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Abstract: This study aims to scrutinize the thin film flow of a nanofluid comprising of carbon
nanotubes (CNTs), single and multi-walled i.e., (SWCNTs and MWCNTs), with Cattaneo-Christov
heat flux and entropy generation. The time-dependent flow is supported by thermal radiation,
variable source/sink, and magneto hydrodynamics past a linearly stretched surface. The obtained
system of equations is addressed by the numerical approach bvp4c of the MATLAB software. The
presented results are validated by comparing them to an already conducted study and an excellent
synchronization in both results is achieved. The repercussions of the arising parameters on the
involved profiles are portrayed via graphical illustrations and numerically erected tables. It is seen
that the axial velocity decreases as the value of film thickness parameter increases. It is further noticed
that for both types of CNTs, the velocity and temperature distributions increase as the solid volume
fraction escalates.

Keywords: thin liquid film flow; carbon nanotubes; Cattaneo-Christov heat flux; variable heat
source/sink; entropy generation

1. Introduction

The flow and heat transfer phenomenon in thin fluid film past stretched surfaces has promising
applications including continuous casting, extrusion of plastic sheets, drawing of polymer surfaces,
foodstuff processing, annealing and tinning of copper wires, and cooling of metallic plates [1]. The
maintenance of the extrudes’ surface is vital in the extrusion process smooth surface with minimum
friction and enough strength is necessary for the coating procedure. Additionally, all this highly rely
on the flow and heat transfer properties of the thin film over stretched surfaces. Because of this, the
analysis in such cases is quite essential. Wang’s [2] pioneering work by deliberating the hydrodynamics
of time-dependent thin fluid film flow past a stretching sheet invited researchers to work in this
attractive industry-oriented theme. Andersson et al. [3] further developed Wang’s idea for heat transfer
analysis. This case is further presented in a more generalized form by Chung and Andersson [4]. The
solution to the same problem is discussed analytically by Wang [5]. The thin film flow is later analyzed
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in various scenarios like magnetic impact [6,7], thermo-capillary impacts [8], and non-Newtonian
fluids [9–12].

The above-mentioned studies on thin liquid films are limited to Newtonian and non-Newtonian
fluids in the absence of nanofluids. In recent years, the subject of nanofluids, owing to their amazing
characteristic of high thermal conductivity, has gained much attention of researchers and scientists.
The seminal work by Choi and Eastman [13] introducing “nanofluids” has revolutionized the heat
transfer processes. A nanofluid is an amalgamation of the solid metallic particles called “Nanoparticles”
with a size of 1–100 nm and ordinary liquids. Nanofluids are the finest coolants with amazing
applications including microelectronics, optical manufacturing and transportation [14]. There are
studies that emphasize the thin film liquid flow of nanofluids. Lin et al. [15] numerically scrutinized
the thin film Pseudo-plastic nano liquid flow with the impact of internal heat generation by utilizing
R–K scheme and Newton’s method. Later, Lin et al. [16] extended this study to the impacts of
viscous dissipation and temperature reliant thermal conductivity. The nano-liquid thin film flow
comprising graphene nanoparticles under the influence of aligned magnetic effect is discussed by
Sandeep [17]. Zhang et al. [18] studied the Oldroyd-B nanofluid thin film flow analytically with two
types of nanoparticles, i.e., silver and copper and found that nanofluid containing silver nanoparticles
has a better thermal conductivity in comparison to the copper nanoparticles. Zhang et al. [19] also
deliberated the power law nano liquid thin film flow with the slip using the differential transform
method. The problem of nanofluid thin films flowing past an elastic stretched sheet is solved using the
least square method (LSM) by Fakour et al. [20]. Ishaq et al. [21] deliberated the analytical solution of
Powell-Eyring nano liquid thin film flow with thermal radiation past a permeable stretched surface.
The flow of Darcy-Forchheimer nanofluid thin film comprising SWCNTs past an unsteady stretched
surface is studied by Nasir et al. [22].

There are numerous applications of heat transfer in industrial and engineering processes. These
include cooling towers, fuel cells, microelectronics, and nuclear reactors. The fundamental essence in
all these processes is that the value of thermal conductivity is presumed to be a constant. However,
this value varies with temperature and other factors. Pal [23] and Vajravelu et al. [24] observed that
the thermal conductivity varies linearly as the temperature is altered from 0◦ to 400◦ F. Initially, the
Fourier law of heat conduction has been used in the modeling of heat transfer applications but the
system encounters an initial disturbance due to the “parabolic energy equation” which is referred
to as “paradox in heat conduction”. This shortcoming in the Fourier’s model was addressed by
Cattaneo [25] who introduced the thermal relaxation time in the Fourier law of heat conduction.
Cattaneo’s act helped to represent the temperature profile via the hyperbolic energy equation and heat
transport propagation using thermal waves with a controlled speed. This heat transport mechanism is
employed in diverse practical scenarios, ranging from nano-liquid flow models to skin burn injury
models [26]. Moreover, several materials possess a large thermal relaxation time, such as biological
tissues having a relaxation time of 91–100 s and sand of 21 s. To uphold the material invariant
formulation, Christov altered the Maxwell-Cattaneo model by swapping the time derivative with
Oldroyd’s upper convected derivative. This improved version is nowadays being termed as the
Cattaneo-Christov (C-C) heat flux model. Later, Han et al. [27] introduced an analytical solution
for the viscoelastic material including the velocity slip boundary along with the C-C heat flux.
Mustafa [28] analyzed the rotating flow of the Maxwell fluid with an upper convected derivative
and C-C heat flux over a linearly stretched surface using both the analytical and numerical methods.
A similar case was examined by Khan et al. [29] considering an exponentially stretched surface.
The squeezed flow of the C-C heat flux with CNTs between two parallel disks is studied by Lu et
al. [30]. Ramzan et al. [31] studied the flow of the Williamson fluid flow numerically with C-C heat
flux associated with the convective boundary condition and homogeneous-heterogeneous reactions.
The flow of the magnetohydrodynamics (MHD) second-grade fluid over a stretched cylinder with
C-C heat flux is discussed by Alamri et al. [32]. Ramzan et al. [33,34] deliberated the Maxwell and
third-grade fluid flows with homogeneous-heterogeneous reactions and C-C heat flux. The flow of
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aqueous based nanotubes with homogeneous-heterogeneous reactions past a Darcy-Forchheimer
three-dimensional flow is studied by Alshomrani and Ullah [35]. Saleem et al. [36] discussed the
squeezing three-dimensional nanofluid flow comprising of nanotubes in a Darcy-Forchheimer medium
with thermal radiation and heat generation/absorption. There are numerous explorations that discuss
on the flow of nanofluid amalgamated with carbon nanotubes in various scenarios but there are fewer
that address the thin film flow. Some more explorations focusing on carbon nanotube or nanofluid
flow may be found in References [37–40] and many therein.

The literature review reveals that the flow of a thin film with the Newtonian/non-Newtonian
fluids is scarce in the literature and this subject gets even narrower if we talk about the thin film flows of
nanofluids. Very few explorations are available that discuss the thin film flows of nanofluid-comprising
nanotubes. Keeping in mind the importance of hydrodynamic flows, the idea of nanoliquid thin
films in comparatively new and fewer explorations are available in the literature (see Table 1). This
presented model is solved numerically and will present an estimated solution. The other limitation
of the flow is that it is discussed in 2D and can be extended to 3D with some more novel effects like
homogeneous-heterogeneous reactions, etc. The model presented here is an amalgamation of C-C
heat flux and entropy generation in the thin film flows of the nanofluids comprising of both types
of nanotubes (SWCNTs/MWCNTs) and has not yet been discussed in the literature. The numerical
solution of the problem is achieved. A comparison with an already established result in the limiting
case is also given and an excellent agreement between both is found. This corroborates our presented
results. The graphical illustrations and numerically calculated values of the physical parameters are
also added to the problem.

Table 1. The studies on nanoliquid film flow.

Authors Nanofluid Models Film Thickness Nanotubes
SWCNTs/MWCNTs

C-C Heat Flux

Lin et al. [15] Tiwari and Das
√

× ×

Sandeep [17] Tiwari and Das
√

× ×

Nasir et al. [22] Tiwari and Das
√

SWCNTs ×

Narayana and Sibanda [41] Tiwari and Das
√

× ×

Xu et al. [42] Tiwari and Das
√

× ×

Qasim et al. [43] Buongiorno’s
√

× ×

Present Tiwari and Das
√ √ √

(
√

) means effect is present and (×) means effect is absent.

2. Mathematical Modeling

Let us assume a thin film flow of a nanoliquid flow comprising CNTs past a time dependent
linearly stretched surface. The elastic sheet emerges from a slender slit at the Cartesian coordinate
system’s origin (Figure 1). The surface moves along the x-axis (y = 0) with a velocity uw(x, t) = bx

(1−αt) ,
with b and a being the constants in the y-direction and temperature Tw(x, y). The stream function ξ is
considered such that u = ξy, and v = −ξx.
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The thin film is of width h(x, y). The flow is laminar and incompressible. A magnetic field B(x, t) =

Bo(1− at)−
1
2 , is employed normal to the extended surface. The governing unsteady conservation

equations [17] under the aforementioned assumptions are appended as follows:

∂2ξ

∂x∂y
−
∂2ξ

∂y∂x
= 0 (1)

∂2ξ

∂t∂y
−
∂ξ
∂y

∂2ξ

∂x∂y
−
∂ξ
∂x
∂2ξ

∂y2 = vn f
∂3ξ

∂y3 +
σn f

ρn f
B

2
(t)
∂ξ
∂y

cos2 ε, (2)

(ρCp)n f

(
∂T
∂t

+
∂ξ
∂y
∂T
∂x
−
∂ξ
∂x
∂T
∂y

)
+ λ2Ω2 =

(
kn f +

16T∞3σ∗

3k∗

)
∂2T
∂y2 + q′′′ (3)

With the following corresponding boundary conditions

−ξx = 0, ξy = uw, T = Ts, at y = 0,
ξyy = 0, −ξx = ht, T = 0, as y = h(t).

(4)

The Cattaneo-Christov term is defined as

Ω2 = ∂2T
∂t2 + ∂u

∂t
∂T
∂x + 2 ∂ξ

∂y
∂2T
∂t∂x − 2 ∂ξ

∂x
∂2T
∂t∂y + ∂v

∂t
∂T
∂y + ∂ξ

∂y
∂

2
ξ

∂x∂y
∂T
∂x + ∂ξ

∂x
∂2ξ
∂y∂x

∂T
∂y

+
(
∂ξ
∂y

)2
∂

2
T

∂x2 +
(
∂x
∂x

)2 ∂2T
∂y2 − 2 ∂ξ

∂y
∂ξ
∂x

∂
2

T
∂x∂y −

∂ξ
∂y

∂2ξ

∂x2
∂T
∂y −

∂ξ
∂x

∂2ξ
∂y2

∂T
∂x

(5)

The heat source/sink “q′′′” is represented by

q′′′ =
k f uw(Ts − T0)

xν f

(
A∗ f ′ + B∗

(T − T0)

(Ts − T0)

)
(6)

The thermophysical attributes (specific heat Cp, density ρ and thermal conductivity k) of the base
fluid (H2O) and carbon nanotubes (SWCNTs /MWCNTs) are appended in Table 2.

Table 2. The thermophysical physiognomies of the fluid and CNTs [30].

Physical Characteristics Conventional Fluid Nano Particles

– H2O SWCNTs MWCNTs
Cp (J/kg K) 4179 425 796
ρ (kg/m3) 997 2600 1600
k (W/mK) 0.613 6600 3000
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The hypothetical relations are characterized as follows:

µn f =
µ f

(1−φ)2.5 , vn f =
µn f

ρn f
, (7)

ρn f = (1−φ)ρ f +φρCNT
, αn f =

kn f

ρn f (cp)n f
(8)

σn f

σ f
= 1 +

3σφ− 3φ
σ+ 2− σφ+φ

,σ =
σCNT
σ f

, (9)

kn f

k f
=

(1−φ) + 2φ kCNT
kCNT−k f

ln(
kCNT+k f

2k f
)

(1−φ) + 2φ
k f

kCNT−k f
ln(

kCNT+k f
2k f

)
(10)

Using the similarity transformations

η = 1
β

(
b

ν f (1−at)

) 1
2

y, Ψ = β

(
bν f

(1−at)

) 1
2
x f (η), θ = T−T0

Ts−T0

T = T0 − Tr

(
bx2

2ν f

)
(1− at)−1.5

θ(η),
(11)

The requirement of Equation (1) is fulfilled undoubtedly and Equations (2) and (3) yield

f ′′′ + (1−φ)2.5(1−φ+φ
ρCNT
ρ f

)λ
{

f f ′′ − f ′2 − S
(

f ′ +
1
2
η f ′′

)}
− (1−φ)

2.5 σn f

σ f
M f ′ cos2 ε = 0 (12)

(
kn f
k f

+ 4
3 R

)
Pr

[
1−φ+φ

(ρCp)CNT
(ρCp) f

]θ′′ − λ[2 f ′θ− fθ′ + S
2 (3θ+ ηθ

′)
]
+ 1

Pr

[
1−φ+φ

(ρCp)CNT
(ρCp) f

] (A∗ f ′ + B∗θ)

+γ

{
−

15
2 S2θ− 7

2 S2ηθ′ − 1
4 S2η2θ′′ − 8S f ′θ− ηS f ′′θ− 3

2ηS f ′θ′

+ 9
2 S fθ′ + Sη fθ′′ − 4 f ′2θ+ 3 f f ′θ′ − f ′2θ′′ + 2 f f ′′θ

}
= 0,

(13)

Additionally, the boundary conditions of Equation (4) become

f (0) = 0, f ′(0) = 1, θ(0) = 1, f (1) =
S
2

, f ′′ (1) = 0, θ′(1) = 0 (14)

The values of various non-dimensional parameters are defined as follows:

Pr =
υ f

α f
, S =

α

b
, R =

4σ∗T0
3

k∗k f
, M =

σ f B0
2

bρ f
,γ =

λ2b
1−αt

, λ = β
2

(15)

Physical quantities like the Skin friction coefficient and the local Nusselt number are given as

Nux =
xqw(x)

k f (Ts−T0 )
, C f =

τw
ρ f uw2 ,

qw(x) = −kn f (
∂T
∂y )y=0

, τw = µn f (
∂u
∂y )y=0

,
(16)

Additionally, in dimensionless form, as follows:

C f Rex
1/2 = 1

β(1−φ)
2.5 f ′′ (0),

NuxRex
−1/2 = − 1

β

(
kn f
k f

+ 4
3 R

)
θ
′

(0)
(17)
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3. Entropy Generation

The entropy generation under the aforementioned assumptions is given as below:

Egen
′′′ =

k f

T0
2

[kn f

k f
+

16T∞3σ∗

3k∗k f

](
∂T
∂y

)2

+
µn f

T0

(
∂u
∂y

)2

+
σn f

T0
B

2
(t)u2 cos2 ε (18)

where all terms defined in Equation (15) portray the usual meaning. The entropy generation NG is
defined as

NG =

(kn f

k f
+

4
3

R
)
Rexθ

′
2
+

1

(1−φ)2.5
BrRex

α
f ′′ 2 +

BrM
α

σn f

σ f
cos2 ε f ′22 (19)

where S0
′′′ and Sgen

′′′ are the characteristic entropy generation rate and the entropy generation rate.
The parameters defined in the above equation are given as

α =
∆T
Tw0

, Br =
µ f uw

2

k f ∆T
, Rex =

uwx
ν f

(20)

4. Results and Discussion

This section is devoted to witnessing the impression of numerous parameters on the involved
profiles whilst keeping in view their physical significance. The MATLAB built-in function bvp4c is
utilized to address the differential Equations (9), (10), and (16) with the associated boundary conditions
of Equation (11). To solve these, first we have converted the 2nd and 3rd order differential equations to
the 1st order by introducing new parameters. The tolerance for the existing problem is fixed as 10−6.
The initial guess we yield must satisfy the boundary conditions asymptotically and the solution as well.
The results show the influence of solid volume fraction (ϕ), dimensionless film thickness (λ), magnetic
parameter (M), unsteadiness parameter (S), radiation parameter (R), thermal relaxation parameter
(γ), and non-uniform heat source/sink parameter on the velocity, temperature and entropy generation
profiles. Further, the numerical values for the Skin friction and Nusselt number are given in Tables 3
and 4 for different parameters. The numerical values of the parameters are fixed as ϕ = 0.1, A* = B* = λ

= γ = 0.5 = S, R = 1.0 = M, and Pr = 6.2. Figures 2 and 3 display the impact of solid volume fraction (ϕ)
on axial velocity and temperature distribution. For incremented values of the solid volume fraction
(ϕ), the velocity and temperature profiles enhance in case of both SWCNTs and MWCNTs. Actually,
the convective flow and the solid volume fraction are directly proportionate with each other and this is
the main reason behind the enhancement of axial velocity and the temperature of the fluid.

Table 3. The comparison table of –θ’(0) with Sandeep [17] for varied estimates of S when R = M = γ =

0, Pr = 1.0.

S
ϕ = 0

Sandeep [17] Present Result

1.0 2.6772221621 2.677222
1.2 1.9995914260 1.999591
1.4 1.4477543611 1.447754
1.6 0.9566978443 0.956697
1.8 0.4845366320 0.484536
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Table 4. The numerical value of the Skin friction with Pr = 6.2.

ϕ S λ M −CfRex
1
2

– – – – SWCNTs MWCNTs
0.1 0.1 0.1 1.0 0.53775 0.52995
0.2 – – – 0.57083 0.55402
0.3 – – – 0.60395 0.57701
– 0.1 – – 0.53775 0.52995
– 0.2 – – 0.54610 0.53761
– 0.3 – – 0.55442 0.54524
– – 0.1 – 0.53775 0.52995
– – 0.2 – 0.62530 0.61054
– – 0.3 – 0.70792 0.68693
– – – 0.0 0.12194 0.11183
– – – 0.5 0.34094 0.33214
– – – 1.0 0.53775 0.52995
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Figures 4 and 5 depict the behavior of axial velocity and the temperature field for the growth
estimates of the film thickness parameter λ. It is found that both velocity and temperature profiles
diminish for increasing values of the film thickness parameter λ. In fact, the more the film thickness,
the lesser the fluid motion. This is because of the fact that higher values of film thickness dominate
the viscous forces, eventually diminishing the fluid velocity. Similar behavior is observed for the
temperature field.
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The effect of the magnetic parameter M on the velocity and temperature fields can be visualized
in Figures 6 and 7. Figure 6 displays the impact of the magnetic parameter M on axial velocity. The is
the axial velocity of the declining function of the magnetic parameter M. Physically, by enhancing the
magnetic parameter M, the Lorentz force is strengthened in the flow, which has a tendency to resist the
fluid’s motion and slow it down. This force also creates heat energy in the flow. Consequently, the
temperature distribution increases both the SWCNTs and MWCNTs, which is displayed in Figure 7.
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Figures 8 and 9 show the effect of the unsteadiness parameter S on the velocity and temperature
distributions. It is found that with the increase of the unsteadiness parameter S, the axial velocity
diminishes. Physically, the bouncy effect acts on the flow and diminishes it due to the increase in the
unsteadiness parameter S. Therefore, the thermal and momentum boundary layer thicknesses decrease.
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Figure 9. The illustration of S versus θ(η).

Figure 10 determines the consequence of the thermal relaxation parameter γ on the temperature of
the fluid. It is concluded that the temperature diminishes for increased values of the thermal relaxation
parameter γ. The temperature tends to be sharper near the boundary as the value of γ is higher than
the points on the growth in the wall slope of the temperature profile.
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Figure 11 demonstrates the impact of the radiation parameter R on the temperature profile. It is
comprehended that the temperature field is an increasing function of the radiation parameter R. It is
also concluded that the thermal boundary layer thickness for both carbon nanotubes is increased. In
fact, larger estimates of the radiation parameter reduce the mean absorption coefficient and enhance
the radiative heat flux’s divergence. Due to this, the temperature of the fluid is upsurged.
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The influence of non-uniform heat source/sink parameters A* and B* on the temperature
distribution is shown in Figures 12 and 13. It can be understood that the temperature profile
augments the boosted estimates of non-uniform heat source/sink parameters.
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Figure 13. The illustration of B* versus θ(η).

The effect of Brinkman number (Br), magnetic parameter (M) and Reynolds number (Rex) on
the averaged entropy generation number is demonstrated in Figures 14–16. It is concluded that the
entropy generation number increases for mounting estimations of Brinkman number (Br), magnetic
parameter (M) and Reynolds number (Rex) for both SWCNT and MWCNT.
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Table 3 is erected to envision the precision of the presented model by comparing it with Sandeep [17]
who discusses the flow of nanofluids past a thin film under the influence of the magnetic field. To
make a comparison, we have neglected the impacts of the volume fraction, electrical conductivity, and
thermal relaxation parameters. Excellent alignment is achieved between both results.

Table 4 shows the estimates of the Skin friction coefficient for different parameters. It is seen
that the Skin friction coefficient increases for growing values of the magnetic parameter, solid volume
fraction, unsteadiness parameter, and film thickness. Table 5 demonstrates the numerical values of
Nusselt number for numerous parameters. It is determined that the Nusselt number increases with
augmented values of the dimensionless film thickness, radiation parameter, solid volume fraction, and
unsteadiness parameter, while it diminishes for growing values of non-uniform heat source/sink.
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Table 5. The numerical value of the Nusselt number with γ = 0.1, Pr = 6.2.

Λ R ϕ A* B* S NuxRex
−

1
2

– – – – – – SWCNTs MWCNTs
0.1 0.1 0.1 0.1 0.1 0.1 2.11090 2.06990
0.2 – – – – – 3.27730 3.16440
0.3 – – – – – 4.46510 4.24750
– 0.1 – – – – 2.36350 2.06990
– 0.3 – – – – 2.36770 2.07060
– 0.5 – – – – 2.37230 2.07130
– – 0.1 – – – 2.11090 2.06990
– – 0.2 – – – 2.59370 2.54840
– – 0.3 – – – 2.84440 2.84000
– – – 0.1 – – 2.11800 2.06990
– – – 0.3 – – 1.93540 1.89220
– – – 0.5 – – 1.75270 1.71440
– – – – 0.1 – 2.11800 2.06990
– – – – 0.3 – 1.88910 1.85770
– – – – 0.5 – 1.66430 1.25340
– – – – – 0.1 2.11090 2.06990
– – – – – 0.2 2.81360 2.72250
– – – – – 0.3 3.66060 3.48490

5. Conclusions

The thin film flow of nanofluid comprising of CNTs of both types (SWCNTs/MWCNTs) is studied
whilst keeping in view the important applications of CNTs in many engineering applications. The flow
is supported by the additional effects like C-C heat flux and entropy generation. The model is solved
numerically with the support of the MATLAB software function bvp4c. The highlights of the existing
study are

• Velocity and temperature distributions are mounting functions of the solid volume fraction for
both types of CNTs in case of the thin film flow.

• For growing estimates of the thin film thickness parameter, the axial velocity diminishes.
• The velocity and temperature distributions show an opposite trend for the strong magnetic field

in a thin film flow model.
• Larger estimates of heat source/sink parameter lead to an increase in the temperature of the fluid.
• The temperature of the fluid is decreased for higher values of the thermal relaxation parameter.
• With an increase in the estimates of film thickness, the magnetic parameter and the Skin friction

coefficient show mounting behavior.
• The Nusselt number shows declining behavior for growing values of non-uniform heat source/sink.
• Entropy generation in the case of thin film flow is higher for larger estimates of the Brinkman

number and the magnetic parameter.
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Nomenclature

u, v velocity components B0 magnetic field of strength
x, y coordinate axis Pr Prandtl number
ξ stream function Cf skin friction coefficient
B magnetic field Nux Nusselt number
Tw constant surface temperature S squeezing parameter
T temperature α thermal diffusivity
Ω2 Cattaneo-Christov parameter Rex local reynolds number
q heat source/sink S0 characteristic entropy generation
Cp specific heat Sgen entropy generation rate
ρ density k0 thermal conductivity near from the surface
λ2 relaxation time of the heat flux kf thermal conductivity of water
T∞ ambient fluid temperature ε thermal conductivity parameter
uw stretching velocity along x-direction NG entropy generation number
Greek Symbols
ρCNT, ρf density of nanofluid f dimensionless stream function
σ* Stephan-Boltzmann constant θ dimensionless temperature
µnf, µf dynamic viscosity γ thermal relaxation parameter
k* viscoelastic parameter λ relaxation time of heat flux
αnf modified thermal diffusivity σnf, σf electrical conductivity of nanofluid and base fluid
(ρCp)nf, (ρCp)f heat capacity νnf, νf kinematic viscosity of nanofluid
k, knf thermal conductivity ∆T temperature difference
ϕ solid volume fraction of nanofluid τw shear stress
η a scaled boundary-layer coordinate Tw temperature on the interface
Ψ stream function Br brinkmann number
qw(x) the surface heat flux of nanoliquid film M hartmann number
β thermal expansion coefficient R conduction radiation parameter
A*, B* non-uniform heat source/sink parameters
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