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Abstract: The study of natural fiber-based composites through the use of computational techniques
for modelling and optimizing their properties has emerged as a fast-growing approach in recent
years. Ecological concerns associated with synthetic fibers have made the utilisation of natural
fibers as a reinforcing material in composites a popular approach. Computational techniques have
become an important tool in the hands of many researchers to model and analyze the characteristics
that influence the mechanical properties of natural fiber composites. This recent trend has led
to the development of many advanced computational techniques and software for a profound
understanding of the characteristics and performance behavior of composite materials reinforced
with natural fibers. The large variations in the characteristics of natural fiber-based composites
present a great challenge, which has led to the development of many computational techniques
for composite materials analysis. This review seeks to infer, from conventional to contemporary
sources, the computational techniques used in modelling, analyzing, and optimizing the mechanical
characteristics of natural fiber reinforced composite materials.

Keywords: natural fiber; composite; hybrid; computational techniques; mechanical properties

1. Introduction

The world has witnessed an exponential growth in computational power coupled
with improved algorithms in the past two decades. To this end, researchers from different
backgrounds are implementing the available computational methods to carry out ana-
lytical studies to achieve advanced design requirements. Modelling and optimization
techniques are used by computational engineers to address the physical complexities that
are encountered in science and engineering research. Researchers in the field of material
science are exploring the utilization of these computational methods to model and optimize
the different characteristics of composite materials reinforced with natural fibers with
the aim of potentially replacing the synthetic fibers because of sustainability issues and
environmental aspects.

Natural fibers have become popular due to their promising properties such as high
strength to weight ratios, low densities, inexpensiveness, acceptable mechanical properties,
environmental friendliness, ease of manufacturing and availability [1–12]. However, poor prop-
erties associated with natural fibers, such as high water absorption, poor bonding, low dura-
bility, as well as low mechanical and thermal properties when compared to synthetic fibers
limit their industrial applications [13–17]. Numerous methods have been developed to
overcome these limitations which include fiber treatment, addition of nano-fillers and
hybridization. The adoption of these methods in recent years to develop natural fiber
composite (NFC) materials has widened their area of application including structural,
household, aerospace, sporting, automobile, and other industrial applications [2,14,18–22].

The process of analyzing the quality of natural fibers and their resulting composites
is complex and thus causes difficulties in the development of generic methods that can
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be utilized to model and optimize the properties of composites. The adoption of current
available computational techniques for analyzing the properties of NFCs has proven
beneficial in the process of modelling and optimizing the composite materials [23–26].
The use of computational or mathematical models enables researchers and manufacturers
to easily find the optimal combination of constituent materials to balance strength and
cost of the resulting materials. The modelling of composite material involves analyzing
the relationship between the input and output parameters in materials processing. On the
other hand, the optimization process involves the processing of the output parameters
which requires first the determination of the relationship between process parameters
and subsequent optimization of the output parameters using an appropriate optimization
algorithm [27,28].

Different modelling and optimization methods of natural fiber composites include
finite element analysis (FEA) [29–31], artificial neural networks (ANN) [28,29], and rule of
hybrid mixture (RoHM) [31–34]. Numerous literatures are available on the utilization of
computational techniques in the modeling and optimization of composite materials in the
field of science and engineering. The hardness, tensile strength, wear rate, impact strength,
elasticity, and fatigue are some of the known composite material properties modeled and
optimized [35–43].

2. Natural Fiber Composites

Composite materials have proved pivotal to the manufacturing industries due to the
ability to tailor and enhance its properties to desire. Properties such as, strong damping
capacity, high corrosion resistance, high specific strength and flexural modulus have been
enhanced in recent years to compete with some conventional materials [1,43]. Natural fiber
composites have found attraction in composite materials as a reinforcing phase due to their
unique characteristics such as high impact strength, environmental friendliness, and low
densities [44,45]. As a reinforcement material in composites, natural fibers serve the pur-
pose of providing strength and stiffness to the composite material thus improving the
mechanical characteristics of the resulting composite. The reinforcing fibers can either be
fibrous or non-fibrous (particulates) in nature. Some natural fibers like sisal, kenaf, banana,
coir and jute which are usually classified according to their fiber sources, have found
attraction for application in consumer goods, civil engineering, and other industrial appli-
cations [44]. Table 1 depicts the various applications of known cellulose-based materials.

Table 1. Different applications of cellulose-based materials [21,44].

Cellulose Materials Application Industries Example: Application Areas

Hemp, Oil palm, Wood, Flax, Rice husk,
Bagasse, Sisal, Stalk, Coconut, Bamboo Construction/Civil

- Window/Door frame
- Roofing
- Panels
- Pipelines
- Bricks

Flax, Coir, Hemp, Jute, Sisal, Kenaf Automobile

- Car roof
- Door handles
- Dashboard
- Door panels

Kenaf, Flax, Sisal Aerospace

- Interior cabin
- Secondary structures
- Blade

Hemp, Cellulose Electronics

- Sensors
- Energy storage units
- Coatings
- Circuit componets
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Table 1. Cont.

Cellulose Materials Application Industries Example: Application Areas

Nanoclay, Rice
husk, Ramie Packaging

- Marine packaging
- Reusable packaging
- Degradable packaging
- Packing with recycled content

Lignin nanoparticles, Hydroxyapatite
(HA)/collagen alginate, Xyloglucan, Biomedical

- Tissue engineering
- Drug delivery
- Gene therapy

Flax Sports
- Tennis racket
- Bicycle frame

Hemp, Kenaf, Cotton, Coir, Ramie,
Coconut, Bamboo Household

- Textile
- Home furnishing

These natural fibers are embedded in a matrix material which serves the purpose of
holding the fibers in their set place and essentially transferring the stress load to the fibers.
The matrix material also functions to govern the resulting composite surface appearance,
overall durability, shape, and environmental tolerance [46]. Matrix materials are also
categorized into thermoset and thermoplastics to which thermoplastics are favored over
thermosets because of their ease of moldability into various shapes.

Mechanical Properties of Natural Fiber Composites

Different parameters have been identified as being responsible for the diverse me-
chanical characteristics observed in natural fiber composite. These parameters include fiber
length, fiber weight ratio, fiber orientation, fiber selection, matrix selection, fabrication pro-
cess, and interfacial interaction between fiber and matrix [47,48]. Presently, most natural
fiber composites have inferior mechanical properties compared to their synthetic counter-
parts. In view of this limitation, methods like natural fiber hybridization and composite
constituent optimization have been employed to address this deficit. In a hybrid composite,
two or more dissimilar fibers are fused together in a single matrix to form a composite
panel. Hybridization can also be achieved by combining varying lengths and diameters of
dissimilar short fibers, this approach has substantially improved the mechanical properties
of natural fiber composites [49]. The addition of nano-filler content is also used to over-
come the limitation of composite materials reinforced with natural fibers in order to obtain
improved dimensional stability/interfacial bonding as well as mechanical and thermal
properties [49,50]. Abundant literature is available on mechanical behavior and perfor-
mance of composite materials reinforced with natural fibers. Listed in Table 2 are some
of the natural fiber reinforced composite materials and their corresponding mechanical
properties obtained from various studies.
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Table 2. List of some natural fiber composites and their mechanical properties.

Fiber Matrix Tensile Strength
(MPa)

Stiffness
(GPa)

Flexural Strength
(MPa)

Flexural Modulus
(GPa) Reference

Banana Epoxy 46 8 - - [1]
Sisal Epoxy 212 6 320 27 [51]

Oil Palm PP 53 2 80 3 [52]
Jute PP 74 11 112 12 [53]
Coir Epoxy 225 6 - - [52]

Kenaf PLA 223 23 259 22 [54]
Coir PP 17 2.3 27.4 1.8 [55]

Hemp Epoxy 165 17 180 9 [52]
Sisal/Hemp PLA 60.23 6.1 79.76 6.04 [56]

Flax UP 147 14 198 17 [52]
Jute/Banana Epoxy 18.96 0.724 59.84 9.170 [57]

Jute/Sisal Epoxy 74.78 6.76 - - [58]
Hemp PP 52 4 86 4 [53]
Flax Epoxy 160 15 190 18 [52]

3. Modelling and Optimization of Mechanical Properties of Natural Fiber Composites

Numerous theories of composite fiber reinforcements have been developed over the
years to interpret different properties of fiber reinforced composites since the industrial-
ization age. These theoretical models have gained attraction in research because of their
advantages in reducing time spent on conducting experiments. Simulation techniques
enable researchers to analyze complex natural phenomena and processes, which would
otherwise be very difficult to carry out [59,60]. Modelling the mechanical properties of
reinforced natural fiber composite materials is considered a very complex process due
to varying parameters, such as the type of matrix and fiber used, overall composition,
manufacturing process, and intended applications [23].

For this purpose, several theories have been proposed for modelling and analyzing
the characteristics of short, long and varying oriented fiber composites [59]. These mod-
elling theories are based on different characteristics of materials which include physical,
chemical, thermal, and mechanical properties. The exceptional improvement in computa-
tional power in recent years has enabled researchers to develop these enhanced modelling
approaches with increased precision. This work aims to review some of these computa-
tional modelling approaches used in the analysis of fiber reinforced composite materials.

3.1. Rule of Mixture/Rule of Hybrid Mixture

Venkateshwaran et al. [44] described the Rule of Hybrid Mixture (RoHM) as a model
that considers a hybrid composite as a structure made up of more than one single fiber
embedded in a common matrix material. Applying the iso-strain state condition to a hybrid
composite reinforced with two fibers yields Equation (1), where εhc, ε f 1, ε f 2 denote the
overall material strain, first fiber strain and second fiber strain, respectively. By assuming no
interplay between the single fibers, the RoHM equation is developed to compute modulus
of the hybrid composite shown in Equation (2), where Ehc, Vc1, and Vc2 denote the elasticity
of the hybrid composite and relative hybrid volume fraction of the first and second fiber
composite, respectively.

εhc = ε f 1 + ε f 2 (1)

Ehc = Ec1Vc1 + Ec2Vc2 (2)

It is worth mentioning that Equations (1) and (2) will only hold under the following
conditions; Vc1 + Vc2 = 1, VC1 = Vf 1/Vt, VC2 = Vf 2/Vt and Vt = Vf 1 + Vf 2 where Vt is the
overall reinforcement volume fraction upon the inclusion of (Vf1 + Vf2) which is essentially
used as the reinforcement volume fraction for the computation of the elasticity (Ec1 and
Ec2) of both the exclusive composites [44]. RoM/RoHM models have been successfully
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used in the past to accurately model and predict the tensile characteristics of unidirectional,
continuous fiber composites [44]. Venkateshwaran et al. [44] reported the tensile strength
and modulus of banana/sisal fiber hybrid composites in varying ratios by carrying out
experiments and also applying the RoHM as a prediction tool. By keeping the overall
fiber volume fraction fixed, their results revealed a great similarity between the actual
experimental results and the RoHM results as depicted in Figures 1 and 2 allowing to
conclude that the two methods were in good agreement.
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(Venkateshwaran et al. [44]) Reproduced with permission from [Venkateshwaran, N; Elayaperumal, A;
Sathiya, G.K.], [Prediction of tensile properties of hybrid-natural fiber composites]; published by
[Elsevier: Materials Today], [2012].
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[Elsevier: Materials Today], [2012].

3.2. Halpin–Tsai Model

Based on mathematical modelling, Halpin–Tsai model is employed to predict the
elastic modulus of a composite material using the fiber orientation, geometry and elasticity
of fiber and matrix material as input parameters [61,62]. Although often considered to be
an empirical approach, the self-consistent field approach forms the basis of this model.
The model proposes that the tensile modulus and strength of a composite material in
study be given by Equations (3) and (4) where Ec, Em, Tm, and Tc denote the elastic
moduli of the composite, elastic moduli of matrix, tensile strength of matrix, and tensile
strength of composite, respectively. Vf denote the volume fraction of fiber in the composites
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while the value parameter of A is obtained from Einstein coefficient K which is given by
A = K − 1 and K = 1 + 2l/d where the fiber diameter and length are denoted d and l,
respectively. The parameter η is given by Equations (5) and (6) while the parameter A is
the measure of fiber geometry, fiber distribution and fiber loading conditions. Ef and Tf
denote the elastic moduli and tensile strength of the fiber, respectively. Ebrahimi et al. [62]
successfully investigated for the first time the analysis of the natural vibration limitation
of hybrid nanocomposites. The Halpin–Tsai model’s governing equations were used to
solve the problem analytically in order to acquire the natural frequency of the structure’s
oscillation. The numerical results obtained after carrying out optimisation revealed that
higher frequencies can be attained by hybrid nanocomposites when compared to non-
hybrid composites.

Ec = Em

[1 + AηVf

1 − ηV f

]
(3)

Tc = Tm

[1 + AηVf

1 − ηV f

]
(4)

η =
E f /Em − 1
E f /Em + A

(5)

η =
Tf /Tm − 1
Tf /Tm + A

(6)

3.3. Hirsch Model

This model is concerned with the stacking sequence and orientation of fiber in a matrix
material [61]. A schematic diagram of the model is depicted in Figure 3 which shows a mix-
ture of parallel and series models. Equation (5) is employed to govern the characteristics of
the composite where Tc, Tm and Tf denote tensile strength of the composite, tensile strength
of matrix material and the tensile strength of the fibers, respectively, while Vm represents
the volume fraction of the matrix and Vf represents the fiber volume fraction.

Tc = x
(

TmVm + Tf Vf

)
+ (1 − x)

Tf Tm

TmVf + Tf Vm
(7)

Fibers 2021, 9, x FOR PEER REVIEW 7 of 18 
 

This model is concerned with the stacking sequence and orientation of fiber in a ma-

trix material [61]. A schematic diagram of the model is depicted in Figure 3 which shows 

a mixture of parallel and series models. Equation (5) is employed to govern the character-

istics of the composite where Tc, Tm and Tf denote tensile strength of the composite, tensile 

strength of matrix material and the tensile strength of the fibers, respectively, while Vm 

represents the volume fraction of the matrix and Vf represents the fiber volume fraction.  

𝑇𝑐 = 𝑥(𝑇𝑚𝑉𝑚 + 𝑇𝑓𝑉𝑓) + (1 − 𝑥)
𝑇𝑓𝑇𝑚

𝑇𝑚𝑉𝑓 + 𝑇𝑓𝑉𝑚

 (7) 

The x in the equation represents a variable which gives the load transfer between the 

matrix and fiber [61]. Arrakhiz et al. [63] reported the fabrication and characterization of 

luffa/glass fiber polyester hybrid composite material. The Hirsch model was used to better 

describe the tensile characteristics of the hybrid composite which revealed the mechanical 

performance of this hybrid composite to be adjustable between the values of 0.37 and 0.55. 

 

Figure 3. Schematic diagram of Hirsch model (Krishnan et al. [62]) Reproduced with permission from [Krishnan, K.A.; 

Anjana, R.; George, K.], [Effect of alkali-resistant glass fiber on polypropylene/polystyrene blends: Modeling and charac-

terization]; published by [Wiley: Polymer Composites], [2014]. 

3.4. Modified Bowyer and Bader’s Model 

Modified Bowyer and Bader’s is a mathematical model developed to analyze the ten-

sile modulus and strength of a given composite material [61]. Based on this model, the 

tensile strength of short fiber-reinforced thermoplastic composites is the sum of contribu-

tions from subcritical and supercritical fibers and that from the matrix. The equation gov-

erning the model is given by Equations (6) and (7) where the fiber orientation factor (rang-

ing from 0 to 1) is denoted K1 while the fiber length factor is denoted with K2 and is given 

by 𝐾2 = (𝑙 − 𝑙𝑐) 2⁄ 𝑙𝑓𝑜𝑟𝑙 > 𝑙𝑐  or 𝐾2 = 𝑙𝑐 2⁄ 𝑙𝑓𝑜𝑟𝑙 < 𝑙𝑐  where the fiber length and critical 

length are denoted l and lc, respectively. Tc, Tm, Ec, Ef, Vm, and Tf denote the tensile strength 

Figure 3. Schematic diagram of Hirsch model (Krishnan et al. [62]) Reproduced with permission from [Krishnan, K.A.;
Anjana, R.; George, K.], [Effect of alkali-resistant glass fiber on polypropylene/polystyrene blends: Modeling and characteri-
zation]; published by [Wiley: Polymer Composites], [2014].



Fibers 2021, 9, 6 7 of 17

The x in the equation represents a variable which gives the load transfer between the
matrix and fiber [61]. Arrakhiz et al. [63] reported the fabrication and characterization of
luffa/glass fiber polyester hybrid composite material. The Hirsch model was used to better
describe the tensile characteristics of the hybrid composite which revealed the mechanical
performance of this hybrid composite to be adjustable between the values of 0.37 and 0.55.

3.4. Modified Bowyer and Bader’s Model

Modified Bowyer and Bader’s is a mathematical model developed to analyze the
tensile modulus and strength of a given composite material [61]. Based on this model,
the tensile strength of short fiber-reinforced thermoplastic composites is the sum of contri-
butions from subcritical and supercritical fibers and that from the matrix. The equation
governing the model is given by Equations (6) and (7) where the fiber orientation factor
(ranging from 0 to 1) is denoted K1 while the fiber length factor is denoted with K2 and
is given by K2 = (l − lc)/2l f orl > lc or K2 = lc/2l f orl < lc where the fiber length and
critical length are denoted l and lc, respectively. Tc, Tm, Ec, Ef, Vm, and Tf denote the tensile
strength of the composite, tensile strength of the matrix, elastic moduli of the composite,
elastic moduli of the fiber, volume fraction of the matrix and tensile strength of the fiber.

Tc = Tf K1K2 + TmVm (8)

Ec = E f K1K2 + TmVm (9)

Venkateshwaran et al. [61] carried out a study to develop a hybrid composite by using
epoxy matrix reinforced with short banana–glass fiber and compared the investigational
results of the tensile strength obtained from their experiment with those of the theoretical
model. The Bowyer–Bader model was employed to predict the tensile strength values that
were much closer to those obtained from experiment.

3.5. Continuum Theory

Based on Continuum mechanics, this theory uses the non-equilibrium thermodynamic
concept to methodologically investigate the effect of different degradation on the mechani-
cal behavior of materials [39]. Natural fiber-based composites applied in moist environ-
ments involve interaction between the elastic and inelastic deformation, water diffusion
and progressive damage. The Continuum Damage Mechanics, (CDM), introduces nu-
merous constitutive degradation models that aim to relate the mechanical damages of
fiber-based composites. Helmholtz free energy formulation of a material can be assumed as
in Equation (8) for an isothermal deformation and water absorption processes where Ć de-
note the modified right Cauchy–Green deformation tensor and Cα is given by Equation (11).
The parameters Cα, J and ν represent the molar concentration of water molecules in the
composite, volume ratio of the fiber and material parameter, respectively. The influence
of damages induced by external loadings and water, can be described by introducing two
internal variables, denoted as α1 and α2, respectively [39].

ψ = ψ(Ć, Cα, α1, α2) (10)

Cα =
J − 1

ν
(11)

To formulate the constitutive equations, the Helmholtz free energy function is decom-
posed into two parts being the mechanical energy caused by deformation and the chemical
energy by water diffusion [39] given in Equation (12).

ψ = ψ(Ć, Cα, α1, α2) = ϕmech

(
Ć, Cα, α1, α2) + ϕdi f f (Cα

)
(12)

Based on the continuum theory it is possible to report the degradation caused by
water absorption in short or long natural fiber-based composites by establishing an internal
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parameter to propose a constitutive degradation model [64]. Some researchers such as
Tian and Zhong [65] have also been able to expand the application of these models to
predict long-term mechanical behavior of unidirectional natural fiber-based composite
under hygrothermal ageing. Tian et al., [65] investigated the mechanical performance of
composites materials reinforced with natural fibers by applying the phenomenological
damage mode to report the mechanical performance of the composite when taking into
account the integrated measures of external loading and water absorption. From the results
of their work, the continuum theory was employed to predict the tensile strength and
elasticity due to water absorption with time to which the theoretical values were observed
to be in good agreement with the corresponding experimental values. They have since
been able to conclude that the results obtained are evidence of the continuous degradation
model and thus capable of effectively describing the strength of the material in the course
of water absorption in addition to the evolution laws for elasticity. This in turn paves way
for theoretical foundations for future applications of composite materials reinforced with
natural fibers for use in outdoor load-carrying structures.

3.6. Finite Element Analysis

Since its establishment, finite element analysis (FEA) has reigned supreme as computa-
tional techniques for modelling and optimization in a variety of engineering disciplines [66].
The most commonly used software tool FEA is the ANSYS engineering simulation and
3D design software. The process of FEA can be broken down into three parts which are:
modelling (pre-processing step), analysis and optimization (post processing step). The aims
of the pre-processing stage are the 1D, 2D, or 3D modelling of the material, designating ap-
propriate material models, material properties, meshing, elements, and applying proper
structural or thermal boundary conditions with the applied loads, such as mechanical and
thermal loads [66]. The post processing stage is conducted to compute the response of a
material member subjected to any loading such as thermal, impact, static, fatigue before
the product development stage [66]. Results obtained from the FEA model are represented
in terms of plots, graphs, tables, deflected shapes of members and/or animation. For opti-
mization, a comparison between experimental and theoretical results is conducted. Figure 4
shows sample tensile test results conducted through FEA analysis which is an example of
how FEA is utilized to provide an accurate approximation to real performance. Due to its
profound results, finite element analysis has found widespread application in different in-
dustries, including aerospace, automotive, civil, commercial products, and electronic goods.

As an integral part of the design, FEA has gained interest in the analysis of natural
fiber-based composite materials. The mechanical performance of chopped, natural fiber
composites with and without closed-cell microcellular foamed structures were studied
by Kerna W.T et al. [67] using finite element analysis. The stress–strain properties of
analogous test specimens conducted on polypropylene matrix material reinforced with
wheat straw fibers were studied using FEA analysis and SEM. The incorporation of wheat
straw fiber to polypropylene matrix was found to enable microcellular foaming while
the finite element models provided the explanations for the variations in elastic modulus,
brittleness, and fiber stress found in the different cases. They have since been able to
conclude that the relationship between fiber length effects and microcell effects seems
to reduce the effect of fiber length on the overall mechanical behavior which has been
confirmed by experimental results on microcellular specimens.

Sowmya C. et al. [68] also achieved agreeing results between the finite element analysis
and experimental results after developing a new hybrid composite material using natural
fiber as reinforcement material with epoxy and polyester resins. The hybrid composite
material was fabricated using jute and hemp fibers along with graphite filler for 30◦, 45◦,
and 90◦ fiber orientations. FEA was used to compare the tensile, flexural, impact and
hardness characteristics obtained from the experimental results. Their results deduced
that elongation, tensile strength, flexural strength, impact strength, hardness, and specific
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gravity values were all obtained more at 90◦ orientations when compared to 30◦ and 45◦

orientations, which was in agreement with the finite element analysis conducted.
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3.7. Artificial Intelligence

Artificial intelligence (AI) is a branch of computer science that is described as the
ability of computers to mimic human behavior and is one of the exciting discoveries of the
20th century. AI is able to achieve enormous capabilities by deriving rules and building
models by manipulating vast amounts of data with the aim of capturing the underlying
information in data to gradually enhance the performance of predictive models and use
data to make informed decisions [69]. Several techniques have already been used to anal-
yse fiber reinforced composites, including support vector machines (SVM), decision trees,
K-Means, K-nearest neighbor (KNN), naive Bayes, and neural networks (NNs). These tech-
niques are all stochastically driven and each attempts to draw correlations through data by
defining different learning tasks. The application of AI in the manufacturing processes of
composite materials is an attempt to address the underlying complexity of their structure
which often limits their scope and applicability. Furthermore, artificial intelligence is also
being used to automate fabrication of composite materials in order to achieve optimized
manufacturing control.

Recently, a computational technique termed machine learning (ML) under the domain
of AI has gained interest as an emerging modelling approach. Raschka et al. [70] defined
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ML as the ability of computer programs to make decisions without explicitly being pro-
grammed. Three different types of ML exits; supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning methods such as logistic regression and
classification methods have found attraction as modelling techniques for composite materi-
als [70]. Figure 5 presents a summary of a common supervised learning flowchart in which
data that are labeled are passed to a ML model for training to allow the resulting model to
make predictions on new and unseen data.
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The logistic and linear regression methods of machine learning are however limited
to simple linear problems. Artificial neural networks (ANN), another technique under
AI, provides a more robust and complex structure that aims to solve even more complex,
non-linear, and dynamic problems. The domain of ANNs under AI is termed deep learning
which gained interest as a modelling algorithm in the recent decade. ANNs have attracted
the attention of material scientists owing to the improved computational power coupled
with high precision that can be achieved from these models [69].

An illustration of a basic neural cell model depicted in Figure 6 which reveals the
major elements of an artificial neuron which include the inputs, weights, summation
function, activation function and the outputs. The data inputs are denoted xi while
the weights are denoted wij which emphasize the influence of each input data point.
The summation function is denoted netj and computes the net input on a neural cell with
some associated bias and the result is fed into an activation function which addresses the
nonlinear behavior [69].
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An example of an ANN architecture is depicted in Figure 7 which is made up of green
dots, purple dots and red dots which make up the input nodes, hidden nodes, and output
nodes respectively. The signals transverse initially from the first input layer, through the
hidden layers and finally out through the output layer with the overall aim of achieving an
output result that accurately matches the input parameters [69]. The flow of information
between the connected node or neurons is termed the learning phase. The MATLAB
software package is commonly used for training and testing the model.
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To illustrate an ANN model for predicting properties of a fibre reinforced composite,
Figure 8 depicts an ANN model with one input layer and 3 input nodes, two hidden layers
with 5 nodes each and one output layer with 3 nodes. The model is designed to predict
the density, hardness and tensile strength given the reinforcement content (wt.%), size (m)
and milling time as input parameters. Ang et al. [61] investigated the first-ply failure of
glass/epoxy composite pipes by developing an artificial neural network (ANN) model to
predict the onset failure of the composite material under multiaxial loadings. By utilizing
the inputs and outputs of their experimental data, they trained the model for classification
in order to predict the first-ply failure within the composite material under different biaxial
stress ratios. To illustrate the failure points, they plotted a biaxial failure envelope in a
graph that depicted the axial stress versus hoop stress which depicted closely related plots
between experimental and predicted data. Based on their results, their model was able
to achieve a mean classification accuracy rate of 95–99.66% within the range of accuracy.
When compared to their experimental results, the (ANN) model’s prediction depicted
similar results with less than 30% variation prompting a suggestion that the model can
be utilised for useful predictions of onset failure analysis in composite materials under
varying stress conditions.
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Atuanya et al. [62] studied the use of ANN approach to accurately predict the mechan-
ical characteristics of recycled low density polyethylene composite reinforced with date
palm wood fiber. In training the ANN model, ground fibres in varying weight percentages
(wt %) were used as input for different particle sizes while the output parameters con-
sisted of the flexural modulus ultimate tensile strength, tensile modulus, flexural strength,
hardness, and elongation. For validation of the training data set, test data were used to
verify the model’s accuracy. From their results, the correlation coefficients of all predictions
with experimental data were more than 0.99, which enabled them to conclude that artifi-
cial neural networks can be utilized successfully predicting the mechanical properties of
natural fibres.

Other computational techniques that are classified as data-driven as opposed to model-
driven techniques include adaptive neuro-fuzzy inference system (ANFIS), genetic program-
ming, and the gene expression programming algorithm. First introduced in 1985 by Takagi
and Sugeno the ANFIS combines the power of fuzzy logic and ANN [71]. In genetic
programming, GP is used essentially for carrying out optimization algorithms where com-
puter algorithms are evolved to approximately model or solve complex problems [59,71].
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The gene expression programming algorithm, GEP, is generally used to overcome the
drawbacks of GP [59]. The ANFIS, GEP, and GP computational models have been used suc-
cessfully to model the fatigue behavior of fiber reinforced by utilising the cyclic stress that
form the S-N curves [59]. These models have been shown to be very powerful modeling
tools for the nonlinear behavior of composite laminates subjected to constant amplitude
loading [59].

4. Conclusions

Research progress on the mechanical behavior and performance of composite ma-
terials reinforced with natural fibers has been a topic of interest in the past decades.
Computational methods, such as RoHM, FEA, and ANN, have been explored by researchers
with the attempt of modelling and optimization of natural fiber composite materials for
improved properties and utilization. The application modelling techniques in NFCs allows
researchers to identify and isolate several parameters that have a significant effect on the
resulting properties which are in turn used to carry out optimisation techniques. The ap-
plication artificial intelligence methods for modelling and optimization of natural fiber
composites has however received limited attention even though it has been proven to be
the most successful new approach in modelling and optimization of composite materials.
Computational techniques that take advantage of artificial neural networks offer a very
promising formula to assess the limitations of predicting the mechanical characteristics
of composite materials. However, to date, even though these methods have been proven
to interpolate accurately the characteristics of materials using known data, there is lim-
ited evidence to support the predictive ability of these methods using unknown data.
Perhaps therefore future research should focus on developing computational methods to
address the research gap due to the increased growth in computational capabilities for
solving complex problems.
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Abbreviations
The following abbreviations are used in this manuscript:

A Measure of fiber geometry, fiber distribution and fiber loading conditions
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural networks
CDM Continuum damage mechanics
AI Artificial Intelligence
FEA Finite Element analysis
GEP Gene expression programming
GP Genetic programming
KNN K-Nearest Neighbor
ML Machine Learning
NFC Natural fiber composite
NN Neural networks
PLA Poly(lactic acid)
PP Polypropylene
RoM Rule of mixture
RoHM Rule of hybrid mixture
SVM Support Vector Machines
UP Unsaturated Polyester
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List of Symbols Used

Symbol Description
εhc Overall material strain
ε f 1 Single fiber strain
Ehc Elasticity of hybrid composite
Vc Relative hybrid volume
Vt Overall reinforcement volume fraction
Vf Volume fraction of fiber
Ec Elasticity of composite material
Tm Tensile strength of matrix material
Tc Tensile strength of composite material
Em Elasticity of matrix material
Tf Tensile strength of fiber
K Einstein coefficient
A Measure of fiber geometry, fiber distribution and fiber loading conditions
Ef Elasticity of fiber
η Fiber/matrix ratio
Vm Volume fraction of matrix
x Variable which gives the load transfer between the matrix and fiber
ψ Helmholtz free energy
Ć Modified right Cauchy-Green deformation tensor
Cα Molar concentration of water molecules
J Volume ratio of the fiber
ν Material parameter
ϕmech Mechanical energy caused by deformation
ϕdi f f Chemical energy by water diffusion
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