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Abstract: In this study, pH sensors were successfully fabricated on a fluorine-doped tin oxide substrate
and grown via hydrothermal methods for 8 h for pH sensing characteristics. The morphology
was obtained by high-resolution scanning electron microscopy and showed randomly oriented
flower-like nanostructures. The TiO2 nanoflower pH sensors were measured over a pH range of 2–12.
Results showed a high sensitivity of the TiO2 nano-flowers pH sensor, 2.7 (µA)1/2/pH, and a linear
relationship between IDS and pH (regression of 0.9991). The relationship between voltage reference
and pH displayed a sensitivity of a 46 mV/pH and a linear regression of 0.9989. The experimental
result indicated that a flower-like TiO2 nanostructure extended gate field effect transistor (EGFET)
pH sensor effectively detected the pH value.

Keywords: EGFET; TiO2; hydrothermal synthesis

1. Introduction

The pH value, which is defined as the negative logarithm of hydrogen ion concentration,
is a standardized scale for determining whether a solution is alkaline or acidic. The more acidic is
the liquid, the greater the amount of hydrogen ions. Acid–base sensing has been used in numerous
applications, such as water quality testing, food safety, agriculture, chemistry, and medical care,
indicating its importance [1–3].

To date, pH sensors that are the most commonly used are pH test strips and meters. A pH test
strip is a simple, low cost, and fast method, but its disadvantage is that the specific pH value cannot
be accurately determined. On the contrary, a pH meter commonly uses glass electrodes, which are
costly and fragile, proving difficult to maintain. On this basis, two types of typical sensing components
are available. One is the ion-sensitive field-effect transistor (ISFET), and the other is the extended
gate field effect transistor (EGFET) [4,5], which are used to measure the hydrogen ion concentration
in the medium. ISFET is similar to the metal-oxide-semiconductor field-effect transistor (MOSFET).
The difference is that the metal gate of the MOSFET is changed to an insulating layer (e.g., SiO2)
as a sensing layer. To determine the pH value, the concentration of hydrogen ions, which change
the surface potential and the transistor’s current, is identified. Different from ISFET, EGFET has
an independent layer structure fabricated on the end of the signal line extended from the field-effect
transistor gate electrode. The independent layer mostly uses metal oxide as a sensing membrane,
which can attract the hydrogen ions in the solution. In comparison with ISFET, EGFET has several
advantages: (1) the sensing region is separated from the gate-controlled region, which simply replaces
the sensing film, so it can be developed as a disposable component; (2) it is easy to package due to
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its relatively simple structure; (3) the sensing film can be easily switched; and (4) there is no light
interference [5].

Metal oxides, such as ZnO, CuO, SnO2, and WO3 have been widely used as sensing films in
numerous studies [6–9]. TiO2 is a semiconductor, which has received considerable attention due to its
superior chemical stability, including nontoxicity, acid and alkaline resistance, low cost, and is easy to
process [10]. Accordingly, TiO2 has been utilized in gas sensors, UV photodetectors, memory resistors,
and water treatment cleaning applications [11–17]. By contrast, the thin film-based sensing membrane
has poor sensitivity. On the basis of the poor sensitivity, several studies have reported a nanostructure,
which can enhance the component performance due to the large surface area [18]. The nanostructure
can be fabricated by self-assembly growth processes, such as the hydrothermal method and sputtered
and metal organic chemical vapor deposition (CVD). However, sputter and CVD methods should be
used under a high-vacuum ambient environment. In addition, their source materials are expensive.
Thus, the hydrothermal method is mostly used because of its advantages, such as low-cost fabrication,
low-temperature process, and easy processing [19].

In this work, to increase the device sensitivity, we prepared a TiO2 nanostructure on
a fluorine-doped tin oxide (FTO) substrate via the hydrothermal method. The TiO2 EGFET pH sensor
was measured with a solution of pH 2–12. The device performance and the material analysis are also
discussed herein.

2. Experiment

For the device preparation, 2× 2 cm2 FTO glass was cleaned by acetone, isopropanol, and deionized
(DI) water using an ultrasonicator (DELTA D150, Taipei, Taiwan). The FTO substrate that can be
prepared in a strong acid environment also has small lattice mismatch with TiO2 [20]. Before cleaning,
the 0.5 cm fluoroplastic adhesive tape sticks (Nitto Denko No.903UL, Osaka, Japan) were placed on
the substrate and used as an electrode. Figure 1 shows the schematic diagram of the TiO2 EGFET
pH sensor. The precursor solution was premixed with DI water (30 mL) and 36% hydrochloric
acid (30 mL), added with titanium(IV) n-butoxide (>99%, 2 mL), and ultrasonicated for 20 min.
The formation reaction of TiO2 is shown in the following equation [21]:

TiCl4 + H2O→ HCl + Ti(IV) complex (1)

2Ti(IV) complex
dehydration
→ TiO2 (2)

After completing the preparation, the precursor was placed in a Teflon autoclave, and the sample
was positioned facing upward. Then, the Teflon autoclave was placed in a hot oven and heated
at 150 ◦C for 8 h. Finally, the sample underwent argon flow annealing for 60 min at 300 ◦C. A standard
buffer solution (Great & Best Co., Ltd., Taipei, Taiwan) was used in the sensing measurement at a range
of pH 2–12. Characterization of the TiO2 nanostructure included X-ray diffraction (XRD, D8 Discover,
Bruker, Billerica, MA, USA), high-resolution scanning electron microscopy (HR-SEM, HITACHI SU8000,
Tokyo, Japan), and energy-dispersive spectroscopy (EDS), as discussed further below. Semiconductor
parameter analyzer 4145B (Keysight Technologies, Santa Rosa, CA, USA) was set up to measure
the current–voltage (I–V) characteristic curves. The pH sensing electrode was connected to the gate
(pin 6) of a commercial CD4007UB n-type MOSFET, and pins 7 and 8 corresponded to the source
and drain, respectively. A commercial Ag/AgCl electrode was used as reference electrode. The distance
between the reference and sensing electrodes was fixed at approximately 2 cm, and the process
was performed in a dark room at room temperature. Figure 2 shows the schematic diagram of
the measuring device.
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Figure 2. EGFET measurement system.

3. Results and Discussion

Figure 3 shows the XRD pattern of synthesized TiO2 nanoflowers and the peaks at 2θ = 27.46◦,
36.11◦, 41.26◦, 44.08◦, 54.37◦, 56.69◦, 62.79◦, 64.09◦, 69.07◦, and 69.85◦, which correspond to (110), (101),
(111), (210), (211), (220), (002), (310), (301), and (112) planes, respectively, indicating that the sample of
TiO2 nanoflower was tetragonal rutile TiO2, which can be indexed to JCPDS card no. 21-1276. Figure 4
shows the top view of the HR-SEM image of the hydrothermal synthesis of TiO2 samples, revealing
a crystalline flower-like and randomly oriented structure. Meanwhile, the EDS analyses detected only
Ti and oxygen. The atomic percentages of Ti and oxygen were 43.28 at.% and 56.72 at.%, respectively,
and no other elements were detected (insert in Figure 3).
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Figure 4. (a) Top view of HR-SEM image of synthesized TiO2 nano-flowers, which show the randomly
oriented flower-like nanostructures. (b) The high-magnified HR-SEM image of TiO2 nano-flowers.

Figure 5a shows the Vref-IDS transfer characteristic of the device, setting the MOSFET at a gate
voltage of 0–3 V and at VDS = 0.3 V in pH 2–12 buffer solution. Vref decreased with an increase in
the pH value due to the lower H+ ion concentrations in the buffer solution, decreasing the surface
potential of the sensing electrode. VT(EGFET) can be expressed as follows [22]:

VT(EGFET) = VT(MOSFET) −
∅M

q
+ Eref + XSol

−ϕ (3)

where VT(MOSFET) is the threshold voltage of MOSFET, ∅M denotes the work function of the reference
electrode, q represents the electron charge, Eref indicates the potential of the reference electrode,
XSol refers to the surface dipole potential of the buffer solution, and ϕ signifies the surface potential
at the electrolyte/sensing film interface. Figure 5b shows the Vref value as a function of pH value.
The pH sensitivity from the liner pH-Vref can be expressed as follows:

sensitivity =
∆VT

∆pH
(4)

The Vref values were 1.53, 1.66, 1.74, 1.84, 1.94, and 2 V for different pH values ranging from 2
to 12. The device sensitivity was 46 mV/pH and the high linear regression was 0.9989. Figure 6
shows the IDS-VDS output characteristic. The output characteristic of the device can be expressed
as follows [23]:

IDS =
WµnCox

2L

[
(Vref −VT)

2
]

(5)

where W and L are the channel width and length, respectively, Cox repesents the oxide capacitance
per unit area, µn denotes the electron mobility in the channel, and VT indicates the threshold voltage.
IDS increased with the pH value from 12 to 2, indicating that the device can be modulated by various
pH values. Figure 6b shows the IDS value as a function of pH value. The pH current sensitivity from
the linear pH-IDS can be expressed as follows:

sensitivity =
∆
√

IDS

∆pH
(6)

The IDS values were 1.25, 1.19, 1.14, 1.08, 1.03, and 0.99 for different pH values ranging from 2 to 12.
The current sensitivity of the device was 2.7 (µA)1/2/pH, and the high linear regression was 0.9982.
The sensing performance can be explained based on the site-binding model [24]. The surface potential
depends on the pH of a buffer solution; thus, the sensing Ti-membrane has three different forms:
negative (Ti-O−), positive (Ti-OH2+), and neutral (Ti OH). Furthermore, a lower pH value indicates
a greater concentration of H+ in the solution. Consequently, a high amount of H+ is adsorbed onto
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the sensing membrane. Table 1 displays the device sensitivity compared with other studies given
the great specific surface area, resistance to high temperature, acid, and alkali, and high electrical
conductivity of TiO2 nanoflowers; as such, the device exhibited more potential than other EGFET
pH sensors. Dar et al. [25] reported that glucose is easily oxidized by dynamic oxygen species, and metal
oxide layers facilitate the release of trapped electrons back to the conduction band of metal oxide.
Oxygen is absorbed at the interface of metal oxide, ionized, and converted into dynamic oxygen species.
Chen et al. [26] reported that uric acid (UA) can be easily oxidized in common electrodes in aqueous
solutions, thereby modifying the detection potential for different concentrations. Hence, these sensors
have promising prospects for detection.
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Table 1. Comparison of other metal oxide-based extended gate field effect transistor (EGFET) pH sensors.

Sample Fabrication Method Sensitivity (mV/pH) Ref.

ZnO thin film sol–gel 26.5 [27]
V2O5/had Hydrothermal 38.1 [28]

Porous TiO2 Hydrothermal 19.3 [29]
TiO2 nanowires E-beam evaporator 32.65 [30]

TiO2
nanoflower Hydrothermal 46 This work

4. Conclusions

In this study, pH sensors were successfully fabricated on FTO substrate and grown via
hydrothermal methods at 8 h for pH sensing characteristics. Results indicated that a pH sensor with
a TiO2 nanoflower can measure in the pH range of 2–12 buffer solution and the nanoflower growth has
the best sensitivity and linear regression relationship between IDS and pH, at 2.7 (µA)1/2/pH and 0.9991,
respectively. Moreover, the relationship among voltage reference, pH, and sensitivity was 46 mV/pH,
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and the linear regression was 0.9989. Thus, this new approach is not only expected to be useful for
pH sensors but also to detect glucose or uric acid via an advanced multifunctional biosensor.
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