

Supplementary Material: Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and *Staphylococcus aureus* Bacterial Attachment

Clare Lubov Donaghy ^{1,*}, Ryan McFadden ¹, Graham C. Smith ², Sophia Kelaini ³, Louise Carson ⁴, Savko Malinov ¹, Andriana Margariti ³ and Chi-Wai Chan ^{1,*}

¹ School of Mechanical and Aerospace Engineering, Queen's University Belfast,

Belfast, BT9 5AH, UK; rmcfadden02@qub.ac.uk (R.M.); S.Malinov@qub.ac.uk (S.M.)

² Department of Natural Sciences, University of Chester, Thornton Science Park,

Chester CH2 4NU, UK; graham.smith@chester.ac.uk

³ Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK; s.kelaini@qub.ac.uk (S.K.); a.margariti@qub.ac.uk (A.M.)

⁴ School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK; l.carson@qub.ac.uk

* Correspondence: cdonaghy38@qub.ac.uk (C.L.D.); c.w.chan@qub.ac.uk (C.C.)

Calculations related to laser energy and intensity for the fibre laser surface treatment: The focal spot diameter ($d_{e^{-2}}$) can be obtained by Equation (1):

$$d_{e^{-2}} = \frac{4\lambda f}{\pi D_{e^{-2}}} \times M^2,\tag{1}$$

where $d_{e^{-2}}$ is focal spot diameter, λ is the wavelength of the laser beam, f is the focal length of lens, $D_{e^{-2}}$ is the diameter of the beam before the lens and M^2 is the beam mode parameter of the fibre laser.

Given that λ , f, $D_{e^{-2}}$, and M^2 are 1.064 µm, 125 mm, 5 mm, and 1.2 respectively.

By substituting these values into Equation (1), the focal spot diameter ($d_{e^{-2}}$) is 41 μ m.

The laser spot diameter at the stand-off distance of 1.5 mm can be obtained using simple trigonometry. After calculations, it is 100 μ m.

The laser intensity (W/cm^2) can be obtained by Equation (2):

Laser Intensity
$$(W/cm^2) = \frac{Laser Power(W)}{Spot Area(cm^2)}$$
, (2)

The laser spot area at the stand-off distance of 1.5 mm is 7.9×10^{-3} mm², and the laser power is 30 W. By substituting these values into Equation (2), the laser intensity is 3.8×10^{5} W/cm². The laser energy (J) can be calculated by Equation (3):

Laser Power (W) =
$$\frac{\text{Laser Energy }(J)}{\text{Processing Time }(s)}$$
, (3)

The processing time (s) for each laser track can be calculated by Equation (4):

Processing Time (s) =
$$\frac{Scanning Distance (mm)}{Scanning Speed (\frac{mm}{s})}$$
, (4)

Given that the scanning speed are 100 and 200 mm/s, scanning distance (or length of each laser track) is 6 mm, and the laser power is 30 W.

By substituting the values into Equations (3) and (4), the laser energy at the two speeds are 1.8 and 0.9 J respectively.