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Abstract: The present paper proposes a useful closed-form solution for a wide class of mechanical
problems, among which one of the most relevant and debated is the deboning process of Fiber-
Reinforced Polymer (FRP) strips glued to generic materials and possibly intended as a mode-II
fracture process. Specifically, after outlining well-known equations, a novel piecewise analytical
formulation based on a cascading solution process is proposed with the aim of keeping the math-
ematical expressions of the relevant mechanical quantities as simple as possible. Although other
analytical solutions and numerical procedures are already available in the literature, the present one
is capable of handling the softening or snap-back response deriving from the full-range simulation
of the depending process with no need for complex numerical techniques. This is obtained by
considering the slip at the free end of the strip as the main displacement control parameter. After
some comparisons between the proposed closed-form solution and experimental results available
in the literature, some mechanical considerations are highlighted by elaborating on the results of a
parametric study considering the variation of the main geometric and mechanical quantities. The
numerical code implemented as part of the present study is available to readers in Open Access.

Keywords: FRP; debonding; fracture; closed-form solution; numerical code

1. Introduction

Fiber-Reinforced Polymer (FRP) systems are well-established nowadays among the
possible technical solutions available on the market for strengthening structural members
in existing civil engineering constructions [1]. Although the first applications of FRP
strengthening were on reinforced concrete (RC) members [2], composite systems are also
widely adopted for masonry structures [3], and, more recently, their usage is becoming
more and more common also with steel [4] and timber [5] constructions.

Codes and guidelines have been recently released [6] (or are currently in a preliminary
version [7,8]) with the aim of making the FRP strengthening of existing structure safe
and reliable.

However, several issues still need further investigation with the aim of advancing
engineers’ understanding of the mechanical behavior of FRP-strengthened structural mem-
bers [9]. Among them, the adhesion between FRP and the existing material substrate
deserves special attention, as debonding [10] often controls the mechanical response of
FRP-strengthened members [11] and their failure mode [12].

Several models have been proposed with the aim of simulating the full-range behavior
of FRP-strengthened members [13,14]; they often assume that debonding develops as
pure mode-II fracture propagation process. In other words, they are based on assuming
an interface interaction law between relative axial displacements (often referred to as
“interface slips”) and the corresponding shear bond stresses; conversely, possible relative
displacements in the normal direction of the interface (“uplifts”) are neglected, and the
corresponding normal stresses not considered in defining debonding conditions.

The assumptions briefly recalled above, yet significantly simplified, require the de-
tailed definition of a bond-slip law controlling the adhesive interaction between the FRP
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strips and the material substrate throughout the whole interface. Therefore, with specific
reference to the case of the so-called Externally Bonded (EB) FRP strengthening of structures,
several proposals are available in the literature to define the aforementioned bond-slip
laws [15], though the most widely employed is the well-known bilinear elastic-softening
relationship.

The relevant parameters of bond-slip laws can be identified by processing the results
of pull-out tests on FRP strips glued on the substrate material of interest for the application
under consideration. In fact, several results obtained from pull-out tests executed on
FRP strips bonded on concrete blocks are available in the scientific literature, more with
reference of monotonic tests [16], but also considering cyclic loading protocols [17].

In fact, experimental results from pull-out tests does not allow one to “directly”
determine the mechanical parameters needed to identify the bond-slip laws, as the latter
are based on the interaction between FRP strip and the substrate material that, in principle,
cannot be “measured” by means of experimental tests. Conversely, “inverse” (or “indirect”)
identification methods are needed to process the results of pull-out tests and obtain the
relevant parameters of the bond-slip law that can reduce the differences between the
experimentally observed response and the results of a simulation based on the assumption
of the bond-slip law under consideration [18].

Inverse identification procedures are based upon theoretical models (and their an-
alytical or numerical solutions) that are employed to simulate the mechanical response
of the structural system under consideration (namely, a FRP-to-concrete joint subjected
to a pull-out test) with the aim of quantifying the difference between the simulated and
experimental results and of reducing them (through automated constrained optimization
procedures) by looking for the “best” values for the material parameters; in the case under
consideration, the latter are the mechanical quantities describing bond-slip laws [18].

Therefore, the availability of accurate and efficient models capable of simulating the
mechanical response of FRP-to-concrete (or other supporting materials) joints subjected to
pull-out actions is an essential point to obtain unbiased predictions (characterized by low
epistemic uncertainties) and reasonably fast inverse identification procedures. Numerical
solutions based on time-consuming iterative/incremental numerical methods are, then,
unfit to be employed in inverse identification processes that, in principle, may require
several runs during the optimization process. Hence, when possible, analytical solutions
are certainly preferable to this aim, as they can be both accurate (as far as the assumption
which they are based on are consistent) and fast (because they do not require significantly
iterative calculations).

In the case of the bilinear elastic-softening bond-slip law, the one actually considered
in the present study, a first and incomplete piecewise analytical solution has been proposed
by the author, but it has had limited circulation in the scientific community because it was
only included in a book of a conference proceeding [19]. In the following years, various
authors came up with alternative solution strategies, mainly limited to the case of “long”
anchorage length of the FRP plate on the supporting material [20]; other solutions were
aimed at simulating the stress and strain distributions developing between two subsequent
cracks in FRP-strengthened RC beams in bending [21].

This paper presents a further evolution of a “fully analytical” solution developed in
a previously co-authored paper [22]. The novelty of the present work is twofold. On the
one hand, the proposed closed-form formulation is based on a cascading solution of the
differential equation, which makes the resulting analytical expressions more handy and
simpler. On the other hand, a Matlab code implementing the whole solution process is
provided in Open Access as Supplementary Materials, which makes the present solution
fully accessible to readers, especially to those (e.g., young researchers) who are approaching
the topic for the first time.

The paper recalls the main mechanical assumptions and presents the analytical so-
lutions derived for the various stages of the debonding process (Section 2). Then, some
comparisons with available experimental results are proposed (Section 3), and the outcome
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of some theoretical analyses are shown with the aim to point out the role of the various
geometric and mechanical parameters on the resulting debonding process (Section 4). Final
considerations are mentioned in Section 5.

2. Model Formulation
2.1. Mechanical Assumptions

The mechanical model proposed herein to simulate the mechanical response of FRP
strips glued to a generic material is based on the following main assumptions:

- Debonding develops in pure mode II, and hence only relative slips are relevant to
describing the displacement field of the FRP strip;

- The FRP strip responds elastically with a Young modulus Ef;
- Interface slips are uniform throughout the generic transversal chord of the FRP strip;
- The interface is described by a bilinear elastic-softening bond-slip law;
- The substrate material is supposed to be stiff.

The assumed bond-slip law (Figure 1) is defined by three parameters, namely, the slip
sel at the end of the elastic branch, the slip su at the end of the softening branch, and the
maximum bond shear stress τmax. Related properties are the stiffnesses ke = τmax/se and
ku = τmax/(su − se) of the two linear branches and the specific fracture energy GF = τmax su/2.

Figure 1. Bilinear bond-slip law.

Thus, the analytical expressions of the bond-slip law can be written as follows:

τ(s) =


kes i f s ≤ se
τmax − ku(s− se) i f se < s ≤ su.
0 i f s > su

(1)

2.2. Main Equations and Close-Form Solutions

Imposing equilibrium conditions (between axial stresses σ and interface bond stresses
τ) and compatibility conditions (between slip s and axial strains ε in the FRP strip) on a
segmental strip element (Figure 2) leads to the two following differential equations:

dσ

dz
− τ(s)

t f
= 0 (2)

ds
dz

= ε ⇒ ds
dz

=
σ

E f
(3)

which, in turn, lead to the well-known differential equations reported below [22]:

d2s
dz2 −

τ(s)
E f t f

= 0 (4)
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where tf is the thickness, respectively, of the FRP plate.

Figure 2. Configuration of the mechanical system and representation of a segmental element of a Fiber-Reinforced Polymer
(FRP) strip.

Equation (4) assumes three different expressions depending on the one taken by the
bond slip law τ(s), which depends on whether the slip s falls within the elastic, softening
or debonded branch, as described by the three terms on the right-end side of Equation (1).

Replacing each one of such expressions in Equation (4), the latter leads to the three
following elementary closed-form general integrals reported hereafter:

- Elastic (“El”) branch (s ≤ se):

sEl(z) = AEl cosh(αez) + BElsinh(αez) with αe
2 =

ke

E f t f
(5)

- Softening (“So”) branch (se < s ≤su):

sSo(z) = ASo cos(αuz) + BSosinh(αuz) + su with αu
2 =

ku

E f t f
; (6)

- Debonded (“De”) branch (s > su):

sDe(z) = ADe + BDez. (7)

Details about the mathematical derivations of the expressions in Equations (5)–(7) are
omitted herein for the sake of brevity and can be found in a previous work [22].

2.3. Piecewise Formulation for Simulating the Debonding Process

The following subsections propose piecewise closed-form solutions for the debonding
process up to failure.

2.3.1. Elastic (“El”) Stage

As long as interface slips s are smaller than se, the elastic solution of Equation (5)
completely describes the distribution of slips throughout the whole bond length L, the
adhesive interface being in the elastic branch. Therefore, after imposing the following
initial conditions (namely, a slip s0 and zero axial strain at the unloaded end):

sEl(z = 0) = s0

dsEl
dz

∣∣∣
z=0

= 0
(8)

the following solutions can be found in terms of displacement distribution:

sEl(z) = cosh(αz) · s0 (9)
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which leads to the slip sL,El at the end of the bond length and the applied force FEl deter-
mined as follows:

sL,El = sEl(z = L) = cosh(αL) · s0 (10)

FEl = E f b f t f ·
dsEl
dz

∣∣∣∣
z=L

= E f b f t f · αs0sinh(αL). (11)

Therefore, Equation (11) represents the applied force corresponding to imposed slips
(at the end of the bonded length, namely at z = L). Moreover, the end of the elastic branch is
achieved as soon as sL,El ≤ se, which, from Equation (10), leads to the following limitation
in terms of imposed slip s0 at the unloaded end:

s0 ≤ s0,El = sech(αL) · se. (12)

2.3.2. Elastic-Softening (“El-So”) Stage

As the slip sL at the loaded end of the bond length becomes higher than se, a part
of the bonded interface attains the softening branch of the bond-slip law described by
Equation (1). A piecewise “cascading” solution scheme can be followed with the aim
to reduce the analytical effort needed to obtain the closed-form expressions of the slip
distributions throughout the two parts of the interface responding in the elastic and
softening branch, respectively.

Starting from values of s0 higher than those limited by the Equation (12), the slip
distribution throughout the elastic part of the interface can still be obtained by means of
sEl in expression (9), which, indeed, is admissible as long as sEl(z) ≤ se. Hence, solving
the equation defined by imposing the right end side of expression (9) be equal to se, the
following limit abscissa for the elastic part of the interface:

z =
1
α
· ln

 se

s0
·

1−

√
1−

(
s0

se

)2
, (13)

which, in principle, ranges from L, when s0 = s0,El of Equation (12), and back to 0, when
s0 = se.

According to the novel “cascading” solution procedure, the expression of slips where
se < s ≤ su can be determined by coupling the general integral of Equation (6) with the
following initial conditions: 

sSo(z = z) = se

dsSo
dz

∣∣∣
z=z

= dsEl
dz

∣∣∣
z=z

. (14)

After simple mathematical elaborations, the following expression can be obtained for
slips in the part of the interface stressed in the softening branch of the bond-slip law:

sSo(z) = su − (su − se) · cos[β(z− z)] +
αse · sin[β(z− z)] · tanh(αz)

β
(15)

which leads to the following expressions for the slip sL,El-So at the end of the bond length
and the corresponding applied force FEl-So:

sL,El-So = sSo(z = L) = su − (su − se) · cos[β(L− z)] +
αse · sin[β(L− z)] · tanh(αz)

β
(16)

FEl−So = E f b f t f · dsSo
dz

∣∣∣
z=L

=

= E f b f t f · {α · se · cos[β · (L− z)] · tanh(αz) + β · (su − se) · sin[β · (L− z)]}
(17)
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Therefore, the solution is controlled by the value of s0 imposed at the free end, which,
in turn, controls the value of z through Equation (13), and hence the values of slips and
force at the end of the bonded length L of the FRP strip.

2.3.3. Definition of “Short” and “Long” Anchorage

The El-So stage lasts up to either the slip s0 at the free end (z = 0) achieves se or the
slip sL (at s = L) attains su. The first condition can easily be checked, as s0 is actually the
imposed displacement. Conversely, the second condition (sL = su), imposed to the sL,El-So
expression (16) of the sL slip, leads to the following mathematical condition:

sL,El-So = su ⇒ β(su − se) · cos[β(L− z)] = αse · sin[β(L− z)] · tanh(αz). (18)

After some mathematical transformations, also including the identity between the
α, β, se and su − se that can be derived by combining the definitions of α2 and β2 in
Equations (5) and (6), the following relationship can be stated to determine the value of z
(and hence of s0) leading to sL = su:

α · cot[β(L− z)] = β · tanh(αz). (19)

Equation (19) has two main implications. The first one has to do with its solution in
terms of z; although no analytical solutions are available for this transcendental equation,
a reasonable approximation can be obtained by assuming that the hyperbolic tangent
function at the right-end side tends to 1, which would lead to the following relationship:

zEl-So ≈ L− 1
β
· arctan

[(
α

β

)]
. (20)

The second one defines the limit condition of having both s0 = se (namely, z = 0) and
sL = su, which leads to the following relationship between the length L and the values of β:

α · cot[β(L)] = 0⇒ L =
π

2β
(21)

where the L represents a critical value for the bond length L. More specifically:

- for L < L (“short” anchorage), the condition s0 = se at the free end is attained, while sL
< su: therefore, the debonding process proceeds towards a situation in which se < s(z)
< su, meaning that the whole interface is stressed in the softening branch (“So” stage)
of the bond-slip relationship (1);

- for L ≥ L (“long” anchorage), the condition sL = su is attained, while s0 < se; therefore,
the debonding process proceeds towards a situation in which the interface can be
subdivided into three regions (“El-So-De”): the first one [0,z] reacts elastically, the
second one (z,z] mobilizes bond stresses in the softening branch, and the third one
(z,L] is debonded.

2.3.4. Short Anchorage: Debonding Evolution to Failure (“So” Stage)

The slip distribution of the so-called “So” stage can be obtained by coupling the
general integral (6) with the following initial conditions:

sSo(z = 0) = s0 > se

dsSo
dz

∣∣∣
z=0

= 0
(22)

which leads to the following solution:

sSo(z) = su − (su − s0) · cos(βz). (23)
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In this condition, the following expressions can be determined for both the slip sL,So at
the end of the bond length and the correspondingly applied force FSo:

sL,So = sSo(z = L) = su − (su − s0) · cos(βL) (24)

FSo = E f b f t f ·
dsSo
dz

∣∣∣∣
z=L

= β · (su − s0) · E f b f t f · sin(βL). (25)

It is apparent that, as s0 tends to su (in which case the FRP strip is fully debonded) the
value of sL,So also tends to su and the force FSo vanishes.

2.3.5. Long Anchorage: Debonding Evolution to Failure (“El-So-De” Stage)

The slip distribution of the so-called “El-So-De” is obtained by combining the elastic
solution (9) for z ∈ [0,z], the softening (15) for z ∈ (z,z], and a final “piece” based on the
general integral (7).

First, the expression of z can be determined by equaling sSo(z) defined by Equation (15)
to su; the expression reported hereafter can be obtained after some mathematical simplifica-
tions:

z = z +
1
β
· arctan

[
α

β · tanh(αz)

]
. (26)

It is worth highlighting that the combination of Equations (19) and (26) guarantees
that z < L.

Then, the slip distribution throughout the debonded part of the interface z ∈ (z,L]
can be obtained, again according to the “cascading” process followed in other stages, by
coupling the general integral (7) with the following initial conditions:

sDe(z = z) = su

dsDe
dz

∣∣∣
z=z

= dsSo
dz

∣∣∣
z=z

(27)

which leads to the following solution:

sDe(z) = ADe + BDe · z (28)

with
BDe = β(su − se) sin

[
β(z− z)

]
+ αse cos

[
β(z− z)

]
∗ tanh(αz) (29)

ADe = su− BDe · z. (30)

The process is always controlled by the slip s0 imposed at the free end, which defines
both z through the solution of Equation (19) (possibly approximate by the expression (20))
and z through expression (26). The “El-So-De” stage lasts up until the imposed slip at the
free end achieves se; then the full debonding is achieved by means of a stress regime that
resembles the “So” stage with L = L, the remaining L− L length being already debonded.
As in the case of Equations (24) and (25), the force-slip relationship is linear up to full
debonding (s = su) and debonding (F = 0). The analytical details of this stage are omitted
for the sake of brevity.

2.3.6. Final Considerations about the Simulation of the Debonding Process

The previous subsections have clearly formulated a closed form piecewise formulation
of the debonding phenomenon in FRP strips bonded to a quasi-brittle substrate. The main
novelty with respect to a previous formulation [22] is represented by the fact that the main
control parameter is the displacement at the free end s0 (whereas the former was based on
sL) and a “cascading” solution process involving subsets of maximum two equations, which
leads to simpler expressions. Under a mathematical standpoint, the present formulation is
based on the solution of a series initial value problems (in space), whereas the former was
based on a unique boundary value problem for each stage of the debonding process.
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Finally, it is worth highlighting that the relationships reported in the previous sub-
sections allow determining both the global sL-F relationship and the interface slip s(z)
distribution for the generic stage of the debonding process controlled by a value of the free
end slip s0 ranging from 0 to su. It goes without saying that, according to the compatibility
condition (3), the distribution of axial strains ε(z) can be determined as the first derivative
of s(z) with respect to the abscissa z; similarly, the distribution of interface bond stresses
τ(z) can be determined by converting the interface slip s(z) via the bond-slip law (1).

3. Experimental Comparisons

This section proposes some comparisons between the experimental results available
in the literature and the results of simulations obtained by running an analysis based on the
proposed closed-form solution. Specifically, two sets of well-known experimental results
are considered hereafter.

The first one comes from a highly cited experimental study reporting the results of
four nominally equal specimens that are only different in terms of bonded length, the
latter ranging between 2 and 8 inches [16]. The second one is taken from a very recent
experimental study [17] consisting, among other things, of monotonic pull-out tests on
three nominally equal specimens with properties significantly different with respect to the
previous one.

3.1. Pull-Out Tests by Chajes et al. (1996)

The results of four single-side pull-out tests with various bond lengths, including both
cases of “short” and “long” anchorage as defined in Section 2.3.3, are considered in the
following with the aim to compare the experimentally measured values of axial strains
recorded at different load levels with the corresponding predictions deriving from the
proposed model. Specifically, bond lengths of 2, 4, 6, and 8 inches (corresponding to 50.8,
101.6, 152.4, 203.2 mm) are considered for a strip of carbon FRP whose main geometric
and mechanical parameters are reported hereafter: Ef = 108.4 GPa, bf = 25.4 mm, and
tf = 0.167 mm. For the sake of brevity, further details about materials and methods adopted
in this experimental study are omitted herein but can be easily found in the original
paper [16].

The bond-slip interface laws for the four aforementioned tested specimens have
been identified by means of an inverse procedure (and compared to the corresponding
calibrations possibly obtained via direct identification) in a previous study [18]. Those
bond slip-laws are now adopted to run the simulation analyses based on the bond-slip law
symbolically defined by expression (1).

Figures 3–6 show the obtained results are reported in term of interface distribution of
axial strains throughout the FRP strip for various load levels.

Figure 3. Theoretical vs. experimental comparisons in terms of axial strains (2-in. specimen [16]).
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Figure 4. Theoretical vs. experimental comparisons in terms of axial strains (4-in. specimen [16]).

Figure 5. Theoretical vs. experimental comparisons in terms of axial strains (6-in. specimen [16]).

Figure 6. Theoretical vs. experimental comparisons in terms of axial strains (8-in. specimen [16]).

Figures 7–10 show similar comparisons in terms of bond stress distribution throughout
the interface: shear stresses are not directly measured in tests by their average value
between two consecutive strain gauge locations, which are deducted on the bases of the
corresponding axial strain values [18].
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Figure 7. Theoretical vs, experimental comparisons in terms of interface shear stresses (2-in. speci-
men [16]).

Figure 8. Theoretical vs, experimental comparisons in terms of interface shear stresses (4-in. speci-
men [16]).

Figure 9. Theoretical vs. experimental comparisons in terms of interface shear stresses (6-in. speci-
men [16]).
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Figure 10. Theoretical vs. experimental comparisons in terms of interface shear stresses (8-in.
specimen [16]).

The comparisons generally show a reasonably good agreement between the experi-
mental measures and analytical results, the latter being represented by continuous curves.

3.2. Pull-Out Tests by Min et al. (2020)

A set of experimental results taken from a very recent paper [17] is considered hereafter
for the sake of validation of the proposed model, as both geometric and mechanical
properties are significantly different with respect to the ones considered in Section 3.1.
Specifically, a unidirectional Carbon Fiber-Reinforced Polymer (CFRP) plate, tf = 1.4 mm
tick and bf = 100 mm wide, is glued to a concrete block with a bonded length of L = 500 mm.
The presence of a 2-mm thick layer of epoxy resin layer makes the connection between FRP
and concrete very soft in the elastic range.

Therefore, the following mechanical parameters are considered for the bilinear bond-
slip law of Equation (1): se = 0.20 mm, su = 0.5 mm, and τmax = 2.20 MPa, which, employed
in the proposed simulation procedure, lead to the results represented in Figures 11 and 12.
Specifically, the force-slip curve represented in Figure 11 shows a very good agreement
in the elastic branch, a reasonable accurate prediction of the maximum load and ultimate
displacement. Needless to say, the snap-back behavior reproduced theoretically cannot be
observed in the considered experimental tests.

Figure 11. Theoretical vs. experimental comparisons in terms of force-slip curve (MT-3 speci-
men [17]).
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Figure 12. Theoretical vs. experimental comparisons in terms of axial strain distribution (MT-3
specimen [17]).

Similarly, Figure 12 shows that the distribution of axial strains determined for the
three different values of the imposed displacement already emphasized in the force-slip
curve of Figure 11 (namely, points C, D and E) are in good agreement, especially in the
final stage (Point E), with the corresponding experimental observations.

4. Parametric Analysis

Some further analyses can be carried out with the aim of showing the influence of the
variation of different parameters on the resulting force-slip curve. The starting point of
this study is an “average” bond-slip law among those assumed in Section 3.1 (and already
considered in a previous study [16]): se = 0.05 mm, su = 0.33 mm, and τmax = 6.93 MPa.
Moreover, with the aim of considering a case of practical relevance, the following prop-
erties are firstly considered for the composite bf = 50 mm and Eftf = 40 kN/mm (ideally
corresponding to Ef = 240 GPa and tf = 0.167 mm). In these conditions, αu

2 = 6.18 × 10−4

according to the definition given in Equation (6), and hence the critical transfer length
L = 63.21 mm can be obtained from Equation (21).

A first series of analyses will be intended to show the influence of the bond length L
on the resulting force-slip curve. To this end, the following four values will be considered
L = L/2, L = L, L = 2L, and L = 3L.

The four diagrams in Figure 13 show the results of the analyses. On the one hand,
each one of the graphs, related to a given value of the specific membrane stiffness Eftf of the
FRP plate, show the transition from short anchorage (L = L/2), in which case a softening
behavior is obtained, to long anchorage L ≥ L, characterized by a more or less pronounced
snap-back response. It is worth highlighting that the proposed solution scheme does not
require any complicated numerical control to handle the snap-back response in terms
of F-sL relationship: this is because the control displacement is not sL, but s0, the latter
simply ranging from 0 to su throughout the whole analysis process. On the other hand,
the synoptic vision of the four graphs shows that, for each value of L, the response in
terms of displacements is not affected by the variation in Eftf; it should, however, be clear
that for each value of Eftf a corresponding value of L is determined consistently with its
definition provided in Equation (21). As is well-known from the literature [18], the force F
is as high as the square root of the specific membrane stiffness Eftf; this relationship can
be easily recognized in the graphs of Figure 13, as, for instance, the maximum force for
Eftf = 60 kN/mm is

√
2 times the one determined in the case of Eftf = 30 kN/mm.
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Figure 13. Influence of the variations of both the specific membrane stiffness Eftf and the bond length L.

Further analyses can be carried out with the aim to point out the role of the “shape”
of the bond-slip law, though assuming an invariant value of fracture energy GF.

Starting from the bond-slip law identified by the values introduced at the beginning of
Section 4, two variations can be determined by dividing and multiplying, respectively, the
value of su by a 3/2 factor and modifying se and τmax for the resulting value of GF (which
is the area underneath the bilinear curve), which is actually invariant.

The three bond-slip laws are depicted in the legend reported in the upper part of
Figure 14 that also shows also the resulting force-slip curves. As expected, since both Eftf
and GF are invariant in the three analyzed cases the curves achieve the same maximum
force. However, since the three bond-slip curves happen to have different values of
ku and hence αu, each one of them is characterized by different values of L. Therefore,
although they all have a bond length value parametrically defined as L = 2L, the bond-slip
characterized by lower values of ultimate slip capacity results in lower ultimate slip also in
terms of global F-sL response.
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Figure 14. Influence of the variation in the shape of the bond-slip law (GF invariant).

5. Conclusions

This paper presented a novel solution scheme for obtaining closed-form expressions
capable of simulating the response of FRP-to-concrete joints subjected to pull-out actions.
The procedure is driven by controlling the displacement at the free end, which leads to
a cascading solution scheme of the differential equations describing the behavior of the
various parts of the interface, taking into account their actual state of stress described by
either the elastic, softening, or debonded branch of the bilinear bond-slip law assumed in
this study and widely accepted in the literature.

The most significant findings of this study are highlighted below:

- The closed-form expressions obtained by assuming a cascading piecewise solution
scheme are much simpler that the one presented in a previously co-authored pa-
per [22];

- The assumption of the free-end slip as the main controlling displacement parameters
made it much easier to handle both the softening and snap-back response deriving, in
principle, from the two cases of short and long anchorage, respectively;

- The proposed results of parametric analyses pointed out some noteworthy relation-
ships between the relevant geometric and mechanical parameters of the bond-slip law
and the resulting force-slip response of the FRP-to-concrete joint;

- Particularly, it pointed out the key importance of the critical the value L of the of the
bond length L depending on both the bond-slip parameters and the specific membrane
stiffness of the composite strip.

Finally, it is worth highlighting that since the proposed closed-form solution does not
require any iterative process, it is particularly efficient in terms of computational costs, and
hence it is well suited to be utilized in indirect identification procedures of bond-slip laws
of FRP strips glued on materials such as concrete, masonry, or steel.
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