 2.45 N, giving a maximum Hertzian contact pressure of
approximately 328 MPa (20 mm ball), 442 MPa (20 mm ball), and 700 MPa (10 mm ball). The typical
contact pressure in a ceramic-on-ceramic (COC) prosthesis has been estimated to 90 MPa [34]. However,
in the case of edge loading by micro-separation in a ceramic-on-metal (COM) prosthesis, a contact
pressure of approximately 700 MPa has been estimated, which could be considered a worst case
scenario [35]. A frequency of 1 Hz and a stroke length of 10 mm was used to produce three
parallel wear tracks on each sample, running for 10,000 cycles. Specimens were kept in a heated
Polytetrafluoroethylene (PTFE) container with a bath at temperature of 37 ± 3 ◦C throughout the
test. To simulate body fluid, 25 vol.% fetal bovine serum was used (FBS, GE Healthcare Hyclone,
EU approved, origin South America, Chicago, IL, USA), complemented with 0.075 wt.% sodium
azide (Sigma-Aldrich, St. Louis, MO, USA, S8032-25G) and 20.0 mM ethylene–diaminetetraacetic acid
solution (EDTA, Sigma-Aldrich, 03690), according to [36].
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The specific wear rate was calculated following Archard’s wear equation [37]:

Specific wear rate =
Wear volume

Load × sliding distance
(1)

where the wear volume was estimated from the cross-sectional area at the initial, middle, and final
parts of the wear track, as measured with VSI after the reciprocal wear test.

2.7. Statistical Analysis

IBM SPSS Statistics v 22 was used for all statistical analyses. Welch’s robust test for analysis of
variance was performed (Levene’s test for homogeneity of variances was significant for most analyses),
followed by a Dunnett T3 post-hoc test. A critical level of α = 0.05 was used to determine significance.

3. Results

3.1. Microstructure, Coating Thickness, and Composition

SEM cross-sections of coatings deposited using 1-fold rotation showed dense coatings
(cf. Figure 2a–c), while the density, as judged upon appearance, decreased as 3-fold rotation was
applied (cf. Figure 2d). The thicknesses and chemical composition of the coatings and interlayers are
summarized in Table 1. A SiNx thickness between 4.2 and 4.4 µm was measured. The coatings showed
a Si content of between 43 at.% and 46 at.%, while N contents were between 50 at.% and 53 at.% and
O contents of 2.1 at.%–2.2 at.% were measured, accounting for comparatively high N/Si ratios of
1.10–1.25.
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Figure 2. Cross-sections of (a) CoCr-SiNx, without CrN interlayer, a dense coating could be
observed; (b) CoCr-CrN(H)-SiNx, deposited using 1-fold rotation and a negative bias voltage of 900 V;
(c) CoCr-CrN(L)-SiNx, with 1-fold rotation and a negative bias of 100 V; and (d) CoCr-CrN(L)-SiNx-3f,
deposited using 3-fold rotation and a negative bias of 100 V.
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Table 1. The investigated materials, coating thicknesses, and chemical composition of the SiNx top
layers as measured by XPS.

Material Interlayer SiNx Thickness
(nm)

Interlayer
Thickness (nm)

Top Layer Composition

Si (at.%) N (at.%) O (at.%) N/Si Ratio

CoCr – – – – – – –
CoCr-SiNx – 4360 – 46 50 2.1 1.10

CoCr-CrN(L)-SiNx CrN 4260 810 44 52 2.2 1.11
CoCr-CrN(M)-SiNx CrN 4400 750 44 53 2.1 1.19
CoCr-CrN(H)-SiNx CrN 4400 650 43 53 2.2 1.25

CoCr-CrN(L)-SiNx-3f CrN 4200 500 45 51 – 1.11

3.2. Surface Roughness

According to the standard for biomedical implants [38], the average surface roughness (Ra) of
bearing surfaces or femoral heads of metallic or ceramic surfaces must be below 50 nm. Both coated
and uncoated samples exhibited a surface roughness below this requirement (16–33 nm and 7 nm,
respectively). As reported in Table 2, the roughness of the uncoated CoCrMo surface was significantly
lower than that of the coated surfaces (α < 0.05). The coating without an interlayer was significantly
smoother (Ra = 16.3 nm) than the coatings deposited with an interlayer bias voltage (100, 300, and
900 V, α < 0.02, Ra ranging between 23.9 and 32.8 nm). No significant difference in Ra was observed
for coatings deposited at the low bias voltage (L) in either 1f or 3f rotations (α > 0.05, Ra = 25.2 and
23.9 nm on average, respectively).

Table 2. Surface roughness and adhesion of the investigated materials.

Material Ra (nm) HRC Adhesion, (ISO Class)

CoCr 6.6 ± 0.4 N/A
CoCr-SiNx 16.3 ± 1.8 3

CoCr-CrN(L)-SiNx 25.2 ± 0.1 1
CoCr-CrN(M)-SiNx 26.1 ± 1.2 2
CoCr-CrN(H)-SiNx 32.8 ± 2.7 2

CoCr-CrN(L)-SiNx-3f 23.9 ± 0.7 0–1

3.3. Adhesion

Results for the Rockwell C (HRC) adhesion tests are presented in Table 2. Improved values for
coatings featuring a CrN interlayer were found compared to those without. Furthermore, a lower bias
voltage during the CrN interlayer formation appeared to benefit the adhesion. For coatings deposited
under 3-fold rotation, the adhesion improved further, to an HRC ISO class 0–1.

3.4. Wear Resistance

The initial stage of the experiment showed a higher friction coefficient (0.78 and 0.48 at 700 MPa,
0.51 and 0.39 at 442 MPa, and 0.48 and 0.33 at 328 MPa) for coated and non-coated samples respectively,
which stabilized after 2000 cycles. The coefficient of friction was therefore averaged after the running-in
phase, i.e., for the cycles between 2000 and 10,000, and is reported in Figure 3. The friction coefficients
against the coatings were slightly higher than those against CoCr. However, a statistically significant
difference was only found between CoCr and CoCr-CrN(H)-SiNx (α = 0.04 at the 328 MPa contact
pressure).
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Figure 3. Coefficient of friction at estimated contact pressures of 328 and 442 MPa, using a ball diameter
of 20 mm, with applied loads of 1 and 2.45 N, respectively. The coefficient of friction at an estimated
contact pressure of 700 MPa is also included, using a ball diameter of 10 mm and an applied load of
2.44 N.

For the ball of diameter 20 mm, CoCr showed a higher specific wear rate compared to coated
samples at the lower contact pressure of 328 MPa, but a similar wear rate at the higher contact pressure
of 442 MPa. For the 442 MPa contact pressure, a significant difference could be found only between
CoCr-SiNx and CoCr-CrN(L)-SiNx-3f (α = 0.015), with the latter giving the lowest specific wear rate
of all samples. For the smaller ball diameter (10 mm), CoCr again showed a higher wear rate than
the coated samples, as shown in Figure 4. All wear tracks were analyzed by VSI and reported on
Figure A1.
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with 10 mm ball. * Statistically significant difference.

4. Discussion

This study evaluated the effects of: (i) The addition of a CrN interlayer prior to depositing the
SiNx coating; (ii) different bias voltages during interlayer formation; and (iii) the level of rotation
during deposition on coating properties and wear performance.

Coatings deposited by 1f rotation presented uniform, featureless, and dense structures, while
coatings deposited in a 3-fold rotation set-up showed a comparatively facetted growth with visible
columns, as illustrated in Figure 2. This is related to the arrival rate of film-forming species as well as
their energy during coating growth, where samples mounted in the 1f rotational set-up are exposed to
more and higher energetic film forming species per time unit [39–41].

The coatings showed a high N content, with N/Si ratios between 1.10 and 1.25. In earlier studies,
this has been found to be beneficial, in terms of a lower dissolution rate [21] and improved mechanical
properties [42].

The average surface roughness of the coatings as deposited ranged between 16 and 23 nm,
fulfilling the standard requirements for joint bearing surfaces, although post-polishing would likely be
employed for commercial purposes. These higher roughness values as compared to the non-coated
surface indicate the existence of coating facets, as shown in Figure 2. Other coatings for joint implants
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deposited using rHiPIMS (but using different deposition parameters) have shown similar roughness
values [26,28].

The coating adhesion was improved by the implementation of a CrN interlayer, and was better for
the 3-fold coatings compared to the 1-f coatings, with the latter result likely arising from a lower coating
density giving lower residual stresses, as a result of the increased rotation [25]. The enhancement in
adhesion after CrN addition was comparable to previous work [43,44].

The coefficient of friction of 0.33–0.42 is in the range of those reported in earlier, comparable
wear studies on ceramic-on-ceramic implants (0.25–0.8) [45], but in the higher range of our earlier
studies on SiNx coatings [17,32]. The specific wear rates were also higher in general, except for CoCr at
328 MPa and 442 MPa [17,32]. These differences may be due to differences in coating morphology and
density, counter surface ball sizes, and, in some cases, higher loads applied in the current study [46].
Other experimental coatings for joint implants have shown specific wear rates in the same order of
magnitude under similar tests conditions. However direct comparisons are difficult due to variations
in the set-up [17,32,47–49]. Formation of a tribofilm between the surfaces may occur during wear
tests of these materials, resulting in a lubrication effect that reduces the wear and the coefficient of
friction [50–52]. However, this was not investigated herein.

Wear rates at the lowest load show promising results for both ball sizes, while coating wear rates
approached those of CoCr for the higher load (larger ball size). The highest contact pressure was chosen
based on simulated micro separation studies for COC contacts [53]. Even higher contact pressures
of around 1 GPa have, however, been reported in other studies for edge loading conditions [35].
Therefore, for hard-on-hard contacts, further testing should be considered at higher contact pressures.
However, it should be noted that these cases are to be considered as worst-case scenarios. In fact,
most joint prostheses currently implanted use a hard-on-soft bearing, i.e., a metal or ceramic actuating
against a polymer. Therefore, further testing against polymeric surfaces would be of high interest.
In addition, tests performed in a setting more similar to that of the end application, such as in joint
simulators, and for longer periods of time, are needed.

5. Conclusions

SiNx coatings were deposited onto CoCrMo substrates by rHiPIMS, under 1- and 3-fold rotation,
to evaluate the resulting properties for possible application in joint implants. It could be concluded that:

• 3-fold deposition gave rise to less dense coatings as compared to 1-fold rotation, as demonstrated
by the FIB cross-sections;

• The deposition method resulted in wear-resistant coatings, with no wearing down or flaking off
when run against Si3N4, likely due to their high N content as well as their relatively high density;

• Despite the relatively higher roughness and lower density, the CoCr-CrN(L)-SiNx-3f coating,
deposited at a lower bias voltage and by 3-fold rotation, presented the lowest specific wear rate
against Si3N4 balls, also compared to a CoCrMo control.

The present results indicate some promising properties of these coatings, although further studies
are needed, especially in a 3D setting on full hip implants.
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