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Abstract: Immobilization of phosphonium ionic liquid (IL) onto activated carbon (AC) was
synthesized via grafting and impregnated methods, and the modified materials were analyzed
via Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, thermal gravity analysis,
scanning electron microscope, pore structure and CO2/N2 adsorption selectivity. The effect of the
gas flow rate (100–500 mL/min) and adsorption pressure (0.2–0.6 MPa) on the dynamic adsorption
behavior of mixture gas containing 15 vol.% CO2 and 85 vol.% N2 was explained using a breakthrough
method. By analyzing the breakthrough curves, the adsorption capacity was determined. The results
show that surface functionalization of activated carbon with phosphonium ionic liquid is conducive
to improving CO2/N2 selectivity, especially ionic liquid-impregnated film. The different adsorption
behaviors of impregnated and grafted adsorbents are observed under various conditions. The grafted
AC had better CO2 adsorption and mass transfer due to a lower blockage of pores by ionic liquid.
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1. Introduction

CO2 capture is one of the most cost-effective and practical methods to mitigate global warming
effects. Conventional CO2 capture technologies mainly include absorption, adsorption and membrane
separation [1–3]. The use of traditional adsorbents such as activated carbon (AC), silica and zeolites
for CO2 separation has grown steadily, primarily because adsorption is energy efficient with fast
adsorption/desorption rates and a reduction of corrosion [4]. As a porous carbonaceous adsorbent,
AC has a better sorption ability than other adsorbents, and thus its energy consumption during
regeneration is relatively low, which is why it is the main adsorbent used in industrial adsorption [5].
Nowadays, enormous research effort is devoted to modifying the surface and pore structures of
activated carbon in order to enhance its adsorption capacity for CO2 [6–8]. However, AC as an
adsorbent presently exhibits low CO2 adsorption selectivity, especially in the presence of water vapor
in the flue gas [9]. These hinder its practical applications in industry CO2 capture processes.

Ionic liquid (IL) has many desirable features for CO2 capture processes including high selectivity,
extreme non-volatility, thermally stability and tunable properties [10,11]. It can be classified into
four cation categories, including imidazolium, pyridinium, ammonium and phosphonium [12].
Among them, phosphonium-based IL has better advantages in some aspects. For example, it has good
thermal stability [13], and its density is generally lower than that of water [14,15], which facilitates
its separation from water layers containing inorganic by-products during the production process.
Nevertheless, the high viscosity of IL leads to a slow mass transfer rate, which seriously affects the
adsorption performance of CO2 [16,17]. Furthermore, the high cost of IL is a major obstacle to its use
in industrial processes.
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Coating IL onto high-surface porous materials may not only overcome the problem of selectivity
of the supporter, but exploit the advantages of a low cost and fast diffusivity. Moreover, immobilized
IL can not only increase the interface between IL and CO2, but can also form a thin layer of IL phase to
overcome the problem of a low mass transfer rate (due to the high viscosity of IL). The IL-functionalized
carrier materials are prepared by the grafting and impregnation methods. The grafting method can
provide many favorable conditions for its application in adsorption, catalysis and organic synthesis [18],
while the impregnation method is easy to operate and suitable for most ILs. The two methods have
their own advantages and disadvantages regarding cost, operation, IL loading and pore plugging, so
that the different effects on the separation performance of CO2 are worthy of research.

IL-modified porous materials created by physical adsorption and chemical bonding for CO2

adsorption have attracted great interest in applications for pre- and post-combustion capture
during recent years [19,20]. Kinik [21] studied the selectivity to CO2/CH4 and CO2/N2 on
1-n-butyl-3-methylimidazolium hexafluorophosphate, [Bmim][PF6], which is double by incorporation
into zeolitic imidazolate framework-8 (ZIF-8) by the impregnated method. Ruckart [22] reported the
use of six ILs containing the taurinate anion and paired with five tetraalkylammonium cations (where
alkyl = methyl, ethyl, propyl, butyl and hexyl) and a tetrabutyl phosphonium cation, which were used
to impregnate ordered mesoporous silica (SBA-15). The results showed that the adsorption capacity of
IL-modified SBA is 1.2 to 1.5 times that of bare SBA (0.7 mmol·g−1) at 25 ◦C and 0.105 MPa. Alessandro
Erto [23] presented the finding that the CO2 adsorption capacity of [Hmim][BF4]/AC (2.01 mol·kg−1)
is less than bare AC (2.51 mol·kg−1) at 80 ◦C and 0.03 MP, while that of [Emim][Gly]/AC is better
(3.19 mol·kg−1). Many studies have proven that appropriate IL-functionalization on AC is beneficial to
the increase of CO2 adsorption performance.

To further improve CO2 adsorption properties of adsorbents, the present work functionalized
novel hydrophobic phosphonium IL on the surface of AC using the impregnation and grafting
methods. The effects of IL loading and the pore structure of IL-modified AC on CO2/N2 selectivity
were investigated in detail. Dynamic adsorption properties at varied conditions of simulated flue
gas containing 15 vol.% CO2 and 85 vol.% N2 for this novel IL-modified sorbent were measured to
evaluate their potential for industry applications.

2. Materials and Methods

2.1. Materials

Coconut-shell activated carbon (particle size: 10–28 mesh) was purchased from Hainan Xing
Guang Activated Carbon Factory (Hainan, China); 3-chloropropyltriethoxysilane (purity: 97%) was
purchased from Beijing Fengtuo Chem Co, Ltd. (Beijing, China); Tri-n-octylphosphine (purity: 97%)
was purchased from Stream Chemicals, Inc. (Cambridge, UK); and bistrifluoromethanesulfonimide
lithium (purity: 99%) was purchased from J&K Scientific (Beijing, China). Others were analytical
reagents and were used directly.

2.2. Synthesis

2.2.1. IL-Modified AC by Impregnated Method

AC was pretreated with 5 mol/L nitric acid at 25 ◦C for 4 h. It was then washed with distilled
water until neural and dried at 90 ◦C under vacuum for 8 h before further use. The pretreated AC is
referred as bare AC in the following text.

A similar process [24] was used to prepare the phosphonium chlorine salt via the nucleophilic
displacement of 3-chloropropyltriethoxysilane with tri-n-octylphosphine in anhydrous toluene at
110 ◦C for 40 h. Then, phosphonium bistrifluoromethanesulfonimide (as shown in Figure 1) was
synthesized via an anion exchange reaction. Phosphonium chloride was stirred with an aqueous
solution of bistrifluoromethanesulfonimide lithium in methanol at room temperature for 30 h. The crude
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product was concentrated and washed with water. The product was extracted from the aqueous phase
using dichloromethane, then the phase was washed with distilled water until no residual chloride salt
was detected with the use of AgNO3. The phosphonium IL was dried in a vacuum at 80 ◦C for 6 h.
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Figure 1. Molecular structure of phosphonium IL and IL-modified AC by grafting method.

The prepared phosphonium IL (1 or 2 g) was added to 10 mL anhydrous ethanol, respectively, then
1 g pretreated AC was added to the mixture. After standing at room temperature for 24 h, the samples
were obtained by filtration and further dried at 80 ◦C under vacuum for 8 h. The product obtained was
labeled as IPT-AC-1 or IPT-AC-2, respectively. The product obtained was confirmed by FTIR (Figure 2).
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IR (γ max, cm−1) of IPT-AC-1: 2922, 2850 cm−1 (C–H, aliphatic); 1384, 1339 cm−1 (S=O); 1355 cm−1

(P–C); 1227, 1194 cm−1 (C–F); 1134 cm−1 (Si–O); 667 cm−1 (S–C).

2.2.2. IL-Modified AC by Grafting Method

The pretreated AC was added into the mixture of 1 or 2 g prepared phosphonium ILs dissolved
in 20 mL anhydrous ethanol. The mixture was stirred at a refluxing temperature for 36 h under the
protection of nitrogen atmosphere. The solid was filtered and extracted with acetone under a reflux
condition for 24 h via Soxhlet extraction. After vacuum drying at 95 ◦C for 8 h, the final adsorbent
was obtained and coded as GPT-AC-1 or GPT-AC-2 (as shown in Figure 1), respectively. The product
obtained was also confirmed by FTIR (Figure 2).



Coatings 2019, 9, 590 4 of 12

IR (γ max, cm−1) of GPT-AC-1: 2920, 2850 cm−1 (C–H, aliphatic); 1349 cm−1 (P–C); 1134 cm−1

(Si–O); 1084 cm−1 (C–F); 668 cm−1 (S–C).

2.3. Characterizations

2.3.1. Chemical Analysis

Infrared spectrum analysis was carried out using a Thermo Scientific Nicolet 380 FTIR
infrared spectrometer (Thermo Scientific, Waltham, MA, USA). An X-ray photoelectron spectroscopy
measurement was performed on an X-ray photoelectron spectrometer ESCALAB 250Xi (Thermo Fisher
Co, Waltham, MA, USA), and the binding energies were referenced to the neutral C1 speak at 284.8 eV.
The surface was observed by S-3000N scanning electron microscope (Hitachi, Tokyo, Japan).

Using an STA409C DTA/DSC-TG (Netzsch, Selb, Germany), the thermal stability of the sample
was analyzed at the heating rate of 10 ◦C/min in N2 atmosphere. The IL loading amount on the surface
of the AC was calculated by referring to the data measured with this instrument and assuming that all
the weight lost in the 200–700 ◦C range belonged to the IL [25,26].

2.3.2. Evaluation of Pore Structure

The pore structures of the samples were confirmed by N2 adsorption at −196 ◦C and CO2

adsorption at 0 ◦C using an Autosorb-1-MP (Quantachrome, Boynton Beach, FL, USA). The sample
was degassed at 150 ◦C and high vacuumed for 3 h to remove water and other volatile components.
The pore size distribution (PSD) and pore structure parameters were obtained using density functional
theory (DFT) with Quantachrome ASiQwin version 2.0 software (Quantachrome, NOVA2200e) based
on the adsorption isotherms.

2.3.3. CO2 Adsorption Performance

Adsorption selectivity of CO2 and N2 were measured on an IGA-003 Intelligent Gravimetric
Analyzer (Hiden Isochema Ltd, Warrington, UK). The adsorption isotherms of CO2 and N2 were
conducted at 25 ◦C and 0.1 MPa. Adsorption selectivity was the ratio of adsorption capacities in weight
percentage for CO2 versus N2. More detailed information on the apparatus and analyzing methods
have been reported in [27].

The dynamic adsorption and regeneration of mixed gases containing CO2 15 vol.% and N2 85
vol.% were carried out with a fixed bed column (7 mm inner diameter and 150 mm in height) apparatus
(Figure 3). The CO2 concentration at the outlet was analyzed by a GHX-3010E1 Infrared CO2 Analyzer
(Beijing Huayun Co, Beijing, China) with a given mixture of gas flow rate and pressure.

The dynamic adsorption was described through the concept of a breakthrough curve.
The breakthrough and saturation point are defined as the point at which the outlet concentration from
the column is about 5% or 95% of the inlet concentration respectively (c0). Adsorption capacity (A) was
defined as Equation (1).

The saturated adsorption capacity in the column is defined as Equation (1) [28]:

A =
V

mVm
(1)

where A denotes the CO2-saturated adsorption amount of (mmol g−1); m is the mass of the adsorbent
(g); V is the volume of CO2-saturated adsorption amount (m3); and Vm is the standard molar volume
at a standard temperature and pressure (0.1 MPa and 0 ◦C) (m3/mol).

V can be calculated using the breakthrough curve according to Equation (2) [29]:

V = Q
∫ t2

t1

(c2 − c1)dt (2)
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where Q is the gas flow rate (mL/min); c1 and c2 represent the outlet CO2 concentrations at the
breakthrough and saturation points during the adsorption process (vol.%), respectively; and t1 and t2

represent the time of the breakthrough point and saturation point (min), respectively.
The regeneration performance of IL-modified AC adsorbents was investigated by releasing

pre-adsorbed CO2 in inert N2 at 100 ◦C for 1 h. The temperature of adsorbents was then cooled to
25 ◦C for the second adsorption.
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3. Results and Discussion

3.1. Characterization

3.1.1. X-ray Photoelectron Spectroscopy Analysis

Figure 4 displays the XPS spectrum of the surface of bare AC and GPT-AC-1. Only the peaks of C
1s and O 1s exist in the XPS spectrum of bare AC. The appearance of new peaks at 688.6, 397.7, 168.4,
132.9 and 103.5 eV are attributed to the F 1s, N 1s, S 2p, P 2p and Si 2p sourced from the IL, respectively.
Therefore, the signal evidently shows that phosphonium IL has been grafted onto the silica surface.
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Figure 4. XPS spectrum of the surface of AC (a) and GPT-AC-1 (b).
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3.1.2. Thermogravimetric Analysis

It has been proven that thermogravimetric analysis (TGA) is a useful technique for measuring
the IL loading amount based on the weight loss of the adsorbent [30]. Figure 5 shows TGA curves of
GPT-AC-1, GPT-AC-2, IPT-AC-1 and IPT-AC-2. The mass loss up to 200 ◦C corresponds to pre-adsorbed
water and gas. According to the thermogravimetric curve observed in the range of 200–700 ◦C, the IL
loading amount for GPT-AC-1, GPT-AC-2, IPT-AC-1 and IPT-AC-2 was 9.55, 9.85, 15.71 and 31.12 wt.%,
respectively. The impregnation method can significantly increase the IL loading amount, while the
grafting method restricts the IL loading due to the limited number of groups on the AC surface.
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3.1.3. Scanning Electron Microscope (SEM) Analysis

Figure 6 displays a scanning electron morphology of activated carbon-supported IL. The pore
structure of GPT-AC-2 prepared by the grafting method was well developed due to chemical bond
on the surface of the carrier, which had little effect on the pore structure. Meanwhile, IPT-AC-1
prepared via the impregnation method was relatively less porous, and the ordered pores could hardly
be observed. A higher IL loading may have blocked the pores, leading to a more serious plugging
phenomenon. It is also obvious that the pores of IPT-AC-1 were packed with a thin IL film.
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3.1.4. Evaluation of Pore Structure

The pore structure parameters and pore size distribution were obtained based on the N2 sorption
isotherm, as illustrated in Table 1. As shown in Table 1, the pores of AC modified by IL were mainly
micropores, which are favorable for CO2 adsorption. The micropores in AC have made a great
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contribution to the adsorption of CO2 [31]. The grafted samples GPT-AC-1 and GPT-AC-2 were
superior to the impregnated samples in pore volume and specific surface area, which was a result of
the lower IL loading amounts by the grafted samples in combination with TGA. As the IL loadings
increased, the pores reduced more, and it is this proven that the grafting method can better maintain
the specific surface area and accumulated pore structure of the carrier, which was also confirmed by
the SEM analysis.

Table 1. Pore structure parameters of IL-modified AC using N2 sorption.

Sample
Distribution of Pore Volume with Aperture-Width CPV CSA

0–2 (nm) 2–24 (nm) (cm3
·g−1) (m2

·g−1)

GPT-AC-1 72.775% 27.225% 0.318 502.0
GPT-AC-2 70.574% 29.426% 0.334 549.6
IPT-AC-1 65.825% 34.175% 0.263 431.3
IPT-AC-2 48.078% 51.922% 0.191 277.6

CPV—cumulative pore volume; CSA—cumulative specific surface area.

CO2 was used as the adsorbed substance to fill the micropores in the adsorbent, which is more
suitable for analysis of microporous structures [32,33]. The micropore size distribution of each sample
was obtained according to the adsorption isotherms of CO2, as shown in Figure 7. The y-axis in Figure 7
indicates the rate of change of the pore volume v (cm3/g) according to the pore dimensionality dp (nm).
The pore size of all samples was mostly in the range of 0.2–1.0 nm.
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3.2. CO2/N2 Selectivity

Figure 8 shows the CO2 and N2 adsorption capacity and CO2/N2 selectivity at 0.1 MPa and 25 ◦C.
It is observed that all IL-modified AC had better adsorption selectivity of CO2/N2 in comparison
with bare AC. With the increase of IL loading, the selectivity of the samples increased gradually as
well. In particular, IPT-AC-1 and IPT-AC-2 prepared by the impregnation method had better CO2/N2

selectivity due to a higher IL loading amount on the surface of the AC.
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Since IL covering the surface of the carrier can form a layer of thin film, it can permit CO2

adsorption and effectively block the entry of N2 (as shown in Figure 9). It is worth noting that for
IPT-AC-1 and IPT-AC-2, IL loading of the latter was twice as much as that of the former, but the
selectivity was not significantly improved. This may have been due to excessive IL loading that blocked
the channel, as determined through pore structure analysis. The blockage of pores leads to a decrease
of the specific surface area and cumulative pore volume (CPV), which in turn leads to a decrease in
CO2 adsorption capacity.
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Therefore, the selection of the appropriate immobilization method and IL loading can improve
the surface performance and pore structure of AC. By maintaining a large specific surface area and
cumulative pore volume and a suitable IL layer, a higher CO2 adsorption performance can be obtained.

3.3. Dynamic Adsorption Performance

Gas flow rate and adsorption pressure are important operational parameters in determining the
efficiency of adsorbents in the continuous process of industrial treatment. The dynamic adsorption
properties of GPT-AC-2 and IPT-AC-1 in the gas mixture containing 15 vol.% CO2 and balanced N2

were investigated. The influences of flow rates and pressure on the CO2 breakthrough curves are
shown in Figures 10 and 11.

3.3.1. Effect of Flow Rate

As shown in Figure 10, the breakthrough points of GPT-AC-2 and IPT-AC-1 decreased at high flow
rates where the breakthrough curves shifted toward the origin. When the flow rate increased to a high
value, the space time of the gaseous adsorbent was shortened, leading to earlier adsorbate penetration.

Higher flow rates might have also strengthened mass transfer and made the breakthrough curve
of both samples steeper. It is worth noting that the breakthrough curve of IPT-AC-1 was relatively flat.
The steepness of the breakthrough curve indicates the magnitude of mass transfer resistance, and a
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steeper curve indicates a smaller mass transfer resistance. In Figure 10, it can be seen that the mass
transfer resistance of GPT-AC-2 is low.
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Figure 10. CO2 breakthrough curves of GPT-AC-2 (a) and IPT-AC-1 (b) at 0.2 MPa and 25 ◦C.
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Figure 11. Breakthrough curves of GPT-AC-2 at 100 mL/min (a–1), 300 mL/min (a–2), 500 mL/min (a–3);
IPT-AC-1 at 100 mL/min (b–1), 300 mL/min (b–2), 500 mL/min (b–3).

For porous adsorbents, CO2 adsorption diffusion may be very important. In the range of
experimental gas flow rates, the diffusion process of CO2 on adsorbents consists of gas film diffusion
and intra-particle diffusion [34–36]. The mass transfer resistance of gas film is affected by flow
rate and pressure, and the intra-particle diffusion resistance is determined by the pore structure of
adsorbents [37]. When the flow rate is kept at lower value, the gas film diffusion may be an important
rate-controlling step in the CO2 adsorption process. The longer the gas stays in the adsorption bed, the
more sufficient the gas is on the adsorbents, which is beneficial to the diffusion into the pore channel.
Under the same experimental conditions, the external diffusion resistance of two modified samples is
not significantly different, but the intra-particle diffusion resistance is significantly different due to
the difference of micropore structure. Combined with the porosity analysis and SEM analysis of the
two samples, the pore structure of GPT-AC-2 is more developed and the blockage of IL in the pore is
lessened, leading to low mass transfer resistance of GPT-AC-2 in the pore.
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3.3.2. Effect of Adsorption Pressure

To express the effect of pressure, the breakthrough curves of two adsorbents in CO2/N2 mixture in
the range of pressure from 0.2 to 0.6 MPa at a given gas flow rate are compared (as shown in Figure 11).
It is worth noting that the effect of pressure on the breakthrough curves for GPT-AC-2 and IPT-AC-1
are different.

The overall tendency for GPT-AC-2 is that a higher pressure leads to the breakthrough curves
shifting towards the right and a longer breakthrough time, especially at lower gas flow rates, because
of a decrease in the mean free s, the breakthrough time does not always increase. Moreover, the
breakthrougpath of gas at higher pressures. However, as the pressure continuously increases at higher
flow rateh curves become obviously steeper with an increase in pressure, especially at lower flow rates.

The breakthrough curves of IPT-AC-1 show that the effect of pressure is similar to that of GPT-AC-2,
but there are obvious differences in behavior at 100 and 300 mL/min. There is no significant change
in the breakthrough point with an increase of pressure at a flow rate of 100 mL/min, while longer
penetration and breakthrough time occur at 300 mL/min. It is also observed that with an increase
of pressure, the steepness of the breakthrough curve is also varied at different flow rates, indicating
that IPT-AC-1 with a higher IL loading may possess a more complicated mass transfer resistance
than GPT-AC-2.

3.3.3. Adsorption Capacity

CO2-saturated adsorption amounts of GPT-AC-2 and IPT-AC-1 based on breakthrough curves
are presented in Table 2. A reduction of breakthrough time by increasing the flow rate reflects a
reduction in adsorption; for example, the CO2 adsorption capacity for GPT-AC-2 decreased from 1.105
to 0.748 mmol·g−1 at 0.2 MPa when the flow rate increased from 100 to 500 mL/min, while decreasing
from 0.872 to 0.681 mmol·g−1 for IPT-AC-1.

Table 2. CO2-saturated adsorption capacities of GPT-AC-2 and IPT-AC-1.

Pressure
(MPa)

GPT-AC-2
Adsorption
(mmol·g−1)

IPT-AC-1
Adsorption
(mmol·g−1)

GPT-AC-2
Adsorption
(mmol·g−1)

IPT-AC-1
Adsorption
(mmol·g−1)

GPT-AC-2
Adsorption
(mmol·g−1)

IPT-AC-1
Adsorption
(mmol·g−1)

100 mL/min 300 mL/min 500 mL/min

0.2 1.105 0.872 0.843 0.731 0.748 0.681
0.3 1.134 0.893 0.877 0.752 0.824 0.723
0.4 1.278 1.181 1.157 0.815 1.112 0.925
0.5 1.383 1.323 1.268 1.106 1.221 0.839
0.6 1.746 1.240 1.335 1.133 0.856 0.832

The CO2 adsorption capacity increased with increasing pressure, while there was no obvious
effect at higher pressures or gas flow rates. The adsorption capacity of GPT-AC-2 enhanced from
1.105 to 1.746 mmol·g−1 at a 100 mL/min flow rate with increasing pressure from 0.2 to 0.6 MPa. It is
noticed that the effect of pressure on CO2 adsorption capacity for IPT-AC-1 was slightly different at
higher pressures. This clearly indicates that there is a corresponding optimal operating condition for
phosphonium IL-modified AC prepared with different methods.

4. Conclusions

Phosphonium-based IL was immobilized on AC by grafting and impregnation methods, and CO2

and N2 sorption behavior of modified samples as investigated and compared with a bare AC. It was
suggested that the ionic liquid was successfully and firmly immobilized on AC, and the IL-impregnated
sample provided a higher IL-selecting film for CO2/N2 separation. The adsorption capacity and
breakthrough curves of CO2 on modified AC were further investigated at different pressures and
gas flow rates by the dynamic column breakthrough method. The functionality by covalent grafting
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provided a higher micropore, showing higher CO2 dynamic adsorption and mass transfer. This could
allow for the adjustment of the IL phase and alter the operating conditions of adsorption processes by
achieving a better CO2-selective adsorption.
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