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Abstract: In this study, a low concentration (10 µg·mL−1) of poly(N-vinylpyrrolidone) (PVP)-coated
silver nanoparticles (AgNPs) were deposited by spray and exhaustion (30, 70 and 100 ◦C) methods
onto untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 (PA66) fabric.
DBD plasma-treated samples showed higher AgNP deposition than untreated ones for all methods.
After five washing cycles, only DBD plasma-treated samples displayed AgNPs on the fabric surface.
The best-performing method was exhaustion at 30 ◦C, which exhibited less agglomeration and the
best antibacterial efficacy against S. aureus (4 log reduction). For E. coli, the antimicrobial effect
showed good results in all the exhaustion samples (5 log reduction). Considering the spray method,
only the DBD plasma-treated samples showed some bacteriostatic activity for both strains, but the
AgNP concentration was not enough to have a bactericidal effect. Our results suggest DBD plasma
may be a low cost and chemical-free method for the preparation of antibacterial textiles, allowing for
the immobilization of a very low—but effective—concentration of AgNPs.

Keywords: silver nanoparticles; dielectric barrier discharge; plasma; antimicrobial; exhaustion; spray

1. Introduction

Progressive growth in antimicrobial resistance is leading to the rise of recalcitrant infections,
complications of illness and mortality. Thus, there is great demand for the development of new
antimicrobial agents and materials [1]. Silver ions display intrinsic antimicrobial, antiviral and
anti-inflammatory properties and have been used—mostly in the form of silver salts—in medical
textiles for wound dressings, surgical sutures and medical staff uniforms [2,3]. Recent developments
in nanotechnology have created new advantages for silver-based antimicrobial textiles. The unique
chemical and physical properties and high surface–volume ratio of silver nanoparticles (AgNPs) have
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made this new tool an extremely efficient antimicrobial agent [4–6]. The size, concentration and
distribution of AgNPs onto textile substrates is fundamental to the balance and control of antimicrobial
efficacy and cytotoxicity [7]. Indeed, AgNPs can be cytotoxic to human cells if small-sized nanoparticles
(less than 15 nm) and high concentrations are prescribed to patients [8]. Numerous techniques
can be applied to deposit nanoparticles onto textiles, including aerosol, electrospray, convective
assembly, sputtering, spin-coating, evaporation, dip-coating, exhaustion, impregnation, chemical
vapor deposition and sonochemical immobilization [9,10]. However, most of obtained textiles possess
AgNPs with weak adhesion, irregular distribution or a high degree of agglomeration [11]. AgNP
capping agents, such as oleic acid, polyacrylic acid, polyethylene glycol (PEG), polyvinyl alcohol (PVA),
and poly(N–vinylpyrrolidone) (PVP), are commonly used to prevent agglomeration during AgNP
synthesis or dispersion preparation. Despite this, agglomeration can still occur during the deposition
process onto textiles, even when capping agents are used [12,13].

One efficient strategy to avoid such drawbacks, enhance antimicrobial efficacy and reduce
cytotoxicity can be the concomitant application of three conditions: (i) Decrease AgNP concentration,
(ii) reduce agglomeration, and (iii) improve bonding between the AgNPs and textile substrates [11,14].

Double dielectric barrier plasma discharge techniques have been tested in the last years and
revealed as a promising technique for textile coatings adhesion, including AgNPs [15]. Dielectric barrier
discharge (DBD) plasma treatment is faster and more environmentally friendly than chemical surface
modification techniques, which act exclusively on the material surface without affecting the bulk
properties [16]. Moreover, when DBD plasma is operated in air, without the use of expensive carrier
gases, this technique is very cost-effective [17]. Oxidation reactions during DBD plasma treatment
in air generate polar functional groups that may improve the hydrophilicity of the material, creating
highly reactive species on its surface [18]. Additionally, reactive oxygen species (ROS) and reactive
nitrogen species (RNS) produced during DBD plasma treatment in air can also have antimicrobial
action [19]. Plasma-assisted deposition of AgNPs also includes the formation of micro-roughness,
which can enhance the adhesion and washing fastness of AgNPs [20].

In this study, polyamide 6,6 (PA66) fabric samples with and without DBD pre-treatment were
coated with a low concentration of PVP-coated AgNPs by exhaustion (at 30, 70 and 100 ◦C) and spray
methods. This is the first time that a such low concentration of AgNPs was systematically studied
for its potential in antimicrobial textile fabrics. The concentration of AgNPs on the PA66 surface
was evaluated before and after five washing cycles. FTIR, reflectance spectroscopy, SEM and XPS
techniques were performed in order to understand the nature of the interactions between the AgNPs
and fabric surface. Antibacterial analyses were also performed against Gram-negative Escherichia coli
and Gram-positive Staphylococcus aureus bacteria.

2. Materials and Methods

Commercial polyamide 6,6 fabric with a warp density of 50 threads·cm−1, a weft density of
32 threads·cm−1, and a weight per unit area of 110 g·m−2 was used. The fabric was firstly washed
with 1 g·L−1 of a non-ionic detergent in water solution at 60 ◦C for 60 min, rinsed with distilled
water and then dried at 40 ◦C to minimize contaminants. PVP AgNPs (~20 nm) were acquired from
Sigma–Aldrich (St. Louis, MO, USA) and used without purification.

The DBD plasma treatment was performed at atmospheric pressure and room temperature in a
semi-industrial prototype machine (Softal GmbH/University of Minho, Guimarães, Portugal), using
metal electrodes coated with ceramic and counter electrodes coated with silicon. The electrodes,
with a 50 cm effective width and gap distance of 3 mm, produced the discharge at low frequency
(40 kHz) and high voltage (10 kV). The speed of the machine and discharge power of the electrodes
could be modified, with a maximum speed of 60 m·min−1 and discharge of 1.5 kW. In this study, the
machine was operated at 1 kW of power and a velocity of 4 m·min−1, as these have been previously
reported as the optimized conditions for PA66, corresponding to a dosage of 5 kW min·m−2 [17]. The
estimated temperature of DBD atmospheric plasma in air is near to room temperature. However,
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taking into account a by-product reaction with air and treated polymers, a temperature up to 400 K can
be attained [21,22].

The surface wettability of the untreated and plasma-treated fabrics was characterized with
Dataphysics equipment using OCA20 software with a video system for capturing images in static mode.

PVP–AgNP dispersions (10 µg·mL−1) in water were prepared using a Branson 3510 ultrasonic
bath for 30 min and an Optic Ivymen System CY-500 ultrasonic tip for more than 30 min. PVP–AgNPs
were deposited in 5 × 5 cm2 PA66 samples with and without DBD plasma pre-treatment. PVP–AgNP
dispersions were applied by (i) spray on both sides, where the system was maintained at a distance
of 5 cm from the substrate and pressurized at 1.5 bar, and by (ii) exhaustion in a laboratory-dyeing
machine (Ahiba, Datacolor, Lawrenceville, NJ, USA) at 30, 70 and 100 ◦C for 60 min, 40 rpm with a
1:100 ratio bath. All samples were dried at room temperature.

The washing fastness of PVP–AgNPs deposited onto PA66 samples was evaluated after five
washing cycles in a laboratory-dyeing machine (Ahiba, Datacolor, Lawrenceville, NJ, USA) at 75 ◦C
and 40 rpm for 15 min with 0.1 g·L−1 of a non-ionic surfactant in a liquor bath ratio of 1:30, according
to EN ISO 15797 (industrial washing) [23].

A Shimadzu IRAffinity-1S FTIR spectrophotometer with an attenuated total reflectance (ATR,
Preiser Scientific, Saint Albans, WV, USA) accessory equipped with a 1 reflection diamond crystal was
used to record the FTIR–ATR spectra of the fabrics, performing 45 scans at a spectral resolution of
4 cm−1 over the range 400–4000 cm−1. Samples with and without DBD plasma treatment were analyzed.

The diffuse reflectance spectra of the untreated and plasma-treated PA66 fabrics with
adsorbed PVP–AgNPs were obtained using a Spectraflash 600 (Datacolor, Lawrenceville, NJ, USA)
spectrophotometer at standard illuminant D65 (LAV/Spec. Excl., d/8, D65/10◦). The reflectance data
were presented as a percentage in the AgNPs maximum wavelength absorbance (420 nm). Untreated
and DBD plasma-treated PA66 samples with and without AgNPs were evaluated in triplicate.

Morphological analyses of PA66 fabrics were performed with an ultra-high resolution field emission
gun–scanning electron microscope (FEG–SEM; NOVA 200 Nano SEM, FEI Company, Hillsboro, OR,
USA). The secondary electron images were carried out with an acceleration voltage at 5 kV, while
the backscattering electron images were obtained with an acceleration voltage of 15 kV. A film of
Au–Pd (80–20 wt %) was used to coat the samples using a high-resolution sputter coater (208HR
Cressington Company, Watford, United Kingdom) coupled to an MTM-20 Cressington High Resolution
Thickness Controller.

XPS analyses were carried out using a Kratos AXIS Ultra HSA (Kratos Analytical, Manchester,
United Kingdom) with VISION software for data acquisition. The analysis was achieved using a
monochromatic Al Kα X-ray source (1486.7 eV), which was operated at 15kV (150 W) in FAT mode
(Fixed Analyzer Transmission), with a pass energy of 40 eV for the region of interest and 80 eV
for the survey spectra. The working pressure was maintained lower than 1 × 106 Pa and a charge
neutralization system was used. The binding energy scale was adjusted according to the C1s spectral
component at 285.9 eV. The high-resolution spectra were obtained considering an analysis area of
≈1 mm2. The full width at half maximum (FWHM) of the main peak was considered for the other peaks;
this process introduced an associated error of ±0.1 eV. The spectra analyses for elemental composition
were performed with CASAXPS software (version 2.3.15). Deconvolutions were achieved by XPSPEAK
(version 4.1) using the least squares method, which fit the data with the Gaussian/Lorentzian sum
function after Shirley-type background subtraction. The tailing function was not considered during
the fitting process.

The antibacterial efficacy of the PA66 samples was assessed according to the quantitative standard
shake flask method (ASTM-E2149-01) [24]. Gram-positive Staphylococcus aureus (S. aureus, ATCC 6538)
and Gram-negative Escherichia coli (E. coli, ATCC 25922) bacteria were used. Any contamination was
prevented by conducting the experiment aseptically. Bacteria inoculum in tryptic soy broth (TSB,
Merck) were processed from a single colony and incubated for 12 h at 37 ◦C and 120 rpm. An initial
concentration of 1.5–3.0 × 107 CFUs/mL in PBS was used. PA66 fabrics (0.05 g weight) were incubated
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in 5 mL of bacteria suspension for 24 h at 37 ◦C and 100 rpm. Before (0 h) and after the contact with
samples (24 h), the bacteria were serially diluted and cultured onto tryptic soy agar (TSA, Merck)
plates, and incubated for more than 24 h. After this period, the colonies of surviving bacteria on the
agar plates were counted. Antimicrobial activity was presented as a log reduction, calculated as the
ratio between the number of surviving bacteria colonies, before and after contact with the samples. All
antimicrobial tests were performed in triplicate.

3. Results

3.1. FTIR–ATR Analyses of Untreated and Plasma-Treated PA66 Samples

As shown in Figure 1, the FTIR spectra of untreated and DBD plasma-treated PA66 possess
the typical bands of polyamide at 3290, 2931 and 2858 cm−1, attributable to NH2 stretching, CH2

asymmetric, and symmetric stretching vibrations, respectively. The strong intensity peaks of amide
carbonyl N–C=O (amide I) and N–H bending from amide II are exhibited at 1630 cm−1 and 1530 cm−1.
The band at 680 cm−1 represents the bending of the O=C–N group. A particularity of the samples with
plasma treatment is the presence of a new weak band at 1728 cm−1. This band may be attributed to
the C=O stretching of ketones, aldehydes and carboxylic acids, formed by reactive oxygen species
during plasma discharge [25,26]. Moreover, after plasma treatment, some change can be noted in the
characteristic crystalline peaks of PA66 at 930 cm−1 and 1200 cm−1, attributable to the amide axial
deformation (C–C=O) and symmetrical angular deformation of out of plane amide III, respectively.
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Figure 1. FTIR–attenuated total reflectance (ATR) spectra of polyamide 6,6 (PA66) fabric with plasma
treatment (solid line) and without plasma treatment (dashed line).

3.2. Reflectance Spectroscopy

AgNPs of 20 nm are known to have the highest absorption in the visible region around 420 nm.
Thus, this wavelength was considered for AgNP detection (Figure 2). The PA66 samples obtained
by spray and exhaustion methods at different temperatures were analyzed before and after five
washing cycles.

For the unwashed samples, the spray deposition method showed the lowest AgNP deposition
rate with no significant difference between the untreated and plasma-treated samples (Figure 2a). On
the other hand, the exhaustion methods demonstrated superior AgNP loading, especially at 100 ◦C,
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well above the glass transition temperature of PA66. At 70 ◦C and 100 ◦C, only a slight difference
between samples with and without DBD plasma treatment was observed. The deposition method
by exhaustion at 30 ◦C of the untreated sample showed, as expected, a very low deposition yield,
exhibiting a high value of reflectance (75%). However, after DBD plasma treatment, the reflectance
value was comparable with the values obtained at 70 ◦C and 100 ◦C with and without plasma treatment.

The washing fastness of the AgNPs deposited onto the PA66 samples was evaluated after five
consecutive cycles of industrial laundries at 75 ◦C for 15 min (Figure 2b). Comparing the different
AgNP deposition methods and plasma treatment effects after laundering, a superior washing resistance
of the loaded AgNPs in the plasma-treated samples was observed. Also in this case, the best result was
observed for the exhaustion method at 30 ◦C on the DBD plasma-treated samples.
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Figure 2. Diffuse reflectance (%) at 420 nm for the untreated and dielectric barrier discharge (DBD)
plasma-treated samples with poly(N-vinylpyrrolidone)-coated silver nanoparticles (PVP–AgNPs)
before washing (a) and after five washing cycles (b).

3.3. SEM and EDS Analysis

SEM images were captured to evaluate the deposition efficiency and distribution of the AgNPs
on the untreated and DBD plasma-treated PA66 samples obtained with the two different deposition
methods (Figure 3). DBD plasma-treated samples displayed an increased surface roughness, as reported
previously [26]. Considering the different deposition methods, the exhaustion samples presented a
higher AgNP concentration when compared with the spray samples. The exhaustion methods showed
superior AgNP deposition when the temperature was raised from 30 to 70 ◦C, but more agglomeration
was also observed.
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Figure 3. SEM images of untreated (a,c,e,g) and DBD plasma-treated (b,d,f,h) PA66 samples with
AgNPs deposited by spray (a,b), exhaustion at 30 ◦C (c,d), exhaustion at 70 ◦C (e,f) and exhaustion at
100 ◦C (g,h), with a magnification of 5000×.

Peaks associated with silver were detected on the surface of both spray and exhaustion samples
by EDS analysis (Figure 4). The characteristic peaks of silver (AgLI, AgLa, AgLb and AgLg) were
observed in the EDS spectrum between 2.5 and 3.4 KeV. An Au peak, derived from the coating process
prior to analysis, was also observed. Carbon and oxygen peaks were also detected, corresponding to
the PA66 atomic components.
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Figure 4. EDS analysis of the spray (a) and exhaustion at 30 ◦C (b) deposition methods for the PA66
samples with DBD plasma treatment.

3.4. XPS Analysis

The results from the XPS spectra analysis were used to calculate the relative chemical composition
and atomic ratios (O/C and N/C) of the untreated and DBD plasma-treated samples with AgNPs
deposited by spray and exhaustion (at 30 ◦C and 70 ◦C) (Table 1). The relative chemical compositions
showed an increase in oxygen content, higher atomic O/C and lower N/C ratios compared to the
control samples without DBD plasma treatment. Silver was only detected in the DBD plasma-treated
samples in exhaustion conditions (1.5 at % and 0.3 at % for the samples treated at 30 ◦C and 70 ◦C,
respectively). Chemical bonding information was achieved by deconvolution of C1s, N1s and O1s for
all the tested samples and Ag3d for the DBD plasma-treated samples obtained by exhaustion at 30 ◦C
and 70 ◦C (Table 2 and Figure 5). The C1s spectra showed three peaks between 285.0 and 288.0 eV. A
major peak appearing at 285.0 eV was attributed to C–C and C–H bonds. A peak assigned to C–N
bonds emerged at 286.1 eV for the untreated samples and 286.4 eV for the plasma-treated samples.
A C1s peak attributed to O=C–N also presented a positive shift in binding energy between samples
with and without plasma treatment, but only for the exhaustion samples. The untreated and DBD
plasma-treated spray samples, as well as the untreated exhaustion samples, showed an O=C–N peak at
287.8 eV. In the exhaustion DBD plasma-treated samples, the same peak appeared at 288.0 eV. The O1s
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high resolution spectra presented two peaks, attributed to O=C and O–C. The O=C bonds emerged at
531.2 eV for the untreated samples and 531.4 eV for the plasma-treated samples, while the O–C bonds
emerged at 532.9 eV for all the samples [27]. The N1s spectra showed two peaks at 399.7 and 401.6 eV,
which were attributed to O=C–N due to the asymmetrical bonds dependent on the silver content [26].
The results of the Ag3d deconvolution analysis showed two peaks at 367.8 and 374.6 eV.

Table 1. Relative chemical compositions and atomic ratios of untreated and DBD plasma-treated PA66
fabrics with AgNPs deposited with spray and exhaustion at 30 ◦C and 70 ◦C methods.

Samples C (at %) O (at %) N (at %) Ag (at %) O/C Ratio N/C Ratio

Spray 80.5 11.0 8.5 ND 0.14 0.11
Spray DBD 79.5 13.0 7.5 ND 0.16 0.09

Ex. 30 77.9 11.8 10.3 ND 0.15 0.13
Ex. 30 DBD 77.0 12.5 9.0 1.5 0.16 0.12

Ex. 70 80.1 11.0 8.9 ND 0.14 0.11
Ex. 70 DBD 79.9 11.6 8.2 0.3 0.15 0.10

Table 2. Results of the deconvolution analysis of the C1s, N1s, O1s and Ag3d peaks for the untreated
and DBD plasma-treated PA66 fabrics with AgNPs deposited with spray and exhaustion at 30 ◦C and
70 ◦C methods. Reported binding energies have an associated error of ±0.1 eV.

Samples Ag3d C1s O1s N1s

367.8
eV

374.6
eV

285.0
eV

286.1
eV

286.4
eV

287.8
eV

288.0
eV

531.2
eV

531.4
eV

532.9
eV

399.7
eV

401.6
eV

Spray No DBD – – 71.5 13.4 – 15.0 – 74.3 – 25.7 95.6 4.4
Spray DBD – – 67.6 – 16.9 15.5 – – 55.9 44.1 91.4 8.6

Ex. 30 No DBD – – 70.0 15.1 – 14.9 – 73.6 – 26.3 93.3 6.7
Ex. 30 DBD 52.2 47.8 67.2 – 16.5 – 16.3 – 71.4 28.6 93.4 6.6

Ex. 70 No DBD – – 71.4 13.5 – 15.1 – 73.9 – 26.1 88.9 11.1
Ex. 70 DBD 57.7 42.3 68.9 – 15.4 – 15.7 – 71.7 28.3 89.5 10.5
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Figure 5. High-resolution deconvoluted XPS spectra with relative areas of the Ag3d, C1s, O1s and N1s
binding energy regions of untreated and plasma-treated PA66 fibers surface with AgNPs deposited
with the exhaustion method at 30 ◦C.
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3.5. Antibacterial Activity

Quantitative analysis of antibacterial efficiency of PA66 samples with a low concentration of
AgNPs was performed against Gram-positive S. aureus and Gram-negative E. coli bacteria (Figure 6).
Generally, the antibacterial efficacy toward E. coli was higher than toward S. aureus. For S. aureus, the
DBD plasma-treated samples always presented an improved antibacterial performance. The exhaustion
methods displayed higher antimicrobial activity than the spray method. The best performance was
achieved by the exhaustion at 30 ◦C method with DBD plasma treatment. This sample represented a
99.99% reduction (4 log reduction), with an effective antimicrobial effect. The spray method displayed
only weak antibacterial activity for E. coli, while samples obtained by the exhaustion method showed
complete inhibition (5 log reduction) for both untreated and DBD plasma-treated samples.

In order to confirm the superior immobilization ability of the AgNPs on the plasma-treated
samples, the samples were tested for antimicrobial activity after five washing cycles (data not shown).
The results showed that the plasma-treated sample obtained from the exhaustion at 30 ◦C method
was able to maintain reasonable antimicrobial activity despite the very low Ag concentration on the
fabric surface (E. coli log reduction 1.94 ± 0.01 and S. aureus log reduction 0.34 ± 0.02). All other
samples (spray and exhaustion at 70 and 100 ◦C with and without plasma treatment) did not display
antimicrobial activity after washing.
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4. Discussion

In order to improve AgNP adhesion onto a PA66 fabric surface, DBD plasma treatment was
performed. The plasma treatment successfully modified the surface energy of the samples, as proved
by the wettability results. The contact angle decreased from 90◦ ± 1.6◦ to 40◦ ± 2.5◦ after 5 passages
and it was not detectable after 10 passages. DBD plasma discharge using atmospheric air and working
with energies lower than 10 eV could easily cause the breaking of the weakest bond in the polymer
chain of PA66—the C–N bond—thereby creating new carbonyl groups, as proved in the FTIR spectra
in Figure 1 [28]. Additionally, modification of the crystalline peaks of PA66 suggested alterations in its
crystallinity and on the aliphatic polyamide structure [29]. No new peaks appeared in the FTIR spectra
after deposition of AgNPs, suggesting the non-covalent nature of the interaction between AgNPs and
the polyamide surface species. FTIR is not able to detect ionic, hydrogen (only detected as a shift or
broadening of peaks), Van der Waals or electrostatic forces, which are forces that can significantly
influence the physico-chemical adhesion of the silver nanoparticles. Moreover, a high-depth FTIR probe
is not compatible with surface analyses. Thus, X-ray photoelectric and diffuse reflectance spectroscopy
were employed to further investigate the AgNP deposition on the fabric surface.

Since AgNPs are able to absorb light in the visible region, diffuse reflectance spectroscopy
measurements were performed on untreated and DBD plasma-treated PA66 samples in order to
compare the relative amount of AgNPs on the fabric surface [7,30]. As a consequence of the low
nanoparticle concentration used in this work, the main drawback of the spray method was that



Coatings 2019, 9, 581 10 of 14

the AgNPs were only deposited on the very surface of the fabric without any significant volume
deposition. This is because there are no mass transfer phenomena that can improve AgNP absorption
into a fabric’s bulk before washing, thereby justifying the lowest deposition rate observed in the spray
method samples [31]. In the 70 and 100 ◦C exhaustion methods, the main factor for the higher AgNP
deposition observed is the greater availability of the PA66 amorphous regions and enhanced mass
transfer processes [32]. However, in the 30 ◦C exhaustion method, the availability of the amorphous
regions decrease, and the DBD plasma treatment effect is well noticed. Overall, DBD plasma treatment
using the exhaustion method appeared to improve the adhesion of the AgNPs on the PA66 fabric,
obtaining very good results at room temperature well below the glass transition temperature of the
material. This is proved by the SEM/EDS analysis (Figures 3 and 4), which clearly showed an improved
adhesion of the silver to PA66 samples. The EDS of exhaustion at 30 ◦C (Figure 4b) displayed a silver
peak double the size of the spray method (Figure 4a). The SEM analysis was also used to calculate the
dimension of the deposited nanoparticles. The observed average dimension was about 100 nm for
the spray and 30 ◦C exhaustion methods; however, with an increase in the deposition temperature,
larger agglomeration clusters (up to 1 µm) were detected. After washing, the reflectance results of
the AgNPs on the fabric surface showed an apparent higher concentration of nanoparticles. This was
due to the different reflectivity of the oxidized AgNPs deposited on the fabric surface, caused by the
harsh washing conditions. However, the best results were obtained from the DBD plasma-treated
sample with exhaustion deposition at 30 ◦C. The DBD plasma treatment allowed for a decrease in the
deposition temperature, thereby improving the fixation of the AgNPs to the PA66 fabric. This was due
to the enhanced roughness and plasma-generated polar groups on the PA66 fabric’s surface [33,34].
Above the PA66 glass transition temperature, AgNPs are able to enhance their volume deposition in
the bulk of the fabric by different deposition mechanisms. Thus, in this particular case, the samples
treated at high temperatures (70 ◦C and 100 ◦C) were able to adsorb AgNPs on their fiber surface
as much as the DBD plasma-treated sample. This is a consequence of the improved mass transport
provided by the rubber-like structure of PA66 above its glass transition temperature and also by the
higher kinetic energy of the system at a higher temperature [35].

The superior oxygen content in the DBD plasma-treated samples detected during XPS analysis
confirmed the ability of plasma to incorporate oxygen atoms onto the fabric surface. Plasma activation
and etching provoke scission of the C–H, C–O, C–N, C–C, and N–H bonds of the fibers, promoting the
addition and formation of reactive O−, N, N+, O, OH−, and O3 species on the fabric surface [36–38].
Silver was detected in XPS only in the DBD plasma-treated samples obtained by exhaustion, confirming
the plasma-induced enhanced absorption of Ag at low temperatures. In both the plasma-treated and
untreated spray samples, and in the untreated samples of the exhaustion methods, no Ag was detected
because it was under the detection limit of the XPS equipment (0.1 at %). The amount of silver detected
in the high-temperature exhaustion deposition method (70 ◦C) was lower than the 30 ◦C method.
This phenomena can be attributed to the morphological and chemical changes which occur in the
nanoparticle structure due to a temperature-induced aging process, based on a combination of the
coalescence and oxidation of the AgNPs, in addition to the thermodynamically-driven spontaneous
process called Ostwald ripening [39,40]. The AgNPs deposited on the plasma-treated PA66 fabric
showed a negative shift in binding energy for Ag3d5/2 (367.8 eV) relative to the bulk Ag (368.3 eV),
indicating the presence of Ag+ on the surface of the nanoparticles. Several studies correlate a negative
shift in the binding energy of Ag3d peaks to an increase in the oxidation state of silver [41,42].
The presence of a negative shift in the Ag component, in combination with the increased binding
energy of the double-bond oxygen species in the O1s deconvoluted spectra of the plasma-treated
samples, indicates an interaction between the Ag+ and plasma-generated oxygen species on the fabric
surface [43].

The superior antimicrobial efficacy of AgNPs in E. coli compared to S. aureus may be attributed
to the different cell wall structure and composition of the bacteria [35]. The peptidoglycan layer
of Gram-positive bacteria is approximately ten times larger than that of Gram-negative bacteria,
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complicating the diffusion of Ag ions to the interior of the cell. Moreover, it has been reported that
a strong interaction between the negatively-charged compounds in the cell wall of Gram-negative
bacteria and AgNPs can act as a sequester of free silver ions, reducing their activity [44]. For S. aureus,
the improved antimicrobial effect of DBD plasma-treated samples can be justified by the increased
amount of immobilized AgNPs, promoted by the improved surface roughness of the fibers, and by the
greater interaction between the AgNPs and new plasma-generated polar groups, as proved by the
XPS analysis.

The successful use of such a low amount of AgNPs as an antimicrobial agent in plasma-treated
polyamide fabric will allow for the controlled release of AgNPs in the environment and will reduce the
health risk associated with the use of silver in humans. Most commercial antimicrobial fabrics are
loaded with higher amounts of silver nanoparticles than the fabric developed in this study [45,46].

5. Conclusions

In this study, DBD plasma treatment was shown to decrease the deposition temperature and
improve the fixation of AgNPs at a low concentration onto PA66 fabric surfaces while providing a
significant antimicrobial effect. A significant antimicrobial efficacy of DBD plasma-treated samples in
E. coli and S. aureus was observed even after five washing cycles. The improved antimicrobial effect of
the DBD plasma-treated samples with the exhaustion method compared to the spray method can be
justified by: (i) The higher mass-transport effect provided by the excellent ratio of volume to surface
area, (ii) the superior surface roughness of the fibers, and (iii) the higher interaction between the AgNPs
and the plasma-generated oxygen species.
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and activation of silicon surface in dielectric coplanar surface barrier discharge. Surf. Coat. Technol. 2013,
236, 326–331. [CrossRef]

35. Boroumand, M.N.; Montazer, M.; Simon, F.; Liesiene, J.; Šaponjic, Z.; Dutschk, V. Novel method for synthesis
of silver nanoparticles and their application on wool. Appl. Surf. Sci. 2015, 346, 477–483. [CrossRef]

36. Zhu, L.; Wang, C.; Qiu, Y. Influence of the amount of absorbed moisture in nylon fibers on atmospheric
pressure plasma processing. Surf. Coat. Technol. 2007, 201, 7453–7461. [CrossRef]

37. Zhou, Q.; Wang, K.; Loo, L.S. Investigation of surface properties of plasma-modified polyamide 6 and
polyamide 6/layered silicate nanocomposites. J. Mater. Sci. 2010, 46, 3084–3093. [CrossRef]

38. Upadhyay, D.J.; Cui, N.-Y.; Anderson, C.A.; Brown, N.M.D. A comparative study of the surface activation of
polyamides using an air dielectric barrier discharge. Colloids Surf. A Physicochem. Eng. Asp. 2004, 248, 47–56.
[CrossRef]

39. Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P. Ageing of
plasma-mediated coatings with embedded silver nanoparticles on stainless steel: An XPS and ToF-SIMS
investigation. Appl. Surf. Sci. 2010, 256, 6499–6505. [CrossRef]

40. Wang, X.; Somsen, C.; Grundmeier, G. Ageing of thin Ag/fluorocarbon plasma polymer nanocomposite films
exposed to water-based electrolytes. Acta Mater. 2008, 56, 762–773. [CrossRef]

41. Liu, W.; Li, B.; Cao, R.; Jiang, Z.; Yu, S.; Liu, G.; Wu, H. Enhanced pervaporation performance of poly (dimethyl
siloxane) membrane by incorporating titania microspheres with high silver ion loading. J. Membr. Sci. 2011,
378, 382–392. [CrossRef]

42. Itani, H.; Keil, P.; Lützenkirchen-Hecht, D.; Haake, U.; Bongard, H.; Dreier, A.; Lehmann, C.W.; Grundmeier, G.
XANES studies of the formation of Ag-nanoparticles in LBL deposited polyelectrolyte thin films. Surf. Coat.
Technol. 2010, 205, 2113–2119. [CrossRef]

43. Vu, N.K.; Zille, A.; Oliveira, F.R.; Carneiro, N.; Souto, A.P. Effect of particle size on silver nanoparticle
deposition onto dielectric barrier discharge (DBD) plasma functionalized polyamide fabric. Plasma Process.
Polym. 2013, 10, 285–296. [CrossRef]

http://dx.doi.org/10.1039/C6RA09611E
http://dx.doi.org/10.1021/acsami.5b04340
http://www.ncbi.nlm.nih.gov/pubmed/26057400
http://dx.doi.org/10.1038/srep22069
http://www.ncbi.nlm.nih.gov/pubmed/26924449
http://dx.doi.org/10.1504/IJMPT.2003.003468
http://dx.doi.org/10.3390/ma6083494
http://www.ncbi.nlm.nih.gov/pubmed/28811448
http://dx.doi.org/10.1016/j.msec.2014.01.044
http://www.ncbi.nlm.nih.gov/pubmed/24656365
http://dx.doi.org/10.1016/j.apsusc.2013.12.126
http://dx.doi.org/10.1002/app.12876
http://dx.doi.org/10.1016/j.cej.2014.10.090
http://dx.doi.org/10.1016/j.surfcoat.2013.10.008
http://dx.doi.org/10.1016/j.apsusc.2015.04.047
http://dx.doi.org/10.1016/j.surfcoat.2007.02.012
http://dx.doi.org/10.1007/s10853-010-5187-8
http://dx.doi.org/10.1016/j.colsurfa.2004.08.016
http://dx.doi.org/10.1016/j.apsusc.2010.03.132
http://dx.doi.org/10.1016/j.actamat.2007.10.035
http://dx.doi.org/10.1016/j.memsci.2011.05.027
http://dx.doi.org/10.1016/j.surfcoat.2010.08.104
http://dx.doi.org/10.1002/ppap.201200089


Coatings 2019, 9, 581 14 of 14

44. Navarro Gallón, S.M.; Alpaslan, E.; Wang, M.; Larese-Casanova, P.; Londoño, M.E.; Atehortúa, L.; Pavón, J.J.;
Webster, T.J. Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared
with microalgal exopolysaccharides. Mater. Sci. Eng. C 2019, 99, 685–695. [CrossRef] [PubMed]

45. Benn, T.M.; Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics.
Environ. Sci. Technol. 2008, 42, 4133–4139. [CrossRef] [PubMed]

46. Kulthong, K.; Srisung, S.; Boonpavanitchakul, K.; Kangwansupamonkon, W.; Maniratanachote, R.
Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part. Fibre Toxicol.
2010, 7, 8. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.msec.2019.01.134
http://www.ncbi.nlm.nih.gov/pubmed/30889742
http://dx.doi.org/10.1021/es7032718
http://www.ncbi.nlm.nih.gov/pubmed/18589977
http://dx.doi.org/10.1186/1743-8977-7-8
http://www.ncbi.nlm.nih.gov/pubmed/20359338
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	FTIR–ATR Analyses of Untreated and Plasma-Treated PA66 Samples 
	Reflectance Spectroscopy 
	SEM and EDS Analysis 
	XPS Analysis 
	Antibacterial Activity 

	Discussion 
	Conclusions 
	References

