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Abstract: In this study, comprehensive analyses were used to evaluate the physical and chemical
properties of basalt fibers, employing a variety of instruments. Additionally, heat treatment and
solvent treatment methods were used to eliminate the sizing present on fiber surfaces. The heat
treatment process involved determining the optimal temperature and duration required to remove
the sizing from the basalt fibers. The appearance, chemical composition, and crystal structure of the
original fibers were examined, including those subjected to heat treatment and those treated with
solvents. These treated fibers were then incorporated into concrete to create basalt fiber-reinforced
concrete (BFRC) specimens for mechanical tests, which assessed their compressive, flexural, and
splitting tensile strengths. The results revealed that heat treatment at 300 ◦C for 180 min effectively
removed the sizing on the basalt fibers, and the heat-treated basalt fibers exhibited uniform dispersion
inside the BFRC specimens. In addition, solvent treatment primarily removed the soluble components
of the sizing. The mechanical properties of specimens with sizing-removed basalt fibers were better
than the specimens with original basalt fibers and the benchmark specimens. Crucially, the mechanical
test results demonstrated that BFRC incorporating heat-treated basalt fibers exhibited a superior
mechanical performance compared to BFRC incorporating original fibers or fibers subjected to the
solvent treatment.

Keywords: basalt fiber; sizing; heat treatment; solvent treatment; mechanical test

1. Introduction

Concrete is a composite material with low tensile strength and tensile strain limits.
Adding fiber to concrete can enhance its flexural strength, tensile strength, impact resis-
tance, toughness, and abrasion resistance [1,2]. Fiber-reinforced concrete (FRC) has been
widely used in infrastructure, road construction, bridges, and offshore platforms [3,4].
In accordance with previous research, the addition of fibers to concrete necessitates careful
consideration of various factors, including the fineness modulus (FM) of the aggregate,
fiber type, fiber length, the amount of fiber added, the dispersion of fibers in concrete, and
the bonding between the fibers and concrete [5–9].

Incorporating fibers into concrete can effectively suppress the formation and propaga-
tion of cracks, as it significantly mitigates concrete shrinkage [10,11]. Fiber lengths suitable
for concrete varies with aggregate size. Fibers of 6 mm enhance the compressive strength
of FRC, but 24 mm fibers bolsters the flexural strength of FRC [12–14]. Previous research
indicates that adding fibers within the range of 0.75% to 1% (w/w) results in the most
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substantial improvement in the mechanical properties of concrete. For example, adding 1%
carbon fibers or Kevlar fibers with a length of 24 mm to concrete can increase the compres-
sive and flexural strengths of fiber concrete by 4.4~39% and 27~38%, respectively, compared
with plain concrete [15–17]. Hybrid fiber-reinforced concrete (HFRC), incorporating two
or more types of fibers, demonstrates significantly improved static and dynamic behavior
compared to single fiber-reinforced concrete. These hybrid fibers comprise various ma-
terials, including polypropylene, steel, glass, cellulose, carbon, aramid, and sisal fibers.
Their combined use augments the energy absorption capacity, thereby improving impact
resistance across varying water–cement ratios, and volume or weight fractions [18–22].

Common fibers used to reinforce concrete include carbon, steel, glass, basalt, and
polypropylene. Among these fibers, basalt fiber has a production process and composition
similar to glass fiber, but it possesses better physical properties and is less expensive than
carbon fiber [5,6]. Basalt fiber is an inorganic material made from natural basalt rocks
that are melted at temperatures ranging from 1500 ◦C to 1700 ◦C through the spinneret
method [7,8]. In the manufacturing process, the surfaces of fibers are coated with a sizing
layer to improve its ability to be processed. The sizing consists of a film former, a coupling
agent, and a lubricant, with the film former accounting for approximately 80 wt% of
the total mass of the sizing [23–25]. The film former is a low-molecular-weight material,
while the coupling agents are typically called silane coupling agents, which are siloxane
compounds known for their high hydrolysis resistance [26,27].

The presence of sizing on the surfaces of fibers can affect the mechanical behavior of
fiber-reinforced composites. Cement matrix composite specimens with sizing-removed
carbon fibers can attain higher compressive strengths compared to untreated carbon fiber
cement matrix composite specimens [28–30]. The sizing-removed fibers can be easily
dispersed in the cementitious composite, and the bonding between the fibers and the cement
can be notably improved. Common sizing removal methods include heat treatment and
solvent treatment. With the heat treatment method, most of the sizing can be decomposed
from the surfaces of glass fibers and basalt fibers at about 300 ◦C, causing a decrease in the
tensile force of the fiber filaments due to the removal of the sizing [31–35].

Certain studies have indicated that solvent treatments can efficiently eliminate the sur-
face sizing of glass fibers without compromising the mechanical strength of the GFRP [36].
Solvent treatment could remove the soluble sizing, which accounts for 70% to 80% of the
total sizing, from the fibers’ surfaces. The results of spectroscopy and elemental analysis
show that the soluble sizing is composed of film formers and other agents, while the
insoluble sizing might contain silane [37–42].

The objective of this study is to investigate the influence of the surface treatment of
basalt fibers on the mechanical behavior of fiber-reinforced concrete. To remove the sizing,
both the heat-treated and solvent-treated methods were employed. The target temperature
and holding time for the heat treatment method were determined based on thermogravimet-
ric analysis (TGA). The soluble chemical composition of the sizing on the surface of basalt
fibers was also analyzed using gas chromatography with mass spectrometry (GC/MS).
In addition, tests were conducted to assess the appearance, elemental composition, crystal
structure, and filament tensile force of the basalt fibers. The compressive, flexural, splitting
tensile strength of basalt fiber-reinforced concrete (BFRC) specimens with the original,
heat-treated, and solvent-treated basalt fibers were obtained.

2. Material and Method

This section describes the research method for assessing the physical and chemical
properties of basalt fibers before and after surface treatment. Additionally, the tensile
force-displacement relationship of the basalt filaments was obtained through a tensile
test. According to a previous study [35], the overall mechanical properties of BFRC with
basalt fibers 24 mm in length were better than with basalt fibers that were 6 mm and
12 mm long, especially in regard to flexural strength, tensile strength, and impact resistance.
Furthermore, the mechanical properties of BFRC with a ratio of 1% for fiber to cement was
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better than with 0.5% and 1.5%; thus, 1% chopped basalt fibers of 24 mm (Sheng Peng
Applied Materials Co., Ltd., Yunlin County, Taiwan) was used in this study. The linear
density and diameters of the basalt fibers used in this study were 300 tex and 11.7 ± 1.93 µm
(N = 15), respectively. Figure 1 displays the appearance of the basalt fibers.
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Figure 1. Photo of basalt fibers (a) basalt fiber tows; and (b) cross-section of original basalt fibers by
SEM (1000×).

2.1. Surface Treatment of Basalt Fibers

The heat treatment method and the solvent treatment method were used to remove
the sizing from the surfaces of basalt fibers, and the treated fibers were then added to the
concrete for reinforcement. The physical–chemical properties of the original, heat-treated,
and solvent-treated basalt fibers were observed and analyzed using thermogravimetric
analysis (TGA), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy
(EDS), and X-ray diffractometer (XRD); a filament tensile test was also performed.

2.1.1. Heat Treatment

In order to analyze the treatment temperature and time of the basalt fibers in the heat
treatment method, a TGA (SDTA851e, Mettler Toledo, Greifensee, Switzerland) was per-
formed. Nitrogen was used as a protection gas with a flow rate of 30 mL/min. The sample,
weighing about 20 mg, was placed in an alumina ceramic crucible, and the reaction gas was
zero-grade air with a flow rate of 30 mL/min. The target temperature for sizing removal
was determined by the TGA, with a temperature range of 25 ◦C to 700 ◦C and a heating rate
of 10 ◦C/min. The sample was gradually heated to the target temperature at a heating rate
of 10 ◦C/min after being held at a 25 ◦C isothermal state. The temperature was maintained
for a specific time before being gradually raised to 700 ◦C at a heating rate of 10 ◦C/min.
The mass loss was then checked at different time points under the target temperature after
determining said target temperature.

2.1.2. Solvent Treatment

The sizing on the surfaces of the basalt fibers was extracted using the solvent treatment
method with isopropyl alcohol (IPA, 99.8%, Emperor Chemical Co., Ltd., Taipei City,
Taiwan). The basalt fibers were first dried at 80 ◦C for 24 h and weighed using an electronic
scale (TX223L, Shimadzu, Kyoto, Japan). Then, the basalt fibers were immersed in an
IPA solution at 23 ◦C for 24 h and dried in an oven (KOE-270, Kotsao, New Taipei City,
Taiwan) at 80 ◦C for 24 h to remove the solvent. After that, the mass of the basalt fibers was
measured to determine the amount of surface sizing removed. Furthermore, the remaining
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sizing on the treated fibers was analyzed by TGA, with a temperature range of 25 ◦C to
700 ◦C and a heating rate of 10 ◦C/min.

2.2. Sizing Composition Analysis of Basalt Fibers

In this study, the soluble components of the sizing on the surface of the original
basalt fibers by IPA were analyzed using gas chromatography/mass spectrometry (GC/MS,
7890B/5977A, Agilent Technologies, Santa Clara, CA, USA). A capillary column (19091S-
433, Agilent Technologies, Santa Clara, CA, USA) was utilized for the pending sample
separations in GC, with a column length of 30 m, inner diameter of 0.25 mm, and a film
thickness of 0.25 µm. Helium (He) gas was employed as the carrier gas, flowing at a rate
of 1 mL/min. The ultrasonic extraction method was employed for sample preparation,
wherein the basalt fibers were soaked in a toluene solution to extract the sizing, and then
passed through a 13 mm PTFE syringe filter with a pore size of 0.22 µm to obtain the
sample. The pending sample was injected into the GC/MS in a splitless mode with an
injection volume of 1 µL and an inlet temperature of 270 ◦C to gasify the pending sample.
The oven’s initial temperature was set at 230 ◦C for 6 min, followed by heating to 280 ◦C at
a heating rate of 50 ◦C/min and holding for 5 min. Subsequently, the oven’s temperature
was raised to 310 ◦C at the heating rate of 60 ◦C/min and held for 3 min.

2.3. Microscopic Observation and Analysis of Basalt Fibers

The morphologies of the original, the heat-treated, and the solvent-treated basalt fibers
were examined using SEM (TM4000plus II, Hitachi High-Tech, Kyoto, Japan) with a test
voltage of 15 kV. The chemical composition of the fibers was analyzed using EDS (MICS
F+/X-STREAM-2, Oxford, UK). Additionally, the crystal structure of the basalt fibers was
analyzed using an XRD (D2 Phaser, Bruker, Rheinstetten, Germany), with Cu Kα radiation
as the X-ray source and a test voltage of 30 kV. The scan step size was set at 0.02◦, and the
range of the 2θ was from 10◦ to 80◦.

2.4. Tensile Force of Basalt Filament

The tensile force and displacement of the original, the heat-treated, and the solvent-
treated basalt fiber filaments were obtained by the tensile testing machine (QC-513M1,
Cometech, Taichung City, Taiwan) at a tensile rate of 0.5 mm/min based on ASTM D3822-
07 [43]. The loadcell capacity of the tensile testing was 300 gf. In the single-filament tensile
test of this study, the fiber testing length was 25 mm. Initially, a single fiber was extracted
and glued on a standard paper frame. The paper frame was used to protect the fiber from
direct gripping. Both sides of the frame were cut before the test, leaving only the filament
to be pulled. The load was recorded with the grip displacement. The fiber was brittlely
fractured at the peak load. At least 15 pieces were tested for each type of fiber.

2.5. BFRC Test Method

The BFRC specimens were created using 24 mm chopped basalt fibers, Type I Portland
cement (Taiwan Cement Corp., Taipei City, Taiwan), aggregate, and water. The aggre-
gate’s fineness modulus (F.M.) was 6.31, and the test was conducted following the ASTM
C33/C33M-18 standard [44]. The weight ratio of cement to fine aggregate and coarse
aggregate was set to 1:1.05:2.25, and the water–cement ratio was 0.6. The basalt fiber-to-
cement weight ratio was 10‰ for the BFRC specimens. Three different types of basalt fibers
were used in this study, including original, heat-treated, and solvent-treated basalt fibers.
According to the TGA analysis results, the heat-treated basalt fibers were obtained from
the muffle furnace (PF-40, Prema, Taipei City, Taiwan), heated at 300 ◦C for three hours.
In addition, the solvent-treated basalt fibers were immersed in IPA solution at 23 ◦C for
24 h and dried in the oven at 80 ◦C for 24 h in order to remove the solvent. Finally, those
fibers were pneumatically dispersed by an air compressor under 90 psi for one minute.
The production process of the BFRC specimen was in accordance with past research [18].
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The compressive, flexural, and splitting tensile tests were conducted following ASTM
C39/C39M-21, ASTM C496/C496M-17, and ASTM C293/C293M-16, respectively [45–47].
All specimens were tested after 28 days of curing. Table 1 explains the naming of all
specimens for the above tests. For example, HBFRC-F referred to the specimen with
heat-treated basalt fibers for the flexural test.

Table 1. Material properties of carbon fiber.

Item Naming Description

Specimen

B Benchmark (without fiber)
OBFRC BFRC with original basalt fibers
HBFRC BFRC with heat-treated basalt fibers
SBFRC BFRC with solvent-treated basalt fibers

Mechanical test
C Compressive test
F Flexural test
S Splitting tensile test

3. Physical–Chemical Property Results

The surface treatment results were divided into heat treatment and solvent treatment.
The test results of the heat and solvent treatments for the removal of sizing from basalt fibers
are described in the following subsections. The microscopic, chemical elements, and crystal
structures of the original, heat-treated, and solvent-treated basalt fibers were as follows.

3.1. Surface Treatment Results

The weight loss ratio of the basalt fibers after heat treatment and solvent treatment
were shown as follows.

3.1.1. Heat Treatment

The relationship between the mass ratio and temperature of basalt fibers was analyzed
using TGA and presented in Figure 2. The temperature range was set from 25 ◦C to 700 ◦C,
with a heating rate of 10 ◦C/min. As shown in Figure 2, the basalt fibers experienced less
than 0.1% mass loss below 260 ◦C, while the primary mass loss occurred between 260 ◦C
and 488 ◦C, resulting in a total mass loss of about 1%. This indicates that the sizing of
the basalt fibers began to decompose at 260 ◦C, which coincides with the decomposing
temperature of most commercial sizing of basalt fibers, around 300 ◦C [33,34].
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Thus, a target temperature of 300 ◦C was chosen for sizing removal, and three different
holding time durations (60, 180, and 300 min) were tested to determine the optimal heat
treatment process. The mass ratio–time relationship of the 20 mg basalt fiber under different
heating rates is presented in Figure 3. The mass loss for holding times of 60, 180, and 300 min
at 300 ◦C were 0.60%, 0.68%, and 0.72%, respectively.
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3.1.2. Solvent Treatment

The original basalt fibers had a mass of 25.0 g, while the solvent-treated basalt fibers
weighed 24.82 g, and the amount of sizing extracted from the surface of the basalt fibers
was 0.7%. In order to determine the effectiveness of the solvent treatment method, the
mass ratios of the 20 mg original and solvent-treated basalt fibers were tested using TGA,
as shown in Figure 2. The maximum mass losses for the original and solvent-treated
basalt fibers were 1% and 0.68%, respectively. Notably, the maximum mass loss for the
solvent-treated basalt fibers was lower than that of the original basalt fibers, indicating
that the part of the sizing was successfully extracted using the solvent-treatment method.
As suggested by other researchers, parts of the sizing still remained on the surfaces of the
basalt fibers after solvent extraction [48].

3.2. Sizing Composition Analysis

Figure 4 displays the chromatography of the extractive solution of the basalt fibers.
In the chromatography at the 7th to 9th minutes, an unknown substance was observed to
decompose at 280 ◦C, yielding two peaks via GC/MS. The mass-to-charge ratio and poten-
tial substance of these two unknown peaks are shown in Figures 5a and 5b, respectively.
Based on the database from the NIST mass spectrometry data center, the major unknown
substance in “peak A” was identified as “adipic acid, nonyl 2-octyl ester (C23H44O4)”,
with match factor (MF) and reverse match factor (RMF) scores of 750 and 802, respectively.
This positive identification suggests it was used as an intermediate for organic synthesis, as
well as in the production of lubricants, coatings, adhesives, sealants, elastomers, and other
applications.
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peak B.

The unknown substance in “peak B” was identified as “1,2-cyclohexanedicarboxylic
acid dinonyl ester (C26H48O4)”, with match factor (MF) and reverse match factor (RMF)
scores of 832 and 856, respectively, which shows the positive identification. This sub-
stance, “1,2-cyclohexanedicarboxylic acid dinonyl ester”, is commonly used to lubricate
components in plastic production.

Like most of the sizing research on fiber surfaces, this result indirectly confirmed
that parts of siloxane-based addition agents were imperfectly dissolved by the organic
solvent [48–50].

3.3. Microscopic Observation and Analysis

The surface morphology, chemical elements, and crystal structures of the basalt fibers
were observed and analyzed using SEM, EDS, and XRD. Figure 6a–e present the SEM
observations of the original basalt fibers, those heat-treated for varying durations, and
the solvent-treated basalt fibers’ surface morphologies. It is evident that the original and
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heat-treated basalt fibers at 300 ◦C for 60 min, and solvent-treated basalt fibers’ surfaces,
had sizing or impurities. However, sizing was removed from the surfaces of the basalt
fibers by heat treatment at 300 ◦C for 180 and 300 min. The above results indicate that a heat
treatment at 300 ◦C for 180 min effectively removes the sizing from the surfaces of basalt
fibers. Therefore, the optimal condition for the mechanical test of the BFRC specimens was
a temperature of 300 ◦C for 180 min. The EDS results reveal that the chemical elements
present in the basalt fibers are Si, Fe, Al, Ca, and Mg, as indicated in Table 2. The weight
percentage concentration of Si decreased from 25.3% to 23.7% in the original, heat-treated,
and solvent-treated basalt fibers. The Si content in the basalt fibers was reduced after heat
treatment. Heating the basalt fibers for longer durations could result in the growth of iron,
as evidenced by an increase in iron weight percentage concentration from 8.5% to 10.7%
when the heating time was 300 min.
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Table 2. EDS results of the original, heat-treated and surface-treated basalt fibers.

Chemical
Element

Original
BF (wt%)

300 ◦C, 60 min
BF (wt%)

300 ◦C, 180 min
BF (wt%)

300 ◦C, 300 min
BF (wt%)

Solvent-Treated
BF (wt%)

O 45.3 44.2 44.1 43.2 46.6
Si 25.3 25.1 25.0 23.7 24.6
Fe 8.5 8.9 8.9 10.7 7.9
Al 8.2 8.2 8.3 8.1 7.3
Ca 5.3 5.1 5.2 5.9 5.3
Mg 3.2 3.3 3.3 3.2 2.8
Na 3.1 3.2 3.2 3.0 2.6
K 2.0 1.9 2.0 2.2 2.0

The XRD patterns of the different fibers are shown in Figure 7. The original basalt fiber
specimens were amorphous, with no crystals or diffraction peaks present in the diffrac-
tion spectrum. This observation agrees with the analysis by Chakartnarodom et al. [51].
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The XRD patterns of the heat-treated and solvent-treated basalt fibers showed a corre-
sponding peak of 29.4◦ (2θ), indicating the presence of a crystalline phase of calcite (CaCO3,
JCPDF-47-1743).
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3.4. Peak Tensile Force of Basalt Filament

Table 3 shows the peak tensile force and its corresponding displacement for both
the original and surface-treated basalt fiber filaments. The average peak tensile force
and displacement of the original filament were 22.31 gf and 0.55 mm, respectively, with
corresponding standard deviations (σ) of 0.74 gf and 0.01 mm, respectively. The average
peak tensile force of the heat-treated filament at 300 ◦C for 60, 180, and 300 min, and
the solvent-treated filament were 19.00 gf, 21.76 gf, 14.60 gf, and 14.12 gf, respectively.
Compared to the original filament, the heat-treated filament at 300 ◦C for 60 min, 180 min,
and 300 min, and the solvent-treated filament experienced a decrease in the average peak
tensile force of about 15%, 2%, 35%, and 37%, respectively. These results suggest that the
peak tensile force of basalt fibers is affected by the heat treatment time, with longer heating
times resulting in lower tensile forces.
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Table 3. Peak tensile forces and displacements of the original and the surface-treated basalt fiber filaments.

No.
Original BF 300 ◦C, 60 min BF 300 ◦C, 180 min BF 300 ◦C, 300 min BF Solvent-Treated BF

Force
(gf)

Displ.
(mm)

Force
(gf)

Displ.
(mm)

Force
(gf)

Displ.
(mm)

Force
(gf)

Displ.
(mm)

Force
(gf)

Displ.
(mm)

1 23.12 0.55 19.07 0.48 23.44 0.35 13.24 0.39 13.81 0.32
2 22.19 0.55 18.06 0.42 19.99 0.55 11.80 0.38 11.88 0.26
3 21.75 0.55 16.09 0.37 22.48 0.58 14.22 0.42 19.89 0.44
4 21.75 0.54 18.96 0.56 20.47 0.57 16.38 0.54 13.57 0.29
5 21.99 0.55 16.86 0.44 20.87 0.66 12.36 0.35 11.75 0.31
6 22.20 0.55 21.19 0.46 21.18 0.49 22.51 0.53 10.68 0.25
7 21.75 0.55 13.97 0.42 19.35 0.69 17.15 0.50 12.92 0.29
8 20.84 0.55 16.13 0.45 21.11 0.66 13.58 0.33 13.97 0.28
9 22.14 0.54 27.39 0.51 27.29 0.60 18.30 0.38 16.31 0.35

10 22.93 0.54 12.36 0.45 23.17 0.61 11.94 0.37 15.38 0.29
11 23.41 0.54 21.82 0.38 19.73 0.51 12.99 0.42 17.03 0.48
12 22.91 0.55 21.80 0.49 23.04 0.46 15.49 0.38 18.80 0.41
13 22.28 0.55 24.24 0.55 21.75 0.34 11.85 0.53 14.61 0.39
14 21.80 0.54 15.57 0.53 20.98 0.36 13.63 0.43 11.01 0.43
15 23.52 0.54 21.53 0.45 21.59 0.68 13.57 0.46 10.15 0.29

Avg. 22.31 0.55 19.00 0.46 21.76 0.54 14.60 0.43 14.12 0.34
σ 0.74 0.01 4.04 0.06 1.97 0.12 2.95 0.07 2.93 0.07

F value - - 0.033 - 0.139 - 0.062 - 0.063 -
p value - - 5.20 × 10−8 - 3.59 × 10−4 - 3.00 × 10−6 - 3.29 × 10−6 -

t value - - 3.12 - 1.00 - 9.81 - 10.50 -
p value - - 7.07 × 10−3 - 3.31 × 10−1 - 3.57 × 10−8 - 1.38 × 10−8 -

Force is the peak tensile force of BF filament; Displ. is the displacement of BF filament; Avg. is the average value;
σ is the standard deviation.

Assuming a normal distribution for the single filament tensile forces under various
conditions, with a significance level of 0.05, a sample size of 15 in a single group, and degrees
of freedom amounting to 14, the analysis conducted using the F-test for variance yielded
the results presented in Table 3. The p-values of the one-tailed F-test were 5.20 × 10−8,
3.59 × 10−4, 3.00 × 10−6, and 3.29 × 10−6, respectively, indicating unequal variances
between the two populations. Consequently, this study proceeded with a t-test: two-sample
assuming unequal variances and with a significance level of 0.05. The null hypothesis
(H0) assumed no significant difference in average value (µ1 = µ2), while the alternative
hypothesis (Ha) suggested a significant difference in average value (µ1 ̸= µ2). The p-values
of the two-tailed t-test for “300 ◦C, 60 min BF”, “300 ◦C, 300 min BF”, and “solvent-
treated BF” were 7.07 × 10−3, 3.57 × 10−8, and 1.38 × 10−8, respectively. These results
led to the rejection of the null hypothesis, signifying a significant difference in average
values (µ1 ̸= µ2). However, for “300 ◦C, 180 min BF,” the p-value of the two-tailed t-test
was 3.31 × 10−1, suggesting no significant difference in tensile strength compared to the
original BF.

4. Mechanical Test of BFRC

The following section describes the materials, test methods, and mechanical test
results of BFRC specimens. The specimens were made of both original and surface-treated
basalt fibers, and the mechanical tests conducted were compressive, flexural, and splitting
tensile tests.

4.1. Compressive Test Result

The BFRC specimens consisted of three different types of basalt fibers: original, heat-
treated, and solvent-treated. Table 4 shows the compressive strengths of both the benchmark
and BFRC specimens after 28 days of curing. The average compressive strengths of speci-
mens B-C, OBFRC-C, HBFRC-C, and SBFRC-C were 23.76 MPa, 24.27 MPa, 24.44 MPa, and
25.16 MPa, respectively. The compressive strengths of the BFRC specimens increased by
2.2% for OBFRC-C, 2.9% for SBFRC-C, and 5.9% for HBFRC-C compared to the benchmark
specimen.
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Table 4. Compressive strength of the benchmark and the BFRC specimens.

Specimen B-C OBFRC-C HBFRC-C SBFRC-C

Compressive strength (MPa)
23.58 23.91 25.56 24.39
22.98 24.71 24.08 24.87
24.71 24.18 25.83 24.05

Avg. strength (MPa) 23.76 24.27 25.16 24.44
σ (MPa) 0.9 0.4 0.9 0.4

Avg. is the average value; σ is the standard deviation.

The BFRC specimens with heat-treated basalt fibers had the highest average compres-
sive strengths among all BFRC specimens.

4.2. Flexural Test Result

Table 5 shows the flexural strength of both the benchmark and BFRC specimens after
28 days of curing. The average flexural strengths of specimens B-F, OBFRC-F, HBFRC-F,
and SBFRC-F were 4.18 MPa, 4.61 MPa, 5.56 MPa and, 4.82 MPa, respectively. Compared
to the benchmark specimen, the average flexural strengths of the BFRC specimens were
increased by 10.2% for OBFRC-F, 15.2% for SBFRC-F, and 32.9% for HBFRC-F.

Table 5. Flexural strength of the benchmark and the BFRC specimens.

Specimen B-F OBFRC-F HBFRC-F SBFRC-F

Flexural strength
(MPa)

4.03 4.68 5.30 5.16
4.16 4.81 5.59 4.52
4.36 4.34 5.78 4.77

Avg. strength (MPa) 4.18 4.61 5.56 4.82
σ (MPa) 0.2 0.2 0.2 0.3

Avg. is the average value; σ is the standard deviation.

The BFRC specimens with heat-treated basalt fibers had the highest average flexural
strength among all specimens. Chopped basalt fibers possess toughness, whereas concrete
is an inherently brittle material. These results are consistent with previous research; when
combined with concrete, these fibers contribute to an increased toughness, mitigating
damage due to flexural forces and minimizing crack formation in order to improve the
flexural strength of concrete [2,52].

4.3. Splitting Tensile Test Result

The splitting tensile strength of the benchmark and BFRC specimens, after 28 days of
curing, are listed in Table 6. The average splitting tensile strengths for each specimen were
2.57 MPa in B-S, 2.62 MPa in OBFRC-S, 2.76 MPa in HBFRC-S, and 2.67 MPa in SBFRC-S.
Compared to the benchmark specimen, the average splitting tensile strengths of OBFRC-S,
HBFRC-S, and SBFRC-S were improved by 2.1%, 7.4%, and 4.0%, respectively. Notably, the
BFRC specimen with heat-treated basalt fibers had the highest splitting tensile strength
among all specimens.

Table 6. Splitting tensile strength of the benchmark and the BFRC specimens.

Specimen B-S OBFRC-S HBFRC-S SBFRC-S

Splitting tensile strength (MPa)
2.60 2.35 2.74 2.47
2.53 2.63 2.78 2.76
2.20 2.89 2.74 2.78

Avg. strength (MPa) 2.57 2.62 2.76 2.67
σ (MPa) 0.2 0.2 0.02 0.2

Avg. is the average value; σ is the standard deviation.
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4.4. Discussion

Based on the test results, it is evident that sizing-removed basalt fibers can improve
the mechanical performance of BFRC specimens. Among the BFRC specimens, those with
heat-treated basalt fibers exhibited higher mechanical strengths compared to those with
the original and solvent-treated basalt fibers, as seen in Figure 6. This could be due to the
absence of sizing on the surfaces of fibers, which strengthened the bonding force between
the cement and the fibers. Figure 8 illustrates the different types of basalt fibers used in
BFRC specimens after failure. The original fibers were difficult to disperse in concrete
due to the sizing on their surfaces, while the solvent-treated basalt fibers had residual
sizing, resulting in a slippage failure mode [53]. Despite the heat-treated basalt filaments
achieving lower tensile force, it could be uniformly dispersed in concrete, resulting in
higher mechanical strengths in the BFRC specimens compared to those with the original
and solvent-treated basalt fibers.
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5. Conclusions

Based on the results of the physical–chemical properties analysis of basalt fiber and
the mechanical tests of BFRC, the following conclusions can be drawn:

1. Based on a GC/MS analysis with the NIST database of extraction liquid of basalt
fibers, the results showed that the two unknown substances might be “adipic acid,
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nonyl 2-octyl ester (C23H44O4)” and “1,2-cyclohexanedicarboxylic acid dinonyl ester
(C26H48O4)”, respectively.

2. The original basalt fibers were amorphous, with no crystals or diffraction peaks in the
diffraction spectrum.

3. The SEM images indicate that the heat treatment method was more effective in
removing sizing from the basalt fibers compared to the solvent treatment method.

4. Based on the TGA mass ratio–temperature and mass ratio–time relationships of the
basalt fibers, the optimal conditions for removing sizing from the surfaces of the basalt
fibers were a target temperature of 300 ◦C and a holding time of 180 min.

5. The SEM image observation of the failed BFRC specimens indicated that the heat-
treated basalt fibers were more uniformly dispersed in the concrete than the specimens
with original and solvent-treated basalt fibers.

6. The results indicated that the mechanical properties of specimens with sizing-removed
basalt fibers (HBFRC and SBFRC) were better than the specimens with original basalt
fibers (OBFRC) and the benchmark specimens (B).

7. The compressive, flexural and split tensile test results show that BFRC specimens with
heat-treated basalt fibers exhibited higher strengths compared to those with original
and solvent-treated basalt fibers.
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