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Abstract: Comparing experimental results of the shear capacity of steel fiber-reinforced concrete
(SFRC) beams without stirrups to the capacity predicted using current design equations and other
available formulations shows that predicting the shear capacity of SFRC beams without mild steel
shear reinforcement is still difficult. The reason for this difficulty is the complex mechanics of the
problem, where the steel fibers affect the different shear-carrying mechanisms. Since this problem is
still not fully understood, we propose the use of artificial intelligence (AI) to derive an expression
based on the available experimental data. We used a database of 430 datapoints obtained from the
literature. The outcome is an artificial neural network-based expression to predict the shear capacity
of SFRC beams without shear reinforcement. For this purpose, many thousands of artificial neural
network (ANN) models were generated, based on 475 distinct combinations of 15 typical ANN
features. The proposed “optimal” model results in maximum and mean relative errors of 0.0% for the
430 datapoints. The proposed model results in a better prediction (mean Vtest/VANN = 1.00 with a
coefficient of variation 1 × 10−15) as compared to the existing code expressions and other available
empirical expressions, with the model by Kwak et al. giving a mean value of Vtest/Vpred = 1.01 and a
coefficient of variation of 27%. Until mechanics-based models are available for predicting the shear
capacity of SFRC beams without shear reinforcement, the proposed model thus offers an attractive
solution for estimating the shear capacity of SFRC beams without shear reinforcement. With this
approach, designers who may be reluctant to use SFRC because of the large uncertainties and poor
predictions of experiments, may feel more confident using the material for structural design.

Keywords: artificial neural networks; beams; database; design formula; fiber-reinforced concrete;
shear; steel fibers

1. Introduction

Because concrete is strong in compression but weak in tension, adding fibers to the material can
be a solution for the limited strength in tension. In structural applications, fiber-reinforced concrete is
combined with regular reinforcement steel. The type of fibers that are used, are most often steel fibers.
These fibers help to distribute cracks and keep the crack widths small [1].

One failure mode where crack shape and width is essential, is shear failure. When steel fibers are
included in the concrete mix, and the reinforced concrete element built with this concrete mix is tested in
shear, then the addition of the steel fibers influences all mechanisms that contribute to the shear-carrying
capacity of the member [2]. Since the mechanics of the problem are still not fully understood, it
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is interesting to study the behavior of steel fiber-reinforced concrete (SFRC) with longitudinal steel
reinforcement and without shear reinforcement. As such, we can study the contribution of steel fibers
to the shear capacity of structural concrete, without the influence of the stirrups as shear reinforcement.
Once this problem is understood, we can find an optimal combination of steel fiber reinforcement and
regular stirrups to act as shear reinforcement. Such a combination is particularly interesting in joints
where rebar congestion can make concreting difficult [3], and for bridge girders, where the addition of
steel fibers can lead to a more durable structure as cracks will be more distributed and crack widths
will be smaller.

Even though the mechanics of the shear resistance of SFRC is not fully understood, several
design expressions are available in the literature and current codes. These expressions are mostly
semi-empirical expressions, with the exception of extensions of the Modified Compression Field
Theory [4–12], the Dual Potential Capacity Model [13,14], and plasticity-based models [15–19]. Table 1
gives an overview of the expressions for determining the shear capacity of SFRC beams without shear
reinforcement from the literature that were considered in this study for comparison [20]. In these
expressions, the properties of the fibers are often described by the fiber factor F [19]:

F = V f
l f

d f
ρ f (1)

with Vf the fiber volume fraction, lf the length of the fiber, df the diameter of the fiber, and ρf the fiber
bond factor, which depends on the fiber type. An overview of the notations used in Table 1 is given in
the List of Notations at the end of this article.

For small values of a/d (typically a/d < 2.5) the shear behavior is different than for larger shear span
to depth ratios. The reason for this difference in behavior is that for short shear spans a compressive
strut can develop between the point of application of the load and the support [21]. This additional
load-carrying mechanism enhances the shear capacity. In Table 1, this behavior is reflected by the
inclusion of a factor, such as e in Equation (7) to enhance the shear capacity for short shear spans. Not all
expressions from the literature include this effect. Where this effect is not included, the predicted shear
capacities tend to be conservative for short shear spans.

Table 1. Shear prediction equations from literature and available codes, adapted from [20].

Authors Ref Expression

Sarveghadi et al. [22]
Vu =

ρ+ ρ
vb
+ 1

a
d

 ρ ft′(ρ+2)
(

ft′ a
d−

3
vb

)
a
d

+ ft′

+ vb

bwd (2)

ft′ = 0.79
√

fc′ (3)
vb = 0.41τF with τ = 4.15 MPa (4)

Kwak et al. [23]
Vu =

[
3.7e f 2/3

sp f c

(
ρ d

a

)1/3
+ 0.8vb

]
bwd (5)

fsp f c =
fcu f

(20−
√

F)
+ 0.7 + 1.0

√
F in MPa (6)

e =
{

1 for a
d > 3.4

3.4 d
a for a

d ≤ 3.4
(7)

Greenough and Nehdi [24] Vu =
[
0.35

(
1 +

√
400

d

)
( fc′)

0.18
(
(1 + F)ρ× 100× d

a

)0.4
+ 0.9ηoτF

]
bwd (8)

Kuntia et al. [25] Vu =
[
(0.167 + 0.25F)

√
fc′

]
bwd (9)

Sharma [26] Vu =
(

2
3 × 0.8

√
fc′

(
d
a

)0.25
)
bwd (10)
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Table 1. Cont.

Authors Ref Expression

Mansur et al. [27]

Vu = Vc + σtubwd (11)

Vc =
(
0.16

√
fc′+ 17.2 ρVd

M

)
bwd ≤ 0.29

√
fc′bwd (12)

σtu = 3.2ηoηlFτ with τ = 2.58 MPa (13)

ηl = 1−
tanh

(
β

l f
2

)
β

l f
2

(14)

β =

√
2πGm

E f A f ln
(

S
r f

) (15)

S = 25

√
d f

V f l f
(16)

Ashour et al. [28]

Vu =
[(

0.7
√

fc′+ 7F
)

d
a + 17.2ρ d

a

]
bwd (17)

Vu =
[(

2.11 3
√

fc′+ 7F
)(
ρ d

a

)0.333
]
bwd for a

d ≥ 2.5 (18)

Vu =
[((

2.11 3
√

fc′+ 7F
)(
ρ d

a

)0.333
)

2.5
a
d
+ vb

(
2.5− a

d

)]
bwd for a

d < 2.5 (19)

Arslan et al. [29] Vu =
[(

0.2( fc′)
2/3 c

d +
√
ρ(1 + 4F) fc′

)
3
√

3
a
d

]
bwd (20)(

c
d

)2
+

(
600ρ

fc′

)(
c
d

)
−

600ρ
fc′

= 0 (21)

Imam et al. [30]

Vu =

0.6ψ 3√ω

( fc′)
0.44 + 275

√
ω

( a
d )

5


bwd (22)

ψ =
1+

√
5.08
da√

1+ d
25da

(23)

ω = ρ(1 + 4F) (24)

Yakoub [31]

Vu =0.83ξ 3
√
ρ

√ fc′+ 249.28
√

ρ

( a
d )

5 + 0.405
l f

d f
V f Rg

d
a
√

fc′

bwd for a
d ≤ 2.5 (25)

Vu =0.83ξ 3
√
ρ

√ fc′+ 249.28
√

ρ

( a
d )

5 + 0.162
l f

d f
V f Rg

√
fc′

bwd for a
d ≥ 2.5 (26)

ξ = 1√
1+ d

25da
(27)

Vu = 2.5
(

0.40
1+1500εx

×
1300

1000+sxe

)√
fc′

(
1 + 0.7

l f

d f
V f Rg

)
d
a bwdv for a

d ≤ 2.5 (28)

Vu =
(

0.40
1+1500εx

×
1300

1000+sxe

)√
fc′

(
1 + 0.7

l f

d f
V f Rg

)
bwdv for a

d ≥ 2.5 (29)

dv = max(0.9d, 0.72h) (30)

εx =
M
dv
+V

2EsAs
(31)

sxe =
35sx

16+da
≥ 0.85sx and sx ≈ dv (32)

Association Française
de Génie Civil

[32]

VRd = VRd,c + VRd, f (33)
VRd,c =

0.21
γc fγE

f 1/2
ck bwd with γcfγE = 1.5 (34)

VRd, f =
Av f σRd, f

tanθ with θ ≥ 30o (35)
σRd, f = 1

Kγc f

1
wlim

∫ wlim

0 σ f (w)dw for low strain hardening or softening
1

Kγc f

1
εlim−εel

∫ εlim

εel
σ f (ε)dε for high strain hardening

with K = 1.25 or based on tension tests on the SFRC mix

(36)

wlim = max(wu, wmax) (37)
εlim = max(εu, εmax) (38)

Av f = bwz (39)

DAfStB [33]

V f
Rd,c = VRd,c + VRd,c f (40)

VRd,c =
CRd,c
γc

k(100ρ fck)
1/3bwd > VRd,c,min with CRd,c = 0.15 and γc = 1.5,

ρ ≤ 2%
(41)

VRd,c f =
α

f
c f f

ctR,ubwh

γ
f
ct

with γ f
ct = 1.25 and α f

c = 0.85 (42)

f f
ctR,u = k f

Fk f
G0.37 f f

c f Ik,L2 with k f
F = 0.5 (43)

k f
G = 1.0 + 0.5A f

ct ≤ 1.7 (44)

A f
ct = bw ×min(d, 1.5m) (45)

k = 1 +
√

200mm
d

(46)
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Table 1. Cont.

Authors Ref Expression

RILEM [34]

VRd = Vcd + V f d (47)

Vcd = 0.12k(100ρ fck)
1
3 bwd with ρ ≤ 2% (48)

V f d = 0.7k f kτ f dbwd (49)

k f = 1 + n
(

h f

bw

)(
h f

d

)
≤ 1.5 (50)

n =
b f−bw

h f
≤ 3 and n ≤ 3bw

h f
(51)

τ f d = 0.12 fRk,4 (52)

fib [35]

VRd = VRd, f =
CRd,c
γc

k
(
100ρ

(
1 + 7.5 fFtuk

fctk

)
fck

)1/3
bwd with CRd,c = 0.18, γc

= 1.5, and ρ ≤ 2%
(53)

fctk =

{
0.3( fck)

2/3 for concrete grades ≤ C50
2.12 ln(1 + 0.1( fck + 8MPa))for concrete grades > C50

(54)

CNR-DT [36]
VRd = VRd, f ≥ Vmin with VRd,f from Equation (53) (55)

Vmin = 0.035k3/2 f 1/2
ck bwd (56)

Comparing experimental results on the shear capacity of SFRC beams without stirrups to the
capacity predicted using the expressions from Table 1 shows that predicting the shear capacity of SFRC
beams without mild steel shear reinforcement is still difficult [20]. The reason for this difficulty is the
complex mechanics of the problem, since, as previously mentioned, the steel fibers affect each of the
shear-carrying mechanisms [2].

Since the problem of the shear capacity of SFRC elements without shear reinforcement is still not
fully understood, we propose the use of machine learning, and in particular the use of artificial neural
networks (ANNs or neural nets) to derive an expression based on the available experimental data.
Machine learning is a subdiscipline of artificial intelligence (AI) in which computers learn how to carry
out tasks based on examples of how they should be done [37]. When we have a lot of data but no
theoretical foundations to explain these, machine learning can be a suitable tool. An illustration of the
several possible scenarios is presented in [38], see Figure 1, where the shadowed areas represent regions
where any of the contiguous tools might be used. The ANN is the oldest [39] and most powerful [40]
machine learning technique. Generally speaking, an ANN is an analytical model for a singular task,
functioning similarly to the human brain by using neurons. ANN is more powerful than traditional
approaches (e.g., multi-variate nonlinear regression) and does not require prior knowledge of the
shape of the function that will be approximated [41].
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Figure 1. Suitable modelling techniques as function of theory and data richness, modified from [38].

Several the expressions in Table 1 have been developed with methods of AI. The equation by
Sarveghadi et al. [22] is derived from a more general expression developed with the use of artificial
neural networks. The expression by Greenough and Nehdi [24] results from genetic programming.
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Other studies that used AI to evaluate the shear capacity of SFRC beams are the study by Hossain et al. [42]
based on 173 experiments, resulting in an ANN model with 5 hidden neurons. The mean square error of
the comparison between the experiments and the proposed model was 3.0665 and the root mean square
error 1.7512. The study by Kara [43] used gene expression programming. In total, 101 experiments
from the literature were used. Comparison between the proposed model and the experiments gave
an absolute average error of 11.39% and a coefficient of variation of 15.42%. Other recent research
works that have considered databases of experiments have used smaller databases than this study:
122 experiments [11] or 171 experiments (of which 93 with Fiber Reinforced Concrete) [44].

The goal of this study is to derive an ANN-based model to predict the shear capacity of SFRC
elements without stirrups within the ranges of the available experimental data. While similar studies
have been carried out in the past, as discussed in the previous paragraph, our study is an improvement of
the state-of-the-art for the following reasons: (1) the dataset used for this study contains 430 experiments,
which is significantly larger than the datasets used in the previous studies; (2) a large number of
ANN features were varied, resulting in 475 combinations of features, with which the model that best
predicts the experimental results could be selected; and (3) the error of the comparison between the
proposed model and the experimental results is 0%, showing that the model proposed with this study
is a significant improvement as compared to the previously cited models.

2. Materials and Methods

2.1. Data Gathering

We used a database of test results reported in the literature as input for the model. The database is
earlier reported in [20]. To create unique datapoints, the outcome of repeat tests is averaged. Therefore,
the original dataset of 488 test results is reduced to 430 unique datapoints considered for this study. As a
result, some of the inherent scatter observed in repeat tests is removed from the database. The reader
should keep this preprocessing in mind when evaluating the performance of the proposed model.
The experimental results are taken from the literature [3,17,23,24,26–28,45–102].

Table 2 gives an overview of the input and output values considered in this study. The geometry
is described based on the effective depth d, the width b and the clear shear span to effective depth ratio
av/d. Figure 2 shows the geometry of a typical beam specimen. The properties of the steel reinforcement
are determined based on the reinforcement ratio ρ, which is defined as follows:

ρ =
AS
bd

(57)

with As the area of longitudinal reinforcement. The other parameter determining the reinforcement is
the yield strength of the steel fy. The properties of the concrete mix are described by the maximum
aggregate size da and the measured average concrete cylinder compressive strength fc. The properties
of the fibers are given through the fiber factor F according to Equation (1) as well as the tensile strength
of the fibers ftenf. The output is the sectional shear capacity Vutot, determined as shown in Figrue 2b.
Vutot includes the effect of the self-weight of the beam. In total, nine input variables and one output
variable are selected.

Table 2 also gives an overview of the ranges of the input variables in the dataset used for the
development of the model. The currently available test results come from relatively small specimens,
as can be seen in Table 2. With a maximum effective depth of 1118 mm, the available experimental
data may not sufficiently address the size effect in shear for SFRC [103–106]. The data moreover
show that most experimental data come from small-scale specimens. A wide range values for av/d is
covered, so that the model resulting from the database can be used for deep members as well as for
slender members.

The reinforcement ratios used in the experiments cover a wide range. The majority of SFRC
shear experiments are carried out on heavily reinforced beams, to avoid a flexural failure. These large
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reinforcement ratios are not commonly used in practice. Considering the range of aggregate sizes
available in the database, we can observe that both mortars and concretes are used for the experiments
in the literature. The concrete compressive strength range shows that mixes from low strength to
ultra-high-strength concrete are used.

The fiber types used in the experiments reflect all commercially available fiber types (hooked-ended,
corrugated, crimped, straight smooth, round), as well as some fiber types that were explored for
research purposes (flat-ended, flat, chopped with butt ends, straight mild steel, mill-cut, recycled fibers,
brass-coated high-strength steel), and mixes of different types (hooked-ended and straight). The bond
factor ρf in the expression for the fiber factor F takes into account the effect of the fiber type. For the
less commonly used fiber types, there may be discussion about which value to use for the bond factor.
Most of the experiments (63% of all experiments) analyzed used hooked-end fibers. Most specimens
use a fiber factor of 0.5–1; higher values result in concrete mixes with low workability.

Since the proposed matrix-based model using artificial neural networks is only as good as the
input data used for the model, the reader should keep the aforementioned limitations regarding the
parameters used in the experiments in mind when applying the resulting expression for the design
of members with SFRC. Extrapolation of the proposed model outside of the ranges of data points
considered in this study does not guarantee a good approximation. The dataset used for this research,
as well as the calculated values with our proposed model, can be found online [107].
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Table 2. Overview of input and output variables considered in the dataset, including ranges of values.

Input Parameters Input Number Min. Max.

Geometry
b (mm) width 1 50 610

d (mm) effective depth 2 85.3 1118

av/d (-) clear shear span to depth ratio 3 0.2 6.0

Properties of
reinforcement

ρ (-) reinforcement ratio 4 0.004 0.057

fy (MPa) yield strength of steel 5 257.9 900

Concrete properties
da (mm) maximum aggregate size 6 0.4 22

fc,cyl (MPa) average concrete compressive
strength 7 9.8 215

Fiber properties F (-) fiber factor 8 0.1 2.9

ftenf (MPa) tensile strength of fiber 9 260 4913

Output Vutot (kN) sectional shear capacity 1 12.9 1480.9

2.2. Artificial Neural Networks

2.2.1. Introduction

The neural net, see Figure 3, consists of L layers of several nodes, with the first layer the input
layer, layers 2 to L-1 the hidden layers, and layer L the output layer. The ANNs in this work are
feed-forward: neurons connect to nodes in the layers further down the net, see Figure 3. Each node,
except those in the input layer, has the following unknowns associated with it: the (non)linear transfer
function, the synaptic weights W, and the bias b. The transfer function is determined by trying out
different possible functions. W and b are determined through learning: finding a (local) minimum
solution so that pre-determined requirements for performance of the neural net are met. Learning has
three stages: training, validation, and testing. The input dataset is subdivided into a training dataset
(for determining the unknowns of the neural net), validation dataset (for checking the generalization
performance—loss of this characteristic is called overfitting, which can be caused by the net learning
properties of the noise on the available data [108]), and testing dataset (independent verification of
performance of neural net).
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2.2.2. Implemented ANN Features

This work considers 15 ANN features, including data pre/post-processing features. We used
parametric analysis (using nine sub-analyses) to determine the features that best describe the problem
at hand. Tables 3–5 give an overview of the different formats used for the 15 features, based on
information in the literature. Previous work (e.g., [109]) contains full descriptions and references to the
literature used to select the different methods for the feature. MATLAB [110] is used for programming
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these routines. The neural network toolbox of MATLAB is used for the most commonly used algorithms
for learning (1–3 in Table 5). In each sub-analysis (SA) the software runs all possible combinations of
neural nets for preselected approaches for the features. The output is then the performance of each
trial net. The optimal net is then the net with the best performance: the net with the smallest average
relative error. In addition to average relative error, we also evaluate maximum error, and percentage of
errors larger than 3%. The definitions used to assess the performance of the resulting neural net are
defined in [109]. The developed software has been validated with several benchmark datasets and
functions—a full validation report is available in the public domain [111].

Table 3. ANN features 1 through 5.

Feature Method
F1 F2 F3 F4 F5

Qualitative
Var Represent

Dimensional
Analysis

Input Dimensionality
Reduction

%
Train-Valid-Test

Input
Normalization

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs
2 Eq Spaced in [0, 1] No Auto-Encoder 70-15-15 Linear [0, 1]
3 - - - 60-20-20 Linear [−1, 1]
4 - - Ortho Rand Proj 50-25-25 Nonlinear
5 - - Sparse Rand Proj - Lin Mean Std
6 - - No - No

Abbreviations: MLPN = multi-layer perceptron net, RBFN = radial basis function net.

Table 4. ANN features 6 through 10.

Feature Method
F6 F7 F8 F9 F10

Output Transfer Output Normalization Net Architecture Hidden Layers Connectivity

1 Logistic Lin [a, b] = 0.7[ϕmin, ϕmax] MLPN 1 HL Adjacent Layers
2 - Lin [a, b] = 0.6[ϕmin, ϕmax] RBFN 2 HL Adj Layers + In-Out
3 Hyperbolic Tang Lin [a, b] = 0.5[ϕmin, ϕmax] - 3 HL Fully Connected
4 - Linear Mean Std - - -
5 Bilinear No - - -
6 Compet - - - -
7 Identity - - - -

Abbreviations: MLPN = multi-layer perceptron net, RBFN = radial basis function net.

Table 5. ANN features 11 through 15.

Feature Method
F11 F12 F13 F14 F15

Hidden Transfer Parameter Initialization Learning Algorithm Performance
Improvement Training Mode

1 Logistic Midpoint (W) + Rands (b) BP - Batch
2 Identity-Logistic Rands BPA - Mini-Batch
3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online
4 Bipolar Randnr (W) + Rands (b) ELM - -
5 Bilinear Randsmall mb ELM - -
6 Positive Sat Linear Rand [−∆, ∆] I ELM - -
7 Sinusoid SVD CI ELM - -
8 Thin-Plate Spline MB SVD - - -
9 Gaussian - - - -
10 Multiquadratic - - - -
11 Radbas - - - -

Abbreviations: SVD = singular value decomposition, MB SVD = mini-batch SVD, BP = back propagation,
BPA = back propagation with adaptive learning rate, LM = Levenberg-Marquardt, ELM = extreme learning
machine, mb ELM = mini-batch ELM, I ELM = incremental ELM, CI ELM = convex incremental ELM,
NNC = neural network composite.

With respect to the ANN formulation used in [109], two fewer changes were carried out for this
work: (1) the elimination of performance improvements (Feature 14), and (2) the algorithm used in
Feature 4. For the current study, four distributions of data pt-pv-ptt (percentage for training, validation,
and testing) were implemented (Feature 4). The following algorithm was implemented to divide the
dataset into the training, validation, and testing subsets:
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1. Reduce pt-pv-ptt values by 10 units each.
2. Compute minimum and maximum values for each variable q (row) of the full input dataset.
3. Define patterns where each variable takes its minimum or maximum value from the full input

dataset. These patterns ought to be included in the training dataset. If the number of patterns
is lower than pt * P/100 (rounded off), more patterns should be added to the training set in the
following way:

(a) Compute the number of patterns (Lpt) that need to be added to the initially selected
training patterns to equal round (pt * P/100).

(b) Randomly select 10.000 combinations of Lpt patterns from all those not included in the
training set defined prior to (a).

(c) For each combination/scenario in (b), add those Lpt patterns to the set of training patterns
defined prior to (a), and label all remaining learning patterns as “validation + testing”.

(d) For each scenario in (c), and for each pattern labeled as “validation + testing”, check if
that pattern has at least one input variable that equals a value not included in any pattern
in the training set. If it hasn’t, then that pattern should be moved to the training set.

(e) Among all 10,000 scenarios of training and “validation + testing” subsets addressed in (b)
till (d), the selected scenario should be the one guaranteeing the amount of training data
(Pt*) closest to round (pt * P/100).

4. If the training set selected in (e) guarantees |Pt*/P − pt| ≤ 0.2, then that becomes the training data
to be taken for simulation. Otherwise, the training data should be selected according to [112].

5. Increase pt-pv-ptt values by 10 units each (to re-obtain the original input values—See step 1).
6. Randomly select pv/(pv + ptt) of those patterns not belonging to the training dataset for the

validation patterns. The remaining data then forms the testing dataset.

The distribution pt-pv-ptt in the simulation can differ from the one chosen a priori (before step 1).

2.2.3. Parametric Analysis Results

The software runs nine SAs, of preselected ANN features. Feature 7 takes a single value only in each
of the SAs. The SAs serve the purpose of determining the best method for the features in a consecutive
way. Further information on how the SAs are defined can be found in [109]. 475 combinations of
features were explored through the SAs. Table 6 shows the best feature methods (that led to the
combination with the best performance) from the different SAs. The numbers refer to those given in
Table 3 through Table 5. Table 7 shows the performance results of the best combos of each SA. The results
are obtained in the original format, compared to the actual values of the dataset. The microprocessor
used in this work has the following features: RAM: 48 GB, OS: Win10Home 64bits, CPU: Intel® Core™
i7 8700K @ 3.70-4.70 GHz, Local Disk Memory: 1 TB.

Table 6. For best combo of each SA: F methods used.

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F15

1 1 2 6 2 5 7 1 1 1 1 3 2 3 3
2 1 2 6 2 3 7 1 1 1 1 3 2 5 3
3 1 2 1 1 5 3 1 1 1 1 3 2 3 3
4 1 2 6 2 5 1 2 1 1 1 3 2 3 3
5 1 2 6 3 5 1 3 1 1 1 3 2 3 3
6 1 2 6 3 5 7 4 1 1 1 3 2 3 3
7 1 2 6 4 5 7 5 1 1 1 3 2 3 3
8 1 2 6 4 5 7 5 1 1 1 1 5 3 3
9 1 2 6 4 5 7 5 1 3 3 1 5 3 3
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Table 7. For each SA: performance results of best net.

SA
ANN

Max Error
(%)

Performance all Data
(%)

Errors > 3%
(%) Total Hidden Nodes Running Time/Data Point

(s)

1 24.2 0.7 5.6 36 1.88 × 10−4

2 1375.2 21.6 83.7 120 9.96 × 10−5

3 15.4 0.5 4.0 36 1.31 × 10−4

4 11.7 0.5 4.0 36 1.14 × 10−4

5 15.9 0.7 7.0 36 1.06 × 10−4

6 12.7 0.5 3.0 36 9.58 × 10−5

7 67.0 5.3 40.0 36 1.07 × 10−4

8 90.0 4.0 24.0 36 1.10 × 10−4

9 0.0 0.0 0.0 36 9.72 × 10−5

3. Results

3.1. Proposed ANN-Based Model

The proposed model is the one with the best performance among the best nets of each SA. As can
be seen in Table 7, the best performance is obtained for the best net of SA9. For any user to apply
our proposed model, we will provide all relevant expressions in the following subparagraphs and
have provided the W and b arrays for download from the public domain. The proposed model uses
five layers, and has the following distribution of nodes per layer: 9 in the input layer, 12 in each
hidden layer, 1 in the output layer, see Figure 4, which also shows the connectivity of the network.
The performance results of the proposed model are detailed in §3.2. The calculated solution with our
proposed model is also available in the public domain for easy comparison [113].
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3.1.1. Preprocessing of Input Data

Features 2, 3, and 5 deal with preprocessing of the data. We found that dimensional analysis nor
reduction were necessary. The expression for input normalization is given as follows, with Y1,sim the
input data: {

Y1,sim
}a f ter

n
=

({
Y1,sim

}
− INP(:, 1)

)
./ INP(:, 2)

INP =



149.674651162791 66.7396705241561
262.705930232558 153.595523149765
2.53778427906977 0.958947876821730

0.0244412479069768 0.0104087109797821
480.789007209302 90.8692510105096
11.0945581395349 4.95663746228321
49.7411932558140 26.2694346953084

0.555063267441860 0.364880290571624
1261.49069767442 476.799170124293



(58)
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3.1.2. ANN-Based Analytical Model

The next part is the actual description of the ANN-based expression of our proposed model.
They are presented here completely, with the W and b arrays in the public domain [113], so that all our

results are reproducible. The following equations transfer the preprocessed input
{
Y1,sim

}a f ter

n
to the

outputs of the hidden layers 2 through 4 and then to the preprocessed output
{
Y5,sim

}a f ter

n

Y2 = ϕ2

(
WT

1−2

{
Y1,sim

}a f ter

n
+ b2

)
Y3 = ϕ3

(
WT

1−3

{
Y1,sim

}a f ter

n
+ WT

2−3Y2 + b3

)
Y4 = ϕ4

(
WT

1−4

{
Y1,sim

}a f ter

n
+ WT

2−4Y2 + WT
3−4Y3 + b4

)
{
Y5,sim

}a f ter

n
= ϕ5

(
WT

1−5

{
Y1,sim

}a f ter

n
+ WT

2−5Y2 + WT
3−5Y3 + WT

4−5Y4 + b5

) (59)

The following transfer functions are used:

ϕ2(s) = ϕ3(s) = ϕ4(s) = 1
1+e−s

ϕ5(s) = s
(60)

3.1.3. Output Data Post-Processing

Since in our proposed model, no output normalization or dimensional analysis is used, the output
from Equation (59) {Y5,sim}n

after is the final result Y5, sim.

3.2. Performance Indicators of Results

The performance of the proposed model is presented in this subsection. Figure 5 shows the
regression plot of the relation between output of the dataset and network targets together with the
Pearson Correlation Coefficient R. Figure 6 shows the average error values of the training, validation,
and testing datasets, as well as of all data. Figure 7 shows the maximum error of all data as well as
the percentage of data with an error above 3%. The reader should recall here that the outcome of
repeat tests was averaged, so that some of the inherent material heterogeneity is removed to obtain
unique datapoints.
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3.3. Comparison between ANN-Based and Existing Methods

In this section, we compare the ANN-based model and the existing methods introduced in Table 1.
The results of the ANN-based model are reported in [107]. The comparison between the experimental
results and the existing methods are repeated here from [114]. Figure 8 shows the comparison between
the existing methods proposed in the literature and our proposed model and the experimental results
from the database. Figure 9 shows the comparison based on the existing code models. Table 8
gives the statistical results of Vutot/Vpred for all methods from Table 1 as well as our proposed model.
The statistical properties of Vutot/Vpred result from all experimental results, and thus cover experiments
on beams with a short shear span and slender beams. In [20], the analysis is further subdivided to
evaluate the existing expressions for only slender beams, since expressions that did not include the



Fibers 2019, 7, 88 13 of 24

enhancement factor for short shear spans will result in overly conservative predictions for beams
with short shear spans. However, the overall conclusions regarding scatter on the results remains as
discussed here.

From the presented results, we can conclude that our proposed model is a significant improvement
as compared to the existing methods for determining the shear capacity of SFRC concrete members
without shear reinforcement, for the dataset used in this study. The reason for this improvement is that
our proposed model uses the available information from the literature in an optimal way. Moreover,
comparing the predictions with our model to the model by Greenough and Nehdi [24] and Sarveghadi
et al. [22], which were also based on soft computing methods, shows that using a larger database and
evaluating a large number of ANN features results in a significant better fit of the experimental data.Fibers 2019, 7, x FOR PEER REVIEW 15 of 26 
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Table 8. Statistical properties of Vutot/Vpred for all datapoints, with AVG = average of Vutot/Vpred,
STD = standard deviation on Vutot/Vpred, and COV = coefficient of variation of Vutot/Vpred. This table
repeats results from [114] for comparison to our proposed model.

Model AVG STD COV Min Max

Proposed model 1.00 1.08 × 10−15 1.08 × 10−15 1.00 1.00
Sarveghadi et al. [22] 1.03 0.29 28% 0.23 2.49

Kwak et al. [23] 1.01 0.28 27% 0.27 2.39
Greenough and Nehdi

[24] 1.34 0.48 36% 0.31 3.11

Khuntia et al. [25] 1.81 0.85 47% 0.18 6.53
Imam et al. [30] 0.97 0.36 37% 0.06 2.51

Sharma [26] 1.24 0.49 39% 0.18 3.59
Mansur et al. [27] 1.30 0.60 46% 0.15 3.85

Ashour et al. [28] 1 1.08 0.38 35% 0.24 3.14
Ashour et al. [28] 2 1.29 0.37 29% 0.31 3.22

Arslan et al. [29] 1.17 0.37 31% 0.43 3.24
Yakoub [31] 1 1.90 0.76 40% 0.28 7.50
Yakoub [31] 2 2.97 1.37 46% 0.51 17.48

French code [32] 1.85 0.88 48% 0.22 5.95
German code [33] 1.12 0.31 27% 0.21 2.13

fib [35] 1.24 0.36 29% 0.30 2.33
RILEM [34] 1.16 0.33 29% 0.23 2.28

4. Discussion

An important step is developing the proposed ANN-based expression was the selection of
variables. While the initial data collection [20] focused on gathering as much information from the
experiments as possible, it is not desirable to use all possible input values to develop the ANN-based
expressions. Doing so increases the computational time of the algorithm that evaluates all 15 ANN
features to find the optimal neural net. To select input variables, we included a number of dimensionless
values, such as the clear shear span to depth ratio av/d, the reinforcement ratio ρ, and the fiber factor F.
These inputs can take into account the combined effect of different parameters, and are more widely
applicable since they are dimensionless. The factor av/d is the clear span to depth ratio, which takes
into account the enhancement of the shear capacity due to direct load transfer for loads close to the
support [115,116]. In addition, the clear shear span av, which is taken from the face of the loading
plate to the face of the support, takes into account the dimensions of the support and the loading
plate [117,118]. Moreover, from earlier shear research it was concluded that the distance that should be
considered in the shear span to depth ratio is the clear shear span av and not the shear span a [119].

The reinforcement ratio ρ is the dimensionless equivalent of the area of longitudinal steel As. As a
dimensionless parameter it allows to include a wider range of possible reinforcement layouts. The
influence of the longitudinal steel needs to be considered as an input for a model for the shear capacity
of SFRC, because the longitudinal steel resists shear through dowel action [120–124].

The fiber factor F [125–128] takes into account the geometry of the fibers (length and diameter) [53,129],
the amount of fibers (fiber volume fraction) [69,70,130], and the bond properties of the fibers, which
depends on the fiber type [4,131–133]. A challenge here was to ascribe bond properties to the less common
fiber types that were encountered in the literature. Especially from older references [80,81,86], in which
researchers were experimenting with many different fiber types, the fiber bond had to be estimated.

As mentioned before, the proposed model is limited to the ranges of the variables used for
developing the model. These ranges are given in Table 2. While we can see that the experiments
considered in the database cover a wide range for all material properties of the concrete [96,134], mild
steel reinforcement [74,75], and fibers [135], the range of heights of specimens tested in the literature
(expressed in Table 2 based on the effective depth d) is limited. We can see that the maximum effective
depth in the experiments is 1118 mm. The number of specimens with an effective depth of d ≥ 600 mm
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for the considered dataset is 20 experiments on a total of 430 datapoints. As such, only 4.7% of the data
from the literature considers realistic and large sizes of beams. All other specimens are laboratory-sized
specimens. This finding underlines the need for further experiments on large SFRC beams failing
in shear. The need for large-sized beams is especially important given the fact that the size effect in
shear affects the shear capacity of large members. The size effect in shear [104–106,136,137] is the effect
observed in experiments where the shear stress at failure decreases as the member height increases.
The cause of the size effect is still under discussion. For SFRC, there is a discussion on whether or not
the size effect in shear occurs as well [2,138]. Since the number of experiments on large beams is limited,
and the size effect in shear in SFRC may be related to the amount of fibers (or fiber factor), further
research is needed on this topic. Given the lack of data in this regard, we may need to reevaluate our
proposed model when further experimental results on larger-sized beams become available.

Since the proposed ANN-based model simulates the experimental results with a very good fit,
parameter studies with the ANN-based model give the same result as parameter studies with the
original data. Such parameter studies were carried out earlier [20]. The outcome of these parameter
studies can be summarized as follows:

1. the shear strength strongly depends on the longitudinal reinforcement ratio [139], as a result of the
larger contribution of dowel action [64,120,123,124,140,141] for larger amounts of reinforcement,

2. for loads close to the support, the capacity increases as a result of direct load transfer [115,116,142],
3. the shear strength strongly depends on the fiber factor, as a result of the additional tensile capacity

across the crack for an increasing value of the fiber factor [5,25,126,128,143,144],
4. the influence of the size of the aggregates on the shear capacity is relatively small, but should not

negligible. Larger aggregates reduce the shear capacity of SFRC elements, as the mix becomes
less uniform and the bond between the matrix and fibers becomes less [14,145].

With our proposed model, which can simulate well the available experimental results, the
following practical applications are possible: the model can be used to prepare further laboratory
studies, the model can be used for comparison to mechanical models, and the model can be used
to predict the shear capacity of structural elements for design purposes, provided that the input
parameters are within the specified ranges from Table 2. One of the main advantages of the proposed
model as compared to other numerical approaches is the short amount of time required to obtain
the prediction of the shear capacity. As can be seen in Table 7, the computation time is less than
0.1 millisecond. Therefore, compared to nonlinear finite element models, the proposed method is
very fast.

At this moment, a theory that predicts the shear capacity of SFRC elements without mild steel
shear reinforcement based on the different shear-carrying mechanisms is not available yet. Given the
lack of theoretical understanding of the problem under study, our ANN-based proposed model can
bridge the gap and give an optimal prediction based on the available data. However, research on
the shear-carrying mechanisms in SFRC is still necessary to understand the actual mechanics of
the problem.

5. Conclusions

This paper proposes a neural networks-based method to predict the shear capacity of SFRC
elements without mild steel shear reinforcement based on the available data in the literature. To derive
the ANN-based expression, we did the following:

• We used a database with 430 datapoints from the literature.
• For the analysis, we selected nine input parameters related to the geometry, properties of the

concrete, the flexural steel reinforcement, and the fibers, and one output parameter, the maximum
sectional shear force caused by the applied load in the experiment and self-weight of the beam.

• To find the optimal ANN-based model, different combinations of 15 features of ANN models
were analyzed.
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• The optimal model resulted in a maximum error of 0% and a mean relative error of 0.0% for the
430 datapoints, respectively.

The main advantages of our proposed model and the main outcomes of this study are:

• Our proposed model outperforms the available models and expressions for the shear capacity
of SFRC.

• Our model can be used to prepare experiments, for design (within the input parameter ranges),
and to support further development of mechanical models through robust parameter studies.

• The computational time of a datapoint with our model is less than 0.1 millisecond.

The limitations of the proposed model are as follows:

• The proposed model can only be used for the ranges of the variables available in the dataset.
• The model does not cover large-sized beams as a result of a lack of data on such specimens.

As such, we recommend further experiments on large SFRC beams failing in shear and further
studies on the size effect in SFRC.

• This study does not answer the question about the mechanics underlying the problem of shear
in SFRC, but we can explore various influences with parametric studies using our proposed
ANN-based model. Our model also facilitates the evaluation and improvement of existing and
future mechanical models, based on the currently available experimental results.
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Abbreviations

a shear span
av clear shear span
b bias
bw web width
c height of compression zone
d effective depth
da maximum aggregate size
df fiber diameter
dv shear depth
e factor to take effect of shear span to depth ratio into account
fc’ specified concrete compressive strength
fc,cube average measured concrete cube compressive strength
fc,cyl average measured concrete cylinder compressive strength

f f
c f IK,L2 characteristic value of post-cracking flexural strength for a deflection of 3.5 mm

fck characteristic concrete cylinder compressive strength
fctk characteristic tensile strength of concrete

f f
ctR,t uniaxial tensile strength of SFRC

fcuf cube compressive strength of fiber-reinforced concrete
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fFtuk characteristic value of post-cracking strength for ultimate crack opening

fRk,4
characteristic residual flexural strength for the ultimate limit state at a CMOD (crack
mouth opening displacement) of 3.5 mm

fspfc splitting tensile strength of fiber-reinforced concrete
ft’ specified tensile strength of concrete mix
ftenf tensile strength of the fibers
fy yield strength of the reinforcement steel
h height of cross-section
hf height of flange
k size effect factor
kf factor that considers the contribution of flanges in T-sections (= 1 for rectangular sections)

k f
F

factor that considers the orientation of the fibers

k f
G

size factor, which accounts for the fact that fibers are better distributed in larger elements
lf fiber length
lspan span length
ltot total specimen length
n parameter for effect of geometry of flanged sections
pt amount of training examples
ptt amount of testing examples
pv amount of validation examples
q value of row
rf fiber radius
sx crack spacing
sxe equivalent crack spacing factor
vmax shear stress at maximum sectional shear Vmax

wlim limiting crack width
wmax maximum crack width permitted by the code

wu
ultimate crack width, i.e., the value attained at the Ultimate Limit State for resistance to
combined stresses on the outer fiber under the moment exerted in this section

vb shear strength attributed to fibers
z internal lever arm

A f
ct effective area bw × d, with d limited to 1.5 m

Af cross-sectional area of the fiber
As area of longitudinal tension reinforcement
Avf shear area over which fibers contribute
CRd,c calibration factor for the design shear capacity
Ef modulus of elasticity of the fibers
Es modulus of elasticity of reinforcement steel
F fiber factor
Gm matrix shear modulus
K orientation coefficient
M sectional moment
P sum of all datapoints
Pmax maximum load in experiment
R Pearson Correlation Coefficient

Rg
geometry factor from Yakoub [31]: 0.83 for crimped fibers, 1.00 for hooked fibers, and 0.91
for round fibers

S fiber spacing
V sectional shear force
Vc concrete contribution to shear capacity
Vcd design value of concrete contribution to shear capacity
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Vf fiber volume fraction
Vfd design value of fiber contribution to shear capacity
Vmax maximum sectional shear in experiment caused by applied load only (without self-weight)
Vmin lower bound to the shear capacity
Vpred predicted shear capacity
VRd design shear capacity
VRd,c design shear capacity of the concrete contribution

V f
Rd,c design shear capacity of fiber-reinforced concrete

VRd,cf design shear capacity of the fiber contribution, notation used in German guideline
VRd,c,min lower bound to the design shear capacity of the concrete contribution
VRd,f design shear capacity of the steel fiber contribution
Vu ultimate shear capacity
Vutot experimental shear capacity, including contribution from self-weight
W synaptic weight

α
f
c factor that accounts for the long-term effects
β fiber and matrix property factor developed by Cox [146]
γc concrete material factor
γcf concrete material factor, notation used in French guideline

γ
f
ct partial factor for tensile strength of fiber-reinforced concrete
γE additional safety factor
εel elastic strain
εlim limiting strain
εmax maximum strain

εu
ultimate strain at the ULS for bending combined with axial forces on the outer fiber under
the moment exerted in the section

εx strain at mid-depth of the cross-section

ηo
fiber orientation factor = 0.41 for fibers with a 3D random orientation, as derived by
Romualdi and Mandel [147], but can be larger for members with thin webs

ηl
a length factor used to account for the variability in the fiber embedment length across the
cracking plane

θ angle of compression strut
ξ size effect factor from Bažant and Kim [106]
ρ reinforcement ratio
ρf fiber bond factor: 0.5 for straight fibers, 0.75 for crimped fibers, 1 for hooked fibers
σRd,f residual tensile strength of fiber-reinforced cross-section
σf(ε) experimentally determined relation between stress in fiber concrete and strain
σf(w) experimentally determined relation between post-cracking stress and crack width w

σtu
average stress at the ultimate limit state in the equivalent tensile stress block used for
bending moment analysis of SFRC

τ bond strength between fibers and matrix
τfd design value of bond strength between fibers and matrix
ψ size effect factor from Imam et al. [30]
ω reinforcement ratio that includes the effect of fibers
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